EP0303913B1 - Détecteur d'intrusion - Google Patents

Détecteur d'intrusion Download PDF

Info

Publication number
EP0303913B1
EP0303913B1 EP88112765A EP88112765A EP0303913B1 EP 0303913 B1 EP0303913 B1 EP 0303913B1 EP 88112765 A EP88112765 A EP 88112765A EP 88112765 A EP88112765 A EP 88112765A EP 0303913 B1 EP0303913 B1 EP 0303913B1
Authority
EP
European Patent Office
Prior art keywords
reflectors
sensor
infrared
distance
reflector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP88112765A
Other languages
German (de)
English (en)
Other versions
EP0303913A1 (fr
Inventor
Kurt Müller
Hansjürg Mahler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cerberus AG
Original Assignee
Cerberus AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cerberus AG filed Critical Cerberus AG
Publication of EP0303913A1 publication Critical patent/EP0303913A1/fr
Application granted granted Critical
Publication of EP0303913B1 publication Critical patent/EP0303913B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B13/00Burglar, theft or intruder alarms
    • G08B13/18Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength
    • G08B13/189Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength using passive radiation detection systems
    • G08B13/19Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength using passive radiation detection systems using infrared-radiation detection systems
    • G08B13/193Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength using passive radiation detection systems using infrared-radiation detection systems using focusing means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S250/00Radiant energy
    • Y10S250/01Passive intrusion detectors

