JPS603913A - Extrusion method of titanium alloy - Google Patents

Extrusion method of titanium alloy

Info

Publication number
JPS603913A
JPS603913A JP11101483A JP11101483A JPS603913A JP S603913 A JPS603913 A JP S603913A JP 11101483 A JP11101483 A JP 11101483A JP 11101483 A JP11101483 A JP 11101483A JP S603913 A JPS603913 A JP S603913A
Authority
JP
Japan
Prior art keywords
billet
temperature
beta
transus
surface layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11101483A
Other languages
Japanese (ja)
Other versions
JPH052405B2 (en
Inventor
Tomio Nishikawa
西川 富雄
Shiyuujirou Suzuki
鈴木 脩二郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP11101483A priority Critical patent/JPS603913A/en
Publication of JPS603913A publication Critical patent/JPS603913A/en
Publication of JPH052405B2 publication Critical patent/JPH052405B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C23/00Extruding metal; Impact extrusion
    • B21C23/002Extruding materials of special alloys so far as the composition of the alloy requires or permits special extruding methods of sequences
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/16Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon
    • C22F1/18High-melting or refractory metals or alloys based thereon
    • C22F1/183High-melting or refractory metals or alloys based thereon of titanium or alloys based thereon

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Extrusion Of Metal (AREA)

Abstract

PURPOSE:To form the surface layer of a billet into a (alpha+beta) structure of regular system and the inner part into a transformed (beta) structure by heating the (alpha+beta) type Ti alloy to the temperature of its (beta) transus or higher before uniformly cooling its surface to the temperature of a (alpha+beta) two-phase region, to perform an extrusion of the billet. CONSTITUTION:A billet of (alpha+beta) type Ti alloy is heated to the temperature of its (beta) transus or higher in a heating furnace, and then is taken out. A glass lubricant is coated on the surface of the billet to uniformly cool it to the temperature of a (alpha+beta) two-phase region. Then the billet is subjected to an extrusion work.

Description

【発明の詳細な説明】 本発明は、チタン合金の押出方法、特に、押出力の小さ
い加工条件下においても性質の良好なチタン合金を得る
ことができるα+β型チタン合金の押出方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for extruding a titanium alloy, and in particular to a method for extruding an α+β type titanium alloy, which allows a titanium alloy with good properties to be obtained even under processing conditions with a small extrusion force.

従来、α+β型チタン合金の押出はβ相だけの一相温度
領域またはα+β相の二相温度領域で行われていた。β
−相の温度領域での押出、つまりβ−相押出ではビレッ
トの変形能が良好で変形抵抗も低いが、製品は粒界α相
を含むトランスフォームドβ組織であって強度は低い。
Conventionally, extrusion of α+β type titanium alloys has been carried out in a single-phase temperature range of only the β phase or in a two-phase temperature range of the α+β phase. β
In extrusion in the − phase temperature range, that is, β-phase extrusion, the deformability of the billet is good and the deformation resistance is low, but the product has a transformed β structure containing the grain boundary α phase and has low strength.

一方、α+β相の二相温度領域での押出、つまりα+β
二相押出では等軸α+β組織となって強度は改善される
が変形抵抗は高いため大きな押出力を必要とする。
On the other hand, extrusion in the two-phase temperature region of α + β phase, that is, α + β
Two-phase extrusion produces an equiaxed α+β structure, which improves strength, but requires a large extrusion force due to high deformation resistance.

ここに、本発明者らは永年研究の結果、押出力が小さい
というβ−相押出法の利点と等軸α+β組織が生成し強
度が大きいというα+β二相押出法の利点とを兼ね備え
たチタン合金形材の押出方法を見い出し、本発明を完成
した。
As a result of many years of research, the present inventors have developed a titanium alloy that combines the advantages of the β-phase extrusion method, in which the extrusion force is small, and the advantages of the α+β two-phase extrusion method, in which an equiaxed α+β structure is formed and the strength is high. We discovered a method for extruding shapes and completed the present invention.

