EP0302380A2 - Wärmebeaufschlagtes Bauteil - Google Patents

Wärmebeaufschlagtes Bauteil Download PDF

Info

Publication number
EP0302380A2
EP0302380A2 EP88112135A EP88112135A EP0302380A2 EP 0302380 A2 EP0302380 A2 EP 0302380A2 EP 88112135 A EP88112135 A EP 88112135A EP 88112135 A EP88112135 A EP 88112135A EP 0302380 A2 EP0302380 A2 EP 0302380A2
Authority
EP
European Patent Office
Prior art keywords
cavity
thermal expansion
higher coefficient
expansion
cylinder head
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP88112135A
Other languages
English (en)
French (fr)
Other versions
EP0302380A3 (en
EP0302380B1 (de
Inventor
Fritz Dipl.-Ing. Rösch
Bernd Dr.-Phys. Otte
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Novelis Deutschland GmbH
Original Assignee
Alcan Deutschland GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alcan Deutschland GmbH filed Critical Alcan Deutschland GmbH
Publication of EP0302380A2 publication Critical patent/EP0302380A2/de
Publication of EP0302380A3 publication Critical patent/EP0302380A3/de
Application granted granted Critical
Publication of EP0302380B1 publication Critical patent/EP0302380B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F3/00Pistons 
    • F02F3/16Pistons  having cooling means
    • F02F3/18Pistons  having cooling means the means being a liquid or solid coolant, e.g. sodium, in a closed chamber in piston
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F3/00Pistons 
    • F02F3/26Pistons  having combustion chamber in piston head
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F1/00Cylinders; Cylinder heads 
    • F02F2001/008Stress problems, especially related to thermal stress
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F2200/00Manufacturing
    • F02F2200/04Forging of engine parts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05CINDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
    • F05C2201/00Metals
    • F05C2201/02Light metals
    • F05C2201/021Aluminium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05CINDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
    • F05C2201/00Metals
    • F05C2201/04Heavy metals
    • F05C2201/0433Iron group; Ferrous alloys, e.g. steel
    • F05C2201/0448Steel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05CINDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
    • F05C2251/00Material properties
    • F05C2251/04Thermal properties
    • F05C2251/042Expansivity