Definitions

  • the invention relates to an intrusion detector with a sensor with at least one infrared-sensitive sensor element and a plurality of infrared reflectors arranged on at least one support surface, which bundle infrared radiation arriving from a plurality of separate reception areas onto the common sensor.
  • Such detectors are used to detect objects or unauthorized persons, for example an intruder or burglar into a protected and monitored room or area by detecting the typical infrared radiation emanating from the object or person.
  • each movement of a person when crossing the reception areas causes a characteristic modulation of the infrared radiation received by the sensor.
  • This modulation can be carried out by means of appropriate sensors which are matched to the body radiation of a person, which can also have a plurality of sensor elements in a specific interconnection, such as dual sensors, and by means of suitable evaluation circuits which are matched to the typical modulation by a person moving through reception areas Indication of an intruder and evaluated for alarm signaling.
  • Such intrusion detectors are required, on the one hand, to reliably detect and signal a person entering the monitored area, not to be tricked and sabotaged by a certain behavior, and on the other hand not to trigger a false alarm.
  • the invention sets itself the task of eliminating the stated disadvantages of the prior art, and in particular to provide an intrusion detector of the type mentioned at the outset, which has improved detection sensitivity and detection reliability with a simplified structure, and with which, in particular, a predetermined space or area to be monitored is covered better and more uniformly with reception areas, so that the detector is more difficult to outwit, the reception area pattern is adapted to the shape and dimensions of the protected space or area, and the detection sensitivity of the detector for a person in the individual reception areas is approximately independent of the detection distance from the detector.
  • this object is achieved in that, in the case of an infrared penetration detector of the type mentioned at the outset, two rows of reflectors, which are to receive infrared radiation from reception areas located at a greater distance, on a paraboloid-shaped carrier surface which is arranged below the infrared sensor and has a larger focal length, offset in the horizontal direction and toothed in the vertical direction and two further rows of reflectors, which are supposed to receive infrared radiation from reception areas located closer together, on a paraboloidal support surface above the infrared sensor, which has a smaller focal length, in horizontal and in are arranged offset in the vertical direction and that the focal points of the reflectors within the reflective groups are independent of the arrangement on one of the support surfaces and without the inclusion of secondary reflectors on the Infraro t-Sensor and that the focal length of each reflector within the reflector groups are individually adapted to a given mean detection distance in each of the receiving areas assigned to the reflectors in question and that all reflectors
  • the support surfaces are paraboloidal, in the axis of which the sensor is arranged so that the surface points have a continuously decreasing distance from the sensor with increasing inclination of the direction of radiation incidence on the sensor. Since the focal lengths of the reflectors provided at the relevant surface points also decrease according to their distance from the sensor, the focal length becomes smaller as the angle of incidence increases with respect to the horizontal, that is to say with a shorter detection distance; this also reduces the image scale.
  • the reflectors in such a way that, viewed from the sensor, they include such a solid angle, e.g. solid angles increasing with the angle of incidence, so that the detection sensitivity in the individual reception areas is almost independent of the detection distance and thus that in the case of oblique incidence decreasing sensor sensitivity is compensated.
  • the number of reflectors for a certain distance range varies with the distance, for example increases continuously with the distance when the detector is installed at the corner, or decreases with wall mounting in order to achieve a uniform coverage of the room with reception areas.
  • each group A - D of reflectors are arranged on two support surfaces T1 and T2.
  • the reflectors have a reflective coating which bundles at least the body radiation of a person in the infrared spectral range onto the sensor S common to all reflectors.
  • the reflector groups A, B lying below the horizontal H formed by the common sensor S are provided on a lower support surface T1
  • the reflector groups C, D above the horizontal H are provided on an upper support surface T2.
  • the reflectors A1-A7 of the lowermost zone A of the support surface T1 are designed and aligned in such a way that their reception area is least inclined towards the horizontal, that is to say that an intruder can be detected and reported at a greater distance, ie in distant zones.
  • the reflectors B1 - B5 of the next higher zone B are inclined somewhat more so that their reception areas correspond to an average detection distance.
  • the reflectors C1 - C3 of group C lying on top of the upper support surface T2 are used for detection in the near zone, while the only reflector D1 of the uppermost zone D of the upper support surface T2 monitors the area immediately below the detector ("look-down zone" ).