すなわら、本発明の要旨は、α+β型チタン合金ビレッ
トをβトランザス以上の温度に例えば、大気中で加熱し
て後、該ビレットの表面層をα+β2相の温度領域にま
で均一に冷却させてから、該ビレノ1・を押出すことか
ら成る、製品の表面層が等軸α+β組織に、内部がトラ
ンスフォームドβ組織である、α−1β型チタン合金の
押出方法である。
In other words, the gist of the present invention is to heat an α+β type titanium alloy billet to a temperature higher than the β transus, for example, in the air, and then uniformly cool the surface layer of the billet to a temperature range of α+β two phases. This is a method for extruding an α-1β type titanium alloy, in which the surface layer of the product has an equiaxed α+β structure and the inside has a transformed β structure, which consists of extruding the bireno 1.

このように、本発明によれば、β(・ランザス以上に加
熱された押出用ヒレノドを加だIPから取出してから、
押出機のコンテナーに挿入する前に、外表面を均一に放
冷してヒレノドの表面層のみをα→−β二相領域の温度
にまで下げた後、押出し加工するのであり、かくして製
品の表面層が等軸α+β組織となり、内部がトランスフ
ォームドβ組織となったα→−β型合金形材が得られる
As described above, according to the present invention, after taking out the extrusion fillet heated to a temperature higher than β(・Ranzas) from the IP,
Before inserting into the container of the extruder, the outer surface is uniformly cooled to lower only the surface layer of the fin to a temperature in the α→−β two-phase region, and then extrusion processing is carried out, thus improving the surface of the product. An α→-β type alloy shape is obtained in which the layers have an equiaxed α+β structure and the inside has a transformed β structure.

ごごに、αイρ型合金としてはTj−6AI!−4ν、
Ti6八β−6V−2Sn 等が挙げられるが、特に本
発明がそれらに制限されるものではない。また、βトラ
ンザス温度はTi−6^7!−4Vは約980’cテア
リ、Ti−6Aβ−6V−2Snは約950”cであっ
て、それ等以下の温度でα+β二相温度領域となる。ま
た、βトランザス温度からα十β温度領域への均一冷却
は後述するようにビレットの回転台を利用するのが好ま
しいが、必ずしもそれにのみ制限されるものではない。
Please note that Tj-6AI is an α-ρ type alloy! −4ν,
Examples include Ti68β-6V-2Sn, but the present invention is not particularly limited thereto. Also, the β transus temperature is Ti-6^7! -4V is approximately 980'c, and Ti-6Aβ-6V-2Sn is approximately 950''c, and temperatures below these are in the α+β two-phase temperature range.Also, the α+β two-phase temperature range is from the β transus temperature to the α10β temperature range. Although it is preferable to uniformly cool the billet by using a billet rotating table as described later, it is not necessarily limited to this.

α+β二相温度領域に冷却される表面層は最表層のみで
も十分であり、それにより本発明が制限されるものでは
ないが、一般には所要の機械的特性を付与するに十分な
厚さとして約2〜3龍程度であれば良い。
It is sufficient that the surface layer cooled to the α+β two-phase temperature region is only the outermost layer, and this does not limit the present invention, but generally, the thickness is about 100 mL, which is sufficient to impart the required mechanical properties. It is sufficient if it is about 2 to 3 dragons.

なお、本発明の其体的態様にあっ−Cはヒレノドをβト
ランザスより余り高くない温度で力(げスジし、ガラス
潤?Fk剤を塗布後、ヒレソ1−表面を均一に冷却する
ためにビレットの回転機構を設けた台上にの−Vて回転
しながら放冷し該ヒレノドの表面層のめをβトランザス
以下に冷却して押出しを行う。」1記のビレットの加熱
工程において、銅被覆したビレットを用いる場合はガラ
ス潤湯剤を塗布する工程を省略してもよい。
In addition, in a physical embodiment of the present invention, the fillet throat is heated at a temperature not much higher than the β transus, and after applying the glass moisturizing agent and the Fk agent, in order to uniformly cool the fillet throat surface. The billet is placed on a table equipped with a rotation mechanism and allowed to cool while rotating at -V, and the surface layer of the fillet is cooled to below the β transus for extrusion. When using a coated billet, the step of applying a glass moisturizing agent may be omitted.

本発明による利益について二、三述べると次の通り。A few benefits of the present invention are as follows.