Definitions

  • the invention relates to a component of machines, systems or other devices which is subjected to different heat effects in zones.
  • Such phenomena occur e.g. in an internal combustion engine, in particular in the web (in the bridge) between the intake and exhaust valve of the cylinder head and at the edge of the combustion chamber trough of the piston.
  • cooling ducts have been provided in internal combustion engines in their thermally highly stressed parts or areas through which oil, water or air flows as a cooling medium (DE-AS 15 76 733 and FR-PS 1 494 256). These cooling channels have an inlet and outlet for the cooling medium flowing through. Firmly closed cavities filled with cooling medium have also been provided, the cooling medium only partially filling the cavities (DE-PS 762 820, DE-AS 15 76 733 and DE-p 22 711 D). With these cooling channels or cold rooms, the temperature in the critical zones can be reduced. The local temperature drop also causes an increase in the temperature and thus also the voltage gradient. Normally, the temperatures cannot be lowered so far to completely prevent the cracking that occurs as a result of the aforementioned constant change in stress.
  • the invention is therefore based on the object, in the case of components which are subjected to different heat and thus being heated differently, to make the voltage profile over the temperature in thermally highly exposed parts or regions more favorable by reducing or even eliminating their expansion hindrance caused by the adjacent colder regions.
  • This is achieved according to the invention in that in the material of the component outside the zones of high heat exposure but adjacent to these there is at least one closed cavity which is completely filled with a material which has a higher coefficient of thermal expansion than the material of the component surrounding it.
  • the material that completely fills the cavity expediently has a substantially higher coefficient of expansion than the material of the region or part of the machine containing the cavity.
  • the less strongly heated zones or parts are given a thermal expansion equalized to the more heated zones or parts of the component due to the material provided there with a higher coefficient of thermal expansion, in order to compressive and tensile stresses in the more heated zones or areas which can lead to crack formation. to avoid.
  • the invention is therefore less powerful in these to give the heated areas the highest possible thermal expansion as the neighboring more heated areas of the component by using bodies or materials with a higher coefficient of thermal expansion in the less heated area.
  • the expansion material is a body that positively and completely fills the cavity and has a solid state of aggregation at the usual temperatures prevailing in an internal combustion engine.
  • an expansion material which is solid at normal ambient temperature and which is only liquid at higher temperatures for example those which arise when the machine is operating in its highly pressurized parts or areas, so that its strengthened Expansion effect only occurs above a certain temperature.
  • the volume jump that occurs with most substances when their aggregate state changes can be used.
  • expansion material come e.g. low-melting metals in question.
  • an expansion material that is liquid at normal ambient temperature can also be used.
  • This expansion material experiences a similar degree of expansion to these parts or areas because of its significantly higher expansion coefficient at temperatures which are below those of the parts or areas of the machine subjected to high heat. As a result, they force these areas of the machine adjacent to the hot-spot areas to expand to the same order of magnitude as they experience the hot-spot areas. This occurs in this Parts or areas of the machine subjected to high thermal loads have no or almost no hindrance to their expansion, so that even with frequent changes in temperature there is no or almost no cyclical compression and expansion of these parts or areas of the machine.
  • this liquid can be put into a capsule or sleeve made of metal or the like.
  • a capsule or sleeve made of metal or the like.
  • the advantage of using a liquid expansion material is that the coefficient of thermal expansion of liquids is a factor of approximately 100 above the coefficient of expansion of solids.
  • aluminum alloys which are usually used for the production of parts of internal combustion engines, in particular pistons, have linear expansion coefficients in the range from 21 to 24 ⁇ 10 ⁇ 6K ⁇ 1, which means a cubic expansion coefficient of approx. 65 ⁇ 10 ⁇ 6K ⁇ 1 corresponds.
  • the cubic expansion coefficient of liquids is in the range of 10 ⁇ 4K ⁇ 1. It is eg for glycerol 5 ⁇ 10 ⁇ 4K ⁇ 1, for benzene 12.3 ⁇ 10 ⁇ 4K ⁇ 41, for mercury 8.3 ⁇ 10 ⁇ 4K ⁇ 1.
  • the piston 1 shown in FIG. 1 has a combustion chamber trough 2 in its piston head. Behind the lateral edge of this combustion chamber trough, enclosed cavities 3, 4 are provided in the material of the piston head, which are adjacent and are self-contained, and which partially extend around the trough and differ Have cross-sectional shape.
  • the arrangement of these cavities is such that they lie precisely in those areas of the piston head in the vicinity of which a particularly high thermal loading of the piston material takes place.
  • this space or these spaces are filled with a liquid substance as the expansion material, which has a higher coefficient of expansion than the material of the region of the piston head surrounding the cavity, so that the liquid substance expands more when heated than the material of the piston head.
  • a liquid substance as the expansion material which has a higher coefficient of expansion than the material of the region of the piston head surrounding the cavity, so that the liquid substance expands more when heated than the material of the piston head.
  • an elongated cavity 7 is provided below the surface 6 of the combustion chamber, which extends from the side of the cylinder head into the area between the inlet valve 8 and the outlet valve 9 and the prechamber inlet 10.
  • This cavity 7 opens out on the side of the cylinder head and is provided there with a connection 10 for connection to the engine oil supply 11 of the internal combustion engine.
  • the connection can be provided with a check valve, which prevents a reduction in the pressure build-up desired in the cavity 7 when the cylinder head is exposed to temperature over longer periods of time.
  • the oil loss in the cavity 7 which may occur due to leaks or diffusion processes can be automatically compensated for at lower temperatures by the connection to the engine's pressure oil reservoir via the check valve.
  • the connection can also be equipped with a pressure relief valve.
  • elongated cavities 12, 13 are provided in the cylinder head near the outer sides of the inlet and outlet 8, 9, which on a Open side of the cylinder head with connections 14, 15 for the connection to the engine oil supply and / or for pressure relief valves.
  • These cavities 12, 13 are located somewhat outside the thermally highly stressed zones of the cylinder head, so that the tensile forces in the material of the cylinder head which relieve stress relieve the hot spot area from a certain distance.
  • the closed cavities according to the invention and filled with expansion material can, however, also be used in parts or areas of an internal combustion engine which are subject to high thermal stresses than those indicated in the drawings.
  • These cavities are expediently to be arranged in material areas of the machine or parts of the machine that directly adjoin thermally exposed parts or areas of the machine, in order to subject these thermally less exposed parts or areas to an expansion that is approximately as great as the highly exposed areas or parts of Machine.
  • the invention can also be used in other machines, systems or devices in which components which are exposed to different heat levels are present in zones. So the invention, with Expansion material-filled cavities can also be used in other heat engines, in turbine blades, in plant parts in reactor construction and in chemical apparatus, to name just a few application examples.
  • the invention can also be used for casting, forging and pressing tools, in order to largely avoid the risk of dimensional and contour distortion, which is mostly created from steel blocks, in these contour tools.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Cylinder Crankcases Of Internal Combustion Engines (AREA)

Abstract

Die Erfindung betrifft ein zonenweise unterschiedlich wärmebeaufschlagtes Bauteil von Maschinen, Anlagen oder anderen Vorrichtungen, insbesondere Bauteil von Wärmekraftmaschinen. Um in diesen Bauteilen den Spannungsverlauf über der Temperatur in thermisch hochbeaufschlagten Teilen oder Bereichen dadurch günstiger zu gestalten, daß die angrenzenden kälteren Bereiche ihre Ausdehnung nicht reduzieren oder verhindern, ist im Werkstoff des Bauteils, beispielsweise eines Kolbens einer Verbrennungskraftmaschine, benachbart zu den Zonen hoher Wärmebeaufschlagung, mindestens ein abgeschlossener Hohlraum (3, 4) vorgesehen, der vollständig mit einem Material ausgefüllt ist, das einen höheren Wärmeausdehnungskoeffizienten hat als der ihn umschließende Werkstoff des Bauteils.