  • the shape, in particular the curvature, and the arrangement of the support surfaces T1 and T2 to the sensor S is now selected such that the distance from the sensor S to the points of the support surfaces or the reflectors provided there increases with the angle of incidence of radiation against the horizontal, i.e. decreases with decreasing detection distance.
  • the aim is to choose the distance between the individual reflectors so that their focal length is at least approximately proportional to the detection distance.
  • the imaging scale of an object imaged by the various reflectors on the sensor thus becomes independent of the distance of the object from the detector, i.e. a more distant person is imaged in the same size as a close person, so that the detection sensitivity is almost the same in the near and far range.
  • the support surfaces For example, proven the formation of the support surfaces as hyperboloid surfaces or paraboloid surfaces with a horizontal axis. This automatically increases the distance between the carrier surface and the sensor as the inclination of the reception area decreases, as required. At times, however, compromises can be expedient with regard to a simple construction and a compact arrangement.
  • the reflector groups A, B corresponding to the remote reception areas are arranged on a paraboloid-shaped support surface T1.
  • the reflector group C, D assigned to the near reception zones is provided on an approximately spherical support surface T2, which is possible since here the detection distance for all these reflectors is almost equal to the mounting height of the detector.
  • the individual reflectors can advantageously be shaped as off-axis paraboloid segments, the axis of which is parallel to the direction of the assigned reception area, in order to ensure good optical imaging even in the case of oblique radiation.
  • approximation by means of spherical mirrors may be possible, especially if the incident radiation is slightly inclined.
  • FIG. 3 shows a coverage pattern of the reception areas of a detector according to FIGS. 1 and 2 when installed in the corner of a protected room with a base area of 12 ⁇ 12 m at a height of 2 m.
  • the particularly good and uniform coverage of the rectangular or square base area of the room is achieved by the horizontal and vertical displacement of the reflectors on the support surfaces, ie by the toothed arrangement of the reflectors, which was not possible with known reflector arrangements with simple rows of adjacent reflectors.
  • the number of reflectors for the different distance zones AD differs.
  • the number of reflectors A1 - A7 for the far zone A is seven, for the middle zone B there are five reflectors B1 - B5, while the near zone C is equipped with three reflectors C1 - C3.
  • a single reflector D1 is sufficient for the look-down zone D.
  • a larger number of reception areas are therefore provided for the distance zones with a greater detection distance, so that the reception area density is almost the same in the entire monitored space.
  • the central reflectors of the individual zones are offset horizontally against the side reflectors.
  • the middle reflectors A4 and B3 have a lower center than the neighboring reflectors A3 and A6, or B2 and B4, and these in turn lie lower than the outer reflectors A1 and A7, or B1 and B5.
  • the reception areas A4, B3 assigned to the middle reflectors thus have a greater range than that of the side reflectors, so that such a detector can be adapted particularly well to a rectangular or square space.
  • the special shape of the support surface T1 ensures that the imaging scale remains independent of the distance, since the lower arrangement of the middle reflectors with a somewhat larger detection distance automatically ensures a greater distance from the sensor and thus a larger focal length. It is noted that when the detector is installed in the center of a wall instead of in a corner of the room, inverse conditions are appropriate for adaptation to a rectangular room.
  • the area of the individual reflectors so that, viewed from sensor S, they include a solid angle that increases with the angle of incidence in such a way that the sensor sensitivity, which decreases when the radiation is at an angle, is compensated for.
  • the side reflectors with a larger area than the middle ones, and the lower reflectors assigned to the remote reception zones to be larger than those for the middle areas, and these in turn to be larger than those for the near reception areas.
  • a somewhat larger focal length of the central reflector C2 can be achieved by slightly displacing it relative to the adjacent lateral reflectors C1, C3, and thus adapting it to the slightly larger detection distance.
  • the senor can be designed as a dual sensor with two sensor elements located in a differential circuit, so that the reception areas are split into two adjacent areas, whereby the detection reliability can be further improved in a manner known per se with a special evaluation circuit.
  • the invention is not limited to the example of an intrusion detector for protecting a square space in corner installation, but rather is adapted to other room shapes and types of installation using the ideas of the invention by appropriate selection of the reflectors in terms of shape, curvature, orientation and attachment can be achieved so that the same technical advantages are achieved.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Burglar Alarm Systems (AREA)
  • Geophysics And Detection Of Objects (AREA)