まず、チタンおよびチタン合金は鉄に比べて比熱はほぼ
同じであるが、比重が小さく (鉄は約7.9、チタン
は約4.5 > 、=s伝導率が小さい(鉄は約0.1
5ca l / cm / sec / ’C、チタン
は0.041cal/cm/sec/”C)。故に材イ
′4表面は熱容量が小さいために冷却し易く、かつ、熱
伝導率が小さいために月料内部からの熱の補給が少ない
、すなわら内外部の温度差がつき易い材料である。した
が7て、温度を均一に維 1持するよりは、内外の温度
差をつける方がより自然な努力の方向であり、その実施
も簡便でかつ容易である。
First, titanium and titanium alloys have almost the same specific heat as iron, but their specific gravity is smaller (iron is about 7.9, titanium is about 4.5 > s conductivity (iron is about 0. 1
5 cal/cm/sec/'C, titanium is 0.041 cal/cm/sec/'C).Therefore, the surface of the material A'4 has a small heat capacity, so it is easy to cool down, and its thermal conductivity is small, so it is easy to cool down. It is a material that receives little heat from within, which means that it is easy for there to be temperature differences between the inside and outside.7 However, it is better to create a temperature difference between the inside and outside than to maintain a uniform temperature. It is a natural direction of effort, and its implementation is simple and easy.

また、製品の強度はα+β二相温度領域で加工されて等
軸α十β組織となったものの方が、β−相湯温度領域加
工されてトランスフォームドβ組織となったものより優
れている。異形断面を有する形材は構造材料として用い
られ、従って、使用中は曲げ応力が主要な負荷応力状態
となり、この場合、最も高い応力(つまり、引張応力)
は材料表面に発生するから、製品の表面層が内部よりN
要であり、換言すれば、内部は表面より重要度が小さい
。したがって、本発明による製品はこうした構造材料と
しても十分使用できるのである。
In addition, the strength of products processed in the α + β two-phase temperature range to form an equiaxed α-deca β structure is superior to that processed in the β-phase temperature range to form a transformed β structure. . Profiles with irregular cross-sections are used as structural materials and therefore during use bending stresses are the predominant loaded stress state, in which case the highest stresses (i.e. tensile stresses)
is generated on the surface of the material, so the surface layer of the product is more N than the inside.
In other words, the inside is less important than the surface. Therefore, the products according to the invention can also be used satisfactorily as such structural materials.

更に、本発明の方法では、全断面均質な等軸α+β組織
の押出しを行う場合と比較して押出力はより小さいため
、換言すれば、同じ押出力でより大断面稍を有する形材
の押惧が可能となるのである。
Furthermore, in the method of the present invention, the extrusion force is smaller than when extruding an equiaxed α+β structure that is homogeneous throughout the cross section. It becomes possible to fear.

次に、本発明を実施例によってさらに説明する。Next, the present invention will be further explained by examples.

爽施皿 第1表に示す合金組成を有するTt−6Ax−4■のα
+β二相合金(βトランザス温度980℃)を用い、′
l゛宇型彫型形状月(頭部:60IIIIx12ml、
脚部:28龍×7III1.)を押出した。
α of Tt-6Ax-4■ having the alloy composition shown in Table 1
Using +β two-phase alloy (β transus temperature 980℃),'
l゛U-shaped carved shape moon (head: 60III x 12ml,
Legs: 28 dragons x 7III1. ) was extruded.

第1図は、温度995℃に加熱後、ガラス’a’irk
剤を塗布してから2分間放冷し、次いで押出した月料の
ミクロ組織写真である。第1図(blはその中心部を示
すもので、中心部はトランスフォームドβ組織であるこ
とが分かる。一方、第1図falはその表面層を示すも
ので、表面層は微細な等軸α−1−β組織になっている
ことがわかる。
Figure 1 shows the glass 'a'irk after heating to 995°C.
This is a microstructure photograph of a monthly charge that was extruded after being cooled for 2 minutes after applying the agent. Figure 1 (bl shows the center part, and it can be seen that the center part is a transformed β structure. On the other hand, Figure 1 fal shows the surface layer, and the surface layer is a fine equiaxed structure) It can be seen that it has an α-1-β structure.