Description

  • Die Erfindung betrifft ein zonenweise unterschiedlich wärmebeaufschlagtes Bauteil von Maschinen, Anlagen oder anderen Vorrichtungen.
  • In thermisch hochbeanspruchten und dadurch stark erwärmten Teilen oder Bereichen (sogenannte hot-spots) von unterschiedlich wärmebeaufschlagten Bauteilen, wie z.B. Kolbenoberflächen von Verbrennungskraftmaschinen, welche direkt mit den heißen Verbrennungsgasen in Berührung kommen, treten durch Temperaturgradienten örtlich unterschiedliche Wärmedehnungen auf. Diese Bereiche werden in ihrer Wärmedehnung durch benachbarte seitlich oder ober- oder unterhalb liegende kältere Bereiche behindert. Dadurch bauen sich in den hocherwärmten Teilen oder Bereichen Druckspannungen auf, die zu plastischer Stauchung des Materials dieser Bereiche oder Teile (hot-spots) führen, die bei deren nachfolgender Abkühlung in diesen Bereichen wiederum Zugspannungen ergeben. Diese Phänomene ergeben sich daraus, daß es mit zunehmender Temperatur zum Druckaufbau mit elastischer Verformung des Materials nach dem Hooke'schen Gesetz kommt, bis bei einer bestimmten Temperatur die Elastizitätsgrenze des Werkstoffs erreicht wird. Bei weiterer Temperatursteigerung über seine Elastizitätsgrenze hinaus wird der Werkstoff plastisch verformt und gelangt zum Fließen. Beim Wiederabkühlen bauen sich in dem vorher durch den genannten Druckaufbau gestauchten Materialbereich Zugspannungen auf, die bei niedrigeren Temperaturen wiederum die Elastizitätsgrenze des Werkstoffes überschreiten und in diesem zu plastischen Dehnungen führen können. Beim nächsten und jeden weiteren Temperaturzyklus erfolgt ein ständiger Wechsel von Stauchen und Dehnen, was schließlich zur Rißbildung führt.
  • Derartige Erscheinungen treten z.B. bei einer Brennkraftmaschine insbesondere im Steg (in der Brücke) zwischen Einlaß- und Auslaßventil des Zylinderkopfes und am Rand der Brennraummulde des Kolbens auf.
  • Um dieses Problem zu lösen, hat man bei Verbrennungskraftmaschinen in deren thermisch hochbeanspruchten Teilen oder Bereichen Kühlkanäle vorgesehen, die von Öl, Wasser oder Luft als Kühlmedium durchströmt werden (DE-AS 15 76 733 und FR-PS 1 494 256). Diese Kühlkanäle haben einen Zu- und Ablauf für das durchströmende Kühlmedium. Auch hat man fest abgeschlossene mit Kühlmedium gefüllte Hohlräume vorgesehen, wobei das Kühlmedium die Hohlräume nur zum Teil ausfüllt (DE-PS 762 820, DE-AS 15 76 733 und DE-p 22 711 D). Mit diesen Kühlkanälen oder Kühlräumen kann die Temperatur in den kritischen Zonen abgesenkt werden. Die örtliche Temperaturabsenkung bewirkt aber auch eine Erhöhung des Temperatur- und damit auch des Spannungsgradienten. Normalerweise können die Temperaturen nicht so weit abgesenkt werden, um die durch den vorgenannten ständigen Spannungswechsel eintretende Rißbildung ganz zu verhindern.
  • Man hat daher auch versucht, die Eigenschaften der Werkstoffe von wärmebeaufschlagten Bauteilen von Verbrennungskraftmaschinen in deren besonders hochbeaufschlagten Teilen oder Bereichen zu verbessern, z.B. durch Beschichten dieser Teile oder Bereiche mit hochtemperaturbeständigen metallischen, keramischen oder metallkeramischen Werkstoffen, die zum Teil auch als Wärmedämmschichten wirken sollen, oder durch Einsetzen von keramischen oder metallischen Armierungen, durch schweißtechnisches Einlegieren von festigkeitssteigernden Elementen oder durch Einbetten verstärkender Fasern. Es hat sich jedoch gezeigt, daß die aufgebrachten Schichten oft eine nicht ausreichende Haftfestigkeit haben, daß die keramischen Einsätze aufgrund ihres spröden Materials einer Bruchgefahr unterliegen und daß beim Einbetten von Verstärkungsfasern Fertigungsprobleme entstehen.
  • Der Erfindung liegt daher die Aufgabe zugrunde, bei zonenweise unterschiedlich wärmebeaufschlagten und damit unterschiedlich erhitzten Bauteilen den Spannungsverlauf über der Temperatur in thermisch hochbeaufschlagten Teilen oder Bereichen dadurch günstiger zu gestalten, daß ihre durch die angrenzenden kälteren Bereiche bedingte Ausdehnungsbehinderung reduziert oder gar beseitigt wird. Dies wird erfindungsgemäß dadurch erreicht, daß im Werkstoff des Bauteils außerhalb der Zonen hoher Wärmebeaufschlagung jedoch benachbart zu diesen mindestens ein abgeschlossener Hohlraum vorgesehen ist, der vollständig mit einem Material ausgefüllt ist, das einen höheren Wärmeausdehnungskoeffizienten als der ihn umschließende Werkstoff des Bauteils hat. Dabei hat das den Hohlraum vollständig füllende Material zweckmäßig einen wesentlich höheren Ausdehnungskoeffizienten als der Werkstoff des