Claims (7)

  1. Détecteur d'intrusion à infrarouges comportant un capteur (S) d'infrarouges ayant au moins un élément capteur sensible aux infrarouges et plusieurs réflecteurs d'infrarouges qui sont disposés sur une surface de support (T1, T2) et qui focalisent sur le capteur (S) commun le rayonnement infrarouge incident en provenance de plusieurs zones réceptrices distinctes, caractérisé en ce que deux rangées de réflecteurs (A, B), qui doivent recevoir un rayonnement infrarouge provenant de zones réceptrices situées à distance assez grande sont disposées sur une surface de support (T1) en forme de paraboloîde, ayant une distance focale assez grande et elle-même disposée en-dessous du capteur (S) d'infrarouges, en étant décalées dans le sens horizontal et en étant crénelées dans le sens vertical, et que deux autres rangées de réflecteurs (C, D), qui doivent recevoir un rayonnement infrarouge provenant de zones réceptrices situées à distance plus petite sont disposées, sur une surface de support (T2) en forme de paraboloîde se trouvant au-dessus du capteur (S) d'infrarouges et ayant une distance focale plus petite en étant décalées horizontalement et verticalement, et que les foyers des réflecteurs (A à D), sont quelle que soit la position sur l'une des surfaces (T1 ou T2) de support et sans inclure de réflecteurs secondaires, sur le capteur (S) d'infrarouges, et que la distance focale de chaque réflecteur est adaptée individuellement à une distance moyenne donnée de détection dans chacune des zones réceptrices affectées aux réflecteurs (A à D) concernés, et que l'ensemble des réflecteurs (A à D), sont incurvés et sont orientés de façon à définir avec le capteur (S) une configuration de zones réceptrices qui recouvre au moins à peu près de façon uniforme une surface carrée à surveiller, et que les réflecteurs (A à D) sont dimensionnés de façon telle qu'ils délimitent, vu du capteur (S), un angle solide d'une valeur telle que la quantité de rayonnement qui est émise par une personne se trouvant dans la zone réceptrice concernée à distance de détection moyenne et qui est reçue par le capteur (S), soit à peu prés la même pour toutes les zones réceptrices, quelque soit l'angle d'incidence.
  2. Détecteur d'intrusion à infrarouges suivant la revendication 1, caractérisé en ce que les réflecteurs médians (A4, B3) d'au moins un groupe sont disposés plus en bas et les réflecteurs latéraux (A1 à A3, A5 à A7, B1, B2, B4, B5) sont disposés graduellement plus haut, à une distance croissante du milieu.
  3. Détecteur d'intrusion à infrarouges suivant l'une des revendications 1 et 2, caractérisé en ce qu'au moins un réflecteur médian (C2) est à une distance du capteur (S) différente de celle des réflecteurs latéraux (C1, C3).
  4. Détecteur d'intrusion à infrarouges suivant l'une des revendications 1 à 3, caractérisé en ce que le nombre des réflecteurs dans les groupes (A à D) de réflecteurs est différent pour des zones à distance de détection différentes.
  5. Détecteur d'intrusion à infrarouges suivant la revendication 4, caractérisé en ce que le nombre de réflecteurs dans les groupes (A à D) de réflecteurs augmente avec la distance de détection.
  6. Détecteur d'intrusion à infrarouges suivant l'une des revendications 1 à 5, caractérisé en ce que la surface de support destinée aux réflecteurs est constituée d'une surface (T1) en-dessous du plan horizontal (H) passant par le capteur (S) ainsi que d'une surface (T2) au-dessus du plan horizontal (H).
  7. Détecteur d'intrusion suivant la revendication 6, caractérisé en ce que la surface de support inférieure (T1) a au moins à peu près une forme d'hyperboloide ou une forme de paraboloîde et porte les réflecteurs (A1 à A7, B1 à B5) qui forment des zones réceptrices à grande distance de détection, et en ce que la surface de support supérieure (T2) a une forme au moins à peu près sphérique et porte les réflecteurs (C1 à C3, D1) destinés aux distances de détection les plus petite.
EP88112765A 1987-08-11 1988-08-05 Détecteur d'intrusion Expired - Lifetime EP0303913B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH3083/87A CH675316A5 (fr) 1987-08-11 1987-08-11
CH3083/87 1987-08-11

Publications (2)

Publication Number Publication Date
EP0303913A1 EP0303913A1 (fr) 1989-02-22
EP0303913B1 true EP0303913B1 (fr) 1994-10-05

Family

ID=4248255

Family Applications (1)

Application Number Title Priority Date Filing Date
EP88112765A Expired - Lifetime EP0303913B1 (fr) 1987-08-11 1988-08-05 Détecteur d'intrusion

Country Status (7)