第2図は、温度l020℃に加熱後、ガラス/r!l消
剤を塗布してから1分間放冷し、次いて押出した材料の
ミクロ組織写真である。第2図tblはその中心部を示
すもので、中心部はトランスフォームド”β組織である
ことが分かる。第2図falはその表層部を示すもので
、表面層も微細なトランスフォームドβ組織である。こ
れは放冷時間が短くて、α+β二相温度領域にまで冷却
されなかったためである。
Figure 2 shows the glass/r! after heating to a temperature of l020°C. This is a microstructure photograph of a material that was extruded after being cooled for 1 minute after applying a disinfectant. Figure 2 tbl shows the central part, and it can be seen that the central part is a transformed "β structure. Figure 2 fal shows the surface layer, and the surface layer is also a fine transformed β structure. This is because the cooling time was short and the temperature was not cooled to the α+β two-phase temperature region.

なお、第2図1b)の中心部の組織のβ粒の大きさが、
第1図fblのそれに比べて大きいのは両者の加熱温度
の相異によるものである。
In addition, the size of the β grains in the center structure in Figure 2 1b) is
The reason why it is larger than that in FIG. 1 fbl is due to the difference in heating temperature between the two.

第 1 表 (重量%) このように、本発明によれば、比較的大形の形材が容易
に押出・製造され、し7かも得られた形材の曲げ応力に
りjする抵抗性がず<41.ているのが分かる。
Table 1 (% by weight) As described above, according to the present invention, relatively large shapes can be easily extruded and manufactured, and the resulting shapes have excellent resistance to bending stress. zu<41. I can see that it is.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(+])および第1図(blは、本発明に係る方
法に従って押出された押出月の部分断面顕微鏡Mi織写
真;および 第2ワl talおよび第2図ib+は従来法によって
押出された押出材の部分断面顕微鏡組織写真である。 出願人 住友金属工業株式会社 代理人 弁理士 広 瀬 章 − 第1図 第2図
Figures 1 (+) and 1 (bl are partial cross-sectional micrographs of extruded moons extruded according to the method according to the present invention; This is a partial cross-sectional micrograph of the microscopic structure of the extruded material.Applicant Sumitomo Metal Industries Co., Ltd. Agent Patent Attorney Akira Hirose - Figure 1 Figure 2

Claims (3)

【特許請求の範囲】[Claims] (1)α」−β型チタン合金のビレットをβトランザス
以上の温度に加熱して後、該ビレットの表面層をα+β
2相領域の温度にまで均一に冷却させてから、該ビレッ
トを押出すことから成る、製品の表面層が等軸α+β組
織、内部がトランスフォームドβ組織である、α+β型
チタン合金の押出方法。
(1) After heating a billet of α''-β type titanium alloy to a temperature above the β transus, the surface layer of the billet is
A method for extruding an α+β type titanium alloy in which the surface layer of the product has an equiaxed α+β structure and the inside has a transformed β structure, which comprises uniformly cooling the billet to a temperature in the two-phase region and then extruding the billet. .
(2)前記ビレットをβトランザス以上の温度に加熱す
る際に、該ビレットを銅で被覆してから加熱する特許請
求の範囲第+11項記載の押出方法。
(2) The extrusion method according to claim 11, wherein the billet is coated with copper and then heated when the billet is heated to a temperature equal to or higher than the β transus.
(3)βトランザス以上の温度に加熱した前記ビレット
を冷却する際に、ガラス潤滑剤を表面に塗布して冷却す
る特許請求の範囲第11’1項記載の押出方法。 (イ)βl・ランザス以上の温度に加熱した前記ビレッ
トの表面層を均一に冷却する際に、ビレ、トの回転機構
を設kl、lた台上に該ビレットを待機せしめて回転さ
せる特許請求の範囲第111項ないし第(3)項のいず
れかに記載の押出方法。
(3) The extrusion method according to claim 11'1, wherein when cooling the billet heated to a temperature equal to or higher than the β transus, a glass lubricant is applied to the surface of the billet. (a) A patent claim in which, when uniformly cooling the surface layer of the billet heated to a temperature higher than βl/Ranzas, the billet is kept on standby and rotated on a stand equipped with a rotating mechanism for billets and g. The extrusion method according to any one of items 111 to (3).
JP11101483A 1983-06-22 1983-06-22 Extrusion method of titanium alloy Granted JPS603913A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11101483A JPS603913A (en) 1983-06-22 1983-06-22 Extrusion method of titanium alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11101483A JPS603913A (en) 1983-06-22 1983-06-22 Extrusion method of titanium alloy

Publications (2)