den Hohlraum enthaltenden Bereichs oder Teils der Maschine. Damit wird den weniger stark erwärmten Zonen oder Teilen durch das dort vorgesehene Material mit höherem Wärmeausdehnungskoeffizienten eine den stärker erwärmten Zonen oder Teilen des Bauteils angeglichene thermische Ausdehnung gegeben, um Druck- und Zugsspannungen in den stärker erwärmten Zonen oder Bereichen, die zur Rißbildung führen können, zu vermeiden. Die Erfindung liegt also darin, in diesen weniger stark erwärmten Bereichen eine möglichst gleich hohe thermische Ausdehnung wie den benachbarten stärker erwärmten Bereichen des Bauteils dadurch zu geben, daß man in den weniger stark erwärmten Bereich Körper oder Materialien mit höherem thermischen Wärmeausdehnungskoeffizienten einsetzt.
  • Bei einem bevorzugten Ausführungsbeispiel ist das Ausdehnungsmaterial ein den Hohlraum formschlüssig und vollständig ausfüllender Körper, der bei den in einer Verbrennungskraftmaschine herrschenden üblichen Temperaturen festen Aggregatszustand hat. Es ist aber auch möglich, als Ausdehnungsmaterial ein solches zu verwenden, das bei normaler Umgebungstemperatur fest ist und erst bei höheren Temperaturen, beispielsweise solchen, die sich bei im Betrieb der Maschine in deren hochbeaufschlagten Teilen oder Bereichen ergeben, flüssig ist, so daß dessen verstärkte Ausdehnungswirkung erst oberhalb einer bestimmten Temperatur eintritt. Dabei kann insbesondere der bei den meisten Stoffen beim Wechsel ihres Aggregatszustandes auftretende Volumensprung nutzbar gemacht werden. Als solches Ausdehnungsmaterial kommen z.B. niedrigschmelzende Metalle in Frage. Es kann jedoch auch ein bei normaler Umgebungstemperatur flüssiges Ausdehnungsmaterial verwendet werden.
  • Dieses Ausdehnungsmaterial, ob als fester Körper oder als Flüssigkeit, erfährt wegen seines wesentlich höheren Ausdehnungskoeffizienten bei Temperaturen, die unterhalb derjenigen der hochwärmebeaufschlagten Teile oder Bereiche der Maschine liegen, eine ähnlich starke Ausdehnung wie diese Teile oder Bereiche. Dadurch zwingen sie diesen an die Hot-spot-Bereiche angrenzenden Bereichen der Maschine eine Ausdehnung von gleicher Größenordnung auf wie sie die Hot-spot-Bereiche erfahren. Hierdurch tritt in diesem thermisch hochbeaufschlagten Teilen oder Bereichen der Maschine keine oder nahezu keine Behinderung ihrer Ausdehnung auf, so daß auch bei häufigem Temperaturwechsel keine oder nahezu keine zyklische Stauchung und Dehnung dieser Teile oder Bereiche der Maschine entsteht.
  • Wenn als Ausdehnungsmaterial eine Flüssigkeit verwendet wird, kann man diese Flüssigkeit in eine Kapsel oder Hülse aus Metall od.dgl. einschließen und ebenso wie einen Festkörper während des Gießens des thermisch hochbeaufschlagten Maschinenteils oder mit Hilfe mechanischer Fügemethoden an geeigneter Stelle in den Werkstoff des Maschinenteils formschlüssig einbetten. Man kann aber auch in diesem Maschinenteil zunächst einen Hohlraum erzeugen, der später, z.B. über einen Füllstutzen, mit dem Ausdehnungsmaterial gefüllt und verschlossen wird.
  • Der Vorteil der Verwendung eines flüssigen Ausdehnungsmaterials besteht darin, daß der Wärmeausdehnungskoeffizient von Flüssigkeiten um einen Faktor von ca. 100 über dem Ausdehnungskoeffizienten von Festkörpern liegt. So haben z.B. Aluminiumlegierungen, die üblicherweise für die Herstellung der Teile von Verbrennungskraftmaschinen, insbesondere Kolben, verwendet werden, lineare Ausdehnungskoeffizienten im Bereich von 21 bis 24 · 10⁻⁶K⁻¹, was einem kubischen Ausdehnungskoeffizienten von ca. 65 · 10⁻⁶K⁻¹ entspricht. Demgegenüber liegt der kubische Ausdehnungskoeffizient von Flüssigkeiten im Bereich von 10⁻⁴K⁻¹. Er ist Z.B. für Glyzerin 5 · 10⁻⁴K⁻¹, für Benzol 12,3 · 10⁻⁴K⁻⁴, für Quecksilber 8,3 · 10⁻⁴K⁻¹.
  • In den Zeichnungen ist die Verwirklichung des Erfindungsgedankens einerseits bei einem Kolben und andererseits im Zylinderkopf einer Verbrennungskraftmaschine in verschiedenen Ausführungsvarianten dargestellt, die im folgenden näher beschrieben werden:
    • Fig. 1 zeigt einen Axialschnitt durch den Kolben einer Verbrennungskraftmaschine,
    • Fig. 2 zeigt einen abgebrochenen Teil des Zylinderkopfes einer Verbrennungskraftmaschine vom Brennraum aus gesehen in einer ersten Ausführungsform,
    • Fig. 3 zeigt ebenfalls einen abgebrochenen Teil des Zylinderkopfes einer Verbrennungskraftmaschine vom Brennraum aus gesehen in einer zweiten Ausführungsform.