Country Link
US (1) US4880980A (fr)
EP (1) EP0303913B1 (fr)
AT (1) ATE112644T1 (fr)
CA (1) CA1291245C (fr)
CH (1) CH675316A5 (fr)
DE (1) DE3851734D1 (fr)
ES (1) ES2064333T3 (fr)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH676642A5 (fr) * 1988-09-22 1991-02-15 Cerberus Ag
EP1024465A1 (fr) * 1999-01-29 2000-08-02 Siemens Building Technologies AG Détecteur passif à infrarouge
US6346705B1 (en) * 1999-03-02 2002-02-12 Cordelia Lighting, Inc. Hidden PIR motion detector with mirrored optics
EP1037184B1 (fr) 1999-03-08 2003-10-29 Siemens Building Technologies AG Boítier pour avertisseur de danger
GR1003412B (el) * 1999-06-09 2000-07-25 Ανακλαστικος απεικονιτηρ
ES2218927T3 (es) * 1999-10-01 2004-11-16 Siemens Building Technologies Ag Detector pasivo de infrarrojos.
DE60125565T2 (de) 2000-05-26 2007-10-11 Mark R. Oakland Brent Perimeterüberwachungsanlage und automatisierter behälter
US6974948B1 (en) 2000-05-26 2005-12-13 Brent Mark R Perimetric detection system
US20100249584A1 (en) * 2002-03-28 2010-09-30 Azienda Ospedaliero- Universitaria Pisana Ventilation apparatus for pulmonary scintigraphy
ITPI20020018A1 (it) * 2002-03-28 2002-06-26 Azienda Ospedaliera Pisana Ventilazione polmonare a variazione di flusso
DE10219508A1 (de) * 2002-04-30 2003-11-13 Basf Ag Verfahren zur Herstellung hochfunktioneller, hyperverzweigter Polyester
US7755052B2 (en) * 2003-03-14 2010-07-13 Suren Systems, Ltd. PIR motion sensor
NL2000616C2 (nl) * 2007-04-26 2008-10-28 Gen Electric Bewakingsinrichting.
EP2498232A1 (fr) * 2011-03-10 2012-09-12 Siemens Aktiengesellschaft Détecteur
GB201305490D0 (en) * 2013-03-26 2013-05-08 Novar Ed & S Ltd A detector unit with a reflector
US10122847B2 (en) * 2014-07-20 2018-11-06 Google Technology Holdings LLC Electronic device and method for detecting presence and motion
US9854227B2 (en) 2015-01-08 2017-12-26 David G Grossman Depth sensor
KR102450625B1 (ko) * 2017-08-31 2022-10-07 서울바이오시스 주식회사 검출기
US10605666B2 (en) * 2017-12-28 2020-03-31 Ademco Inc. Ceiling mount intrusion detector with PIR mirror with adjustable mount height

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3056106A (en) * 1958-07-14 1962-09-25 Gamewell Co Infrared detectors
US3466119A (en) * 1965-04-10 1969-09-09 Giovanni Francia Multiple mirrored apparatus utilizing solar heat
US3703718A (en) * 1971-01-07 1972-11-21 Optical Coating Laboratory Inc Infrared intrusion detector system
US3744885A (en) * 1971-11-22 1973-07-10 A Hurtado Angular viewing device
US3858192A (en) * 1972-12-26 1974-12-31 Barnes Eng Co Intrusion detector alarm system having logic circuitry for inhibiting false alarms
US3988726A (en) * 1973-09-04 1976-10-26 Gulf & Western Manufacturing Company Infrared intrusion detection apparatus
US3886360A (en) * 1973-09-04 1975-05-27 Gulf & Western Mfg Co Infrared intrusion detection apparatus
US3923382A (en) * 1973-12-19 1975-12-02 Leco Corp Multifaceted mirror structure for infrared radiation detector
US3972598A (en) * 1974-09-09 1976-08-03 Leco Corporation Multifaceted mirror structure for infrared radiation detector
CH596620A5 (fr) * 1976-06-21 1978-03-15 Cerberus Ag
CH599642A5 (fr) * 1976-11-15 1978-05-31 Cerberus Ag
US4195234A (en) * 1978-02-02 1980-03-25 Optical Coating Laboratory, Inc. Infrared intrusion alarm system with temperature responsive threshold level
US4339748A (en) * 1980-04-08 1982-07-13 American District Telegraph Company Multiple range passive infrared detection system
DE3112529C2 (de) * 1981-03-30 1985-05-23 Fritz Fuss Kg, 7470 Albstadt Spiegelanordnung für eine Meldeeinrichtung
EP0147925A1 (fr) * 1983-10-19 1985-07-10 C & K Systems, Inc. Détecteur infrarouge combiné avec un dispositif à micro-ondes destiné à signaler une intrusion
DE3400060C1 (de) * 1984-01-03 1985-08-14 Inovatronic elektronische Systeme GmbH, 5650 Solingen Passiver Infrarot-Bewegungsmelder
US4625115A (en) * 1984-12-11 1986-11-25 American District Telegraph Company Ceiling mountable passive infrared intrusion detection system