Publication Number Publication Date
JPS603913A true JPS603913A (en) 1985-01-10
JPH052405B2 JPH052405B2 (en) 1993-01-12

Family

ID=14550205

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11101483A Granted JPS603913A (en) 1983-06-22 1983-06-22 Extrusion method of titanium alloy

Country Status (1)

Country Link
JP (1) JPS603913A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4723063A (en) * 1985-04-16 1988-02-02 Rofin-Sinar Laser Gmbh Laser welding apparatus
US4902355A (en) * 1987-08-31 1990-02-20 Bohler Gesellschaft M.B.H. Method of and a spray for manufacturing a titanium alloy
US5118363A (en) * 1988-06-07 1992-06-02 Aluminum Company Of America Processing for high performance TI-6A1-4V forgings
US5773791A (en) * 1996-09-03 1998-06-30 Kuykendal; Robert Water laser machine tool

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018116444A1 (en) 2016-12-22 2018-06-28 新日鐵住金株式会社 α+β TITANIUM ALLOY EXTRUDED MATERIAL

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5216710A (en) * 1975-07-30 1977-02-08 Hitachi Ltd Vehicle body construction
JPS5545298A (en) * 1978-09-27 1980-03-29 Siemens Ag Analoggtoodigital converter

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5216710A (en) * 1975-07-30 1977-02-08 Hitachi Ltd Vehicle body construction
JPS5545298A (en) * 1978-09-27 1980-03-29 Siemens Ag Analoggtoodigital converter

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4723063A (en) * 1985-04-16 1988-02-02 Rofin-Sinar Laser Gmbh Laser welding apparatus
US4902355A (en) * 1987-08-31 1990-02-20 Bohler Gesellschaft M.B.H. Method of and a spray for manufacturing a titanium alloy
US5118363A (en) * 1988-06-07 1992-06-02 Aluminum Company Of America Processing for high performance TI-6A1-4V forgings
US5773791A (en) * 1996-09-03 1998-06-30 Kuykendal; Robert Water laser machine tool

Also Published As

Publication number Publication date
JPH052405B2 (en) 1993-01-12

Similar Documents

Publication Publication Date Title
US6209379B1 (en) Large deformation apparatus, the deformation method and the deformed metallic materials
JP2003532791A (en) Metal object having fine and homogeneous structure and surface condition, and method of manufacturing the same
US3687737A (en) Method of making beryllium-aluminum-copper-silicon wrought material
JPS603913A (en) Extrusion method of titanium alloy
JP4690650B2 (en) Method of manufacturing a metal strip
US5768679A (en) Article made of a Ti-Al intermetallic compound
Kitazono et al. Effect of ARB cycle number on cell morphology of closed-cell Al-Si alloy foam
US3986898A (en) Method for strengthening metallic materials liable to be subjected to internal oxidation
JP4495859B2 (en) Method for producing aluminum alloy containing magnesium and silicon
US3591916A (en) Low energy forming of metals
US4177086A (en) Process for the thermal treatment and the quenching of forged articles
US3657804A (en) Method of making beryllium-aluminum wrought material
JPS599137A (en) Production of age-precipitation type alloy
JPS63230858A (en) Manufacture of titanium-alloy sheet for superplastic working
US5900083A (en) Heat treatment of cast alpha/beta metals and metal alloys and cast articles which have been so treated
EP0425461A1 (en) Continuous solution heat treatment of precipitation hardenable alloys
JPH062087A (en) Production of continuously cast sheet material and wire rod
JP2003293116A (en) HIGHLY CORROSION RESISTANT, HIGH STRENGTH, HIGH TOUGHNESS, NITRIDING-TREATED Mo ALLOY WORKED MATERIAL AND PRODUCTION METHOD THEREFOR
US4375994A (en) Alternate method for inducing superplastic properties in nonsuperplastic metal and alloy powders
JPS61193720A (en) Hot extrusion method of titan product having good surface and high impact value
US3418112A (en) Method for forming seamless pressure vessels
JPH01284448A (en) Controlled forging method of ti alloy
JPS63140069A (en) Production of thin sheet or thin cross-section product
US4376660A (en) Method for inducing superplastic properties in nonsuperplastic metal and alloy powders
US3657803A (en) Method of making beryllium-aluminum-magnesium-silicon wrought material