  • Der in Fig. 1 gezeigte Kolben 1 besitzt in seinem Kolbenkopf eine Brennraummulde 2. Hinter dem seitlichen Rand dieser Brennraummulde sind im Werkstoff des Kolbenkopfes der Brennraummulde benachbart liegende in sich abgeschlossene Hohlräume 3, 4 vorgesehen, die sich teilweise um die Mulde herum erstrecken und unterschiedliche Querschnittsform haben. Die Anordnung dieser Hohlräume ist so getroffen, daß sie gerade in denjenigen Bereichen des Kolbenkopfes liegen, in deren Nähe eine besonders hohe thermische Beaufschlagung des Kolbenwerkstoffes erfolgt. Es ist aber auch möglich, einen einzigen völlig abgeschlossenen Ringraum um die ganze Brennraummulde herum anzuordnen, der gleichen oder wechselnden Querschnitt haben kann. Dieser Raum bzw. diese Räume sind bei dem dargestellten Ausführungsbeispiel mit einer flüssigen Substanz als Ausdehnungsmaterial gefüllt, das einen höheren Ausdehnungskoeffizienten hat als der Werkstoff des den Hohlraum umgebenden Bereichs des Kolbenkopfes, so daß sich die flüssige Substanz bei Erwärmung stärker ausdehnt als der Werkstoff des Kolbenkopfes. Obwohl der die Hohlräume 3, 4 umgebende Bereich des Kolbenkopfes im Motorbetrieb nicht so stark erhitzt wird wie der Rand der Brennraummulde 2, wird dadurch in beiden Bereichen eine angenähert gleich große Ausdehnung wirksam, und die Entstehung eines Spannungsgradienten zwischen diesen beiden Bereichen weitgehend vermieden.
  • Bei dem in Fig. 2 gezeigten Ausführungsbeispiel eines Zylinderkopfes 7 ist unterhalb der Oberfläche 6 des Brennraumes ein länglicher Hohlraum 7 vorgesehen, der sich von der Seite des Zylinderkopfes in den Bereich zwischen dem Einlaßventil 8 und dem Auslaßventil 9 und dem Vorkammereintritt 10 hineinerstreckt. Dieser Hohlraum 7 mündet an der Seite des Zylinderkopfes aus und ist dort mit einem Anschluß 10 zum Anschließen an die Motorölversorgung 11 der Verbrennungskraftmaschine versehen. Dabei kann der Anschluß mit einem Rückschlagventil versehen sein, welches eine Reduzierung des im Hohlraum 7 gewünschten Druckaufbaus bei Temperaturbeaufschlagung des Zylinderkopfes über längere Zeiträume verhindert. Der durch Undichtigkeit oder durch Diffusionsvorgänge evtl. entstehende Ölverlust im Hohlraum 7 kann durch die Verbindung mit dem Druckölreservoir des Motors über das Rückschlagventil bei niedrigeren Temperaturen automatisch wieder ausgeglichen werden. Der Anschluß kann ebenso auch mit einem Druckbegrenzungsventil ausgestattet sein.
  • Es ist aber auch möglich, den Hohlraum 7 bei dem in Fig. 2 dargestellten Ausführungsbeispiel nach Füllung mit dem Ausdehnungsmaterial im Bereich des Anschlusses 10 fest und dauerhaft zu verschließen.
  • Bei dem in Fig. 3 gezeigten Ausführungsbeispiel eines Zylinderkopfes 5 mit Einlaß- und Auslaßventilen 8, 9 und einem Vorkammereintritt 10 in seiner Brennraumoberfläche sind im Zylinderkopf nahe den Außenseiten des Ein- und Auslasses 8, 9 langgestreckte Hohlräume 12, 13 vorgesehen, die an einer Seite des Zylinderkopfes mit Anschlüssen 14, 15 für den Anschluß an die Motorölversorgung und/oder für Druckbegrenzungsventile ausmünden. Diese Hohlräume 12, 13 liegen etwas außerhalb der thermisch hochbeanspruchten Zonen des Zylinderkopfes, so daß die für eine Spannungsentlastung sorgenden Dehnkräfte im Werkstoff des Zylinderkopfes aus einer gewissen Entfernung auf den Hot-spot-Bereich einwirken.
  • Die erfindungsgemäßen abgeschlossenen und mit Ausdehnungsmaterial gefüllten Hohlräume können aber auch bei anderen thermisch hochbeaufschlagten Teilen oder Bereichen einer Verbrennungskraftmaschine als den in den Zeichnungen angegebenen angewendet werden. Dabei sind diese Hohlräume zweckmäßig in Werkstoffbereichen der Maschine oder Teilen der Maschine anzuordnen, die an thermisch hochbeaufschlagte Teile oder Bereiche der Maschine unmittelbar angrenzen, um diese thermisch minderbeaufschlagten Teile oder Bereiche bei Temperaturerhöhung einer etwa ebenso großen Dehnung zu unterwerfen wie die hochbeaufschlagten Bereiche oder Teile der Maschine.
  • Die Erfindung ist aber auch bei anderen Maschinen, Anlagen oder Vorrichtungen anwendbar, bei welchen zonenweise unterschiedlich wärmebeaufschlagte Bauteile vorhanden sind. So können die erfindungsgemäßen, mit Ausdehnungsmaterial gefüllten Hohlräume u.a. auch bei anderen Wärmekraftmaschinen, bei Turbinenschaufeln, bei Anlagenteilen im Reaktorbau und bei chemischen Apparaten angewendet werden, um nur einige Anwendungsbeispiele zu nennen. Die Erfindung ist auch bei Gieß-, Schmiede- und Preßwerkzeugen anwendbar, um bei diesen meist aus Stahlblöcken herausgearbeiteten Konturwerkzeugen die insbesondere durch den Einfluß von Spannungsgradienten gegebene Gefahr des Maß- und Konturenverzuges weitgehend zu vermeiden.