Also Published As

Publication number Publication date
CA1291245C (fr) 1991-10-22
ES2064333T3 (es) 1995-02-01
EP0303913A1 (fr) 1989-02-22
CH675316A5 (fr) 1990-09-14
ATE112644T1 (de) 1994-10-15
DE3851734D1 (de) 1994-11-10
US4880980A (en) 1989-11-14

Similar Documents

Publication Publication Date Title
EP0303913B1 (fr) Détecteur d'intrusion
EP1089245B1 (fr) Détecteur infrarouge passif
EP0361224B1 (fr) Détecteur d'intrusion à infrarouge
CH681574A5 (fr)
EP0652422B1 (fr) Dispositif pour recevoir des rayons lumineux
EP0218055B1 (fr) Détecteur de mouvement à infrarouge
US4709152A (en) Infrared intrusion detector
EP0065159B1 (fr) Détecteur de mouvement pour contrôler des places
DE7636764U1 (de) Infrarotstrahlungs-einbruchdetektor
EP0020917B1 (fr) Arrangement optique pour détecteur de mouvement infrarouge passif
EP0080114B2 (fr) Détecteur de rayonnement avec plusieurs éléments sensibles
DE69833152T2 (de) Linse für Lichtdetektor
EP0821330B1 (fr) Détecteur de fumée
DE19517517B4 (de) Passiv Infrarot Eindringdetektor
CH667744A5 (de) Infrarot-eindringdetektor.
EP0558796B1 (fr) Senseur optique
DE3742031A1 (de) Bewegungsmelder mit einem infrarotdetektor
DE2645040B2 (de) Strahlungsdetektor
EP4118405B1 (fr) Détecteur de mouvement infrarouge
WO1992010819A1 (fr) Detecteur de mouvement a infrarouge passif
EP0050750A1 (fr) Détecteur d'intrusion à infrarouge
EP1089244B1 (fr) Disposition de miroirs dans un capteur passif d'infrarouge
EP1024465A1 (fr) Détecteur passif à infrarouge
WO1998003947A1 (fr) Detecteur de fumee
DE60202167T2 (de) Segmentierte Fresnel-Linse

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19880805

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE ES FR GB IT LI LU NL SE

17Q First examination report despatched

Effective date: 19910802

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE ES FR GB IT LI LU NL SE

REF Corresponds to:

Ref document number: 112644

Country of ref document: AT

Date of ref document: 19941015

Kind code of ref document: T

ITF It: translation for a ep patent filed

Owner name: JACOBACCI CASETTA & PERANI S.P.A.

REF Corresponds to:

Ref document number: 3851734

Country of ref document: DE

Date of ref document: 19941110

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19941103

ET Fr: translation filed
EAL Se: european patent in force in sweden

Ref document number: 88112765.8

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2064333

Country of ref document: ES

Kind code of ref document: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Effective date: 19950805

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20000717

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20000718

Year of fee payment: 13

Ref country code: FR

Payment date: 20000718

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20000724

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20000725

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 20000803

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20000807

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20000808

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20001129

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010805

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010805

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010806

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010806

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010831

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010831

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010831

BERE Be: lapsed

Owner name: CERBERUS A.G.

Effective date: 20010831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020301

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20010805

EUG Se: european patent has lapsed

Ref document number: 88112765.8

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020430

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20020301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020501

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20020911

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050805