Claims (14)

1. Zonenweise unterschiedlich wärmebeaufschlagtes Bauteil von Maschinen, Anlagen oder anderen Vorrichtungen, insbesondere Bauteil von Wärmekraftmaschinen,
dadurch gekennzeichnet, daß im Werkstoff des Bauteils außerhalb der Zonen hoher Wärmebeaufschlagung aber diesen benachbart mindestens ein Hohlraum (3, 4, 7, 8, 9) vorgesehen ist, der vollständig mit einem Material ausgefüllt ist, das einen höheren Wärmeausdehnungskoeffizienten als der den Hohlraum umgebende Werkstoff des Bauteils hat.
2. Bauteil nach Anspruch 1, dadurch gekennzeichnet, daß der Hohlraum (3, 4, 7, 8, 9) vollständig geschlossen ist.
3. Bauteil nach Anspruch 1, dadurch gekennzeichnet, daß das Material mit höherem Wärmeausdehnungskoeffizienten ein den Hohlraum (3, 4, 7, 8, 9) formschlüssig und vollständig ausfüllender Körper ist, der zumindest bei normaler Umgebungstemperatur festen Aggregatszustand hat.
4. Bauteil nach Anspruch 3, dadurch gekennzeichnet, daß das Material mit höherem Wärmeausdehnungskoeffizienten ein solches ist, das bei normaler Umgebungstemperatur fest und bei im Betrieb der Maschine in deren den Hohlraum (3, 4, 7, 8, 9) enthaltenden Teil oder Bereich sich ergebenden erhöhten Temperaturen flüssig ist.
5. Bauteil nach Anspruch 1, dadurch gekennzeichnet, daß das Material mit höherem Wärmeausdehnungskoeffizienten bei normaler Umgebungstemperatur flüssigen Aggregatszustand hat.
6. Bauteil nach Anspruch 5, dadurch gekennzeichnet, daß die Ausdehnungsflüssigkeit eine organische Substanz, wie z.B. Öl, insbesondere Motoröl, Glyzerin, Benzol, oder eine anorganische Substanz, wie z.B. Quecksilber, ist.
7. Bauteil nach Anspruch 5, dadurch gekennzeichnet, daß die Ausdehnungsflüssigkeit in eine Kapsel oder Hülse eingeschlossen ist, die in den temperaturbeaufschlagten Teil bzw. Bereich der Maschine zumindest in ihrer Hauptdehnrichtung formschlüssig und fugenlos eingelagert ist.
8. Bauteil nach Anspruch 5, dadurch gekennzeichnet, daß an den die Ausdehnungsflüssigkeit aufnehmenden Hohlraum (3, 4, 7, 8, 9) ein aus dem den Hohlraum enthaltenden Maschinenteil ausmündender Füllstutzen angeschlossen ist, der durch einen Festkörper fest oder durch ein Ventil verschlossen ist.
9. Kolben für eine Verbrennungskraftmaschine als zonenweise unterschiedlich wärmebeaufschlagtes Bauteil gemäß Anspruch 1, dadurch gekennzeichnet, daß mindestens ein mit einem Material mit höherem Wärmeausdehnungskoeffizienten gefüllter Hohlraum (3, 4) im Kolbenkopf der Maschine angeordnet ist.
10. Kolben nach Anspruch 9, der in seinem Kopf eine Brennraummulde hat, dadurch gekennzeichnet, daß ein oder mehrere mit einem Material mit höherem Wärmeausdehnungskoeffizienten gefüllte Hohlräume (3, 4) nahe dem Rand der Brennraummulde (2) vorgesehen sind.
11. Zylinderkopf für eine Verbrennungskraftmaschine als zonenweise unterschiedlich wärmebeaufschlagtes Bauteil gemäß Anspruch 1, dadurch gekennzeichnet, daß mindestens ein mit einem Material mit höherem Wärmeausdehnungskoeffizienten gefüllter Hohlraum (7, 12, 13) im Zylinderkopf (5) angeordnet ist.
12. Zylinderkopf nach Anspruch 11, dadurch gekennzeichnet, daß ein mit einem Material mit höherem Wärmeausdehnungskoeffizienten gefüllter Hohlraum (7) im zwischen Ein- und Auslaßventil (8, 9) liegenden Bereich des Zylinderkopfes (5) angeordnet ist.
13. Zylinderkopf nach Anspruch 11, dadurch gekennzeichnet, daß mindestens ein mit einem Material mit höherem Wärmeausdehnungskoeffizienten gefüllter Hohlraum (7) im zwischen den Ein- und Auslaßventilen (8, 9) und dem Vorkammereinlaß (10) liegenden Bereich des Zylinderkopfes (5) der Maschine angeordnet ist.
14. Zylinderkopf nach Anspruch 11, dadurch gekennzeichnet, daß mit einem Material mit höherem Wärmeausdehnungskoeffizienten gefüllte Hohlräume (12, 13) in den an den Außenseiten der Ein- und Auslaßventile (8, 9) befindlichen Bereichen des Zylinderkopfes (5) angeordnet sind.
EP88112135A 1987-08-05 1988-07-27 Wärmebeaufschlagtes Bauteil Expired - Lifetime EP0302380B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19873726027 DE3726027A1 (de) 1987-08-05 1987-08-05 Waermebeaufschlagtes bauteil
DE3726027 1987-08-05

Publications (3)

Publication Number Publication Date
EP0302380A2 true EP0302380A2 (de) 1989-02-08
EP0302380A3 EP0302380A3 (en) 1989-08-02
EP0302380B1 EP0302380B1 (de) 1991-10-02

Family

ID=6333130

Family Applications (1)

Application Number Title Priority Date Filing Date
EP88112135A Expired - Lifetime EP0302380B1 (de) 1987-08-05 1988-07-27 Wärmebeaufschlagtes Bauteil

Country Status (3)

Country Link
US (1) US4892069A (de)
EP (1) EP0302380B1 (de)
DE (2) DE3726027A1 (de)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19737492C1 (de) * 1997-08-28 1998-10-29 Daimler Benz Ag Flüssigkeitsgekühlter Zylinderkopf einer mehrzylindrigen Brennkraftmaschine
US6606434B1 (en) * 2000-08-23 2003-08-12 Lucent Technologies Inc. Optical fiber interconnect having offset ends with reduced tensile stress and fabrication method
EP1253304B1 (de) 2001-04-25 2007-06-20 GE Jenbacher GmbH & Co OHG Fremdgezündete Brennkraftmaschine mit mindestens einer Zündeinrichtung pro Zylinder
US7677218B2 (en) * 2007-07-31 2010-03-16 Caterpillar Inc. Cylinder head including a stress slot with filler
DE102011113800A1 (de) * 2011-09-20 2013-03-21 Mahle International Gmbh Kolben für einen Verbrennungsmotor und Verfahren zu seiner Herstellung
WO2015168395A1 (en) * 2014-04-30 2015-11-05 Federal-Mogul Corporation Steel piston with filled gallery

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE279273C (de) *
DE452296C (de) * 1927-11-09 Anon Diremo Soc Einrichtung zur Waermeableitung an Aluminiumkolben
GB435511A (en) * 1933-12-21 1935-09-23 Renee Bernard Pistons for internal combustion engines
GB2084696A (en) * 1980-09-30 1982-04-15 Alcan Aluminiumwerke Piston for an internal combustion engine

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE22711C (de) * R. CAUTIUS und C. PODZU-WEIT in Tilsit Neuerung an Lampen zur Luftzuführung durch den Lampenfufs und zur Gradstellung des Dochtes
AT128812B (de) * 1931-01-08 1932-06-25 Autotechnische Werkstaette Cah Kolben, insbesondere aus Leichtmetall.
US3233599A (en) * 1964-10-12 1966-02-08 Bayerisches Leichtmetallwerk K Valve, valve-manufacturing process and articles used in said process
FR1494256A (fr) * 1966-07-26 1967-09-08 Trw Inc Procédé de fabrication de pistons de moteurs à combustion interne munis d'une galerie d'huile
US3402644A (en) * 1966-10-31 1968-09-24 Int Harvester Co Internal combustion engine piston with prestressed insert
HU164219B (de) * 1970-04-07 1974-01-28
US3701342A (en) * 1971-03-08 1972-10-31 Herbert B Owsley Valve member
DE2907353A1 (de) * 1979-02-24 1980-09-04 Bosch Gmbh Robert Verbrennungskraftmaschine mit fluessigkeitskuehlung
US4406046A (en) * 1979-09-08 1983-09-27 Mtu Motoren- Und Turbinen-Union Munchen, Gmbh Process for the production of a sodium-filled valve
DE3307114C2 (de) * 1983-03-01 1985-09-05 Feldmühle AG, 4000 Düsseldorf Zylinderkopf eines Kolbenmotors

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE279273C (de) *
DE452296C (de) * 1927-11-09 Anon Diremo Soc Einrichtung zur Waermeableitung an Aluminiumkolben
GB435511A (en) * 1933-12-21 1935-09-23 Renee Bernard Pistons for internal combustion engines
GB2084696A (en) * 1980-09-30 1982-04-15 Alcan Aluminiumwerke Piston for an internal combustion engine

Also Published As

Publication number Publication date
EP0302380A3 (en) 1989-08-02
DE3726027A1 (de) 1989-02-16
DE3865267D1 (de) 1991-11-07
EP0302380B1 (de) 1991-10-02
US4892069A (en) 1990-01-09

Similar Documents

Publication Publication Date Title
EP2064012B1 (de) Luftkompressor mit kurbelgehäuse aus aluminiumguss
EP1029154B1 (de) Turbinengehäuse sowie verfahren zu dessen herstellung
DE102012024051A1 (de) Temperierbares Werkzeug zur Formgebung von Werkstücken
DE2756007A1 (de) Gehaeuse einer hubkolben-brennkraftmaschine fuer kraftfahrzeuge
DE102016222184B4 (de) Flüssigkeitsgekühlte Brennkraftmaschine umfassend einen Zylinderblock und Verfahren zur Herstellung eines zugehörigen Zylinderblocks
EP0302380B1 (de) Wärmebeaufschlagtes Bauteil
DE2355292B1 (de) Gekuehltes Tellerventil einer Kolbenbrennkraftmaschine
EP1832714A1 (de) Verfahren zur Herstellung einer Turbinen- oder Verdichterkomponente sowie Turbinen- oder Verdichterkomponente
DE102007010839B4 (de) Verfahren zur Herstellung eines Kolbens und Kolben mit einer ringförmigen Verstärkung bestehend aus mehreren Verstärkungssegmenten
DE10235910B4 (de) Verbund von Zylinderlaufbuchsen aus Leichtmetall-Legierung, Verfahren zum Herstellen eines Verbundes und Verfahren zum Eingießen eines Verbundes
CH713420A2 (de) Ventilsitzring eines Gaswechselventils, Gaswechselventil und Verfahren zum Herstellen des Ventilsitzrings.
DE3122904C2 (de) Lösbare mittels Schrauben verspannte Zylinderkopf-Zylinder-Verbindung
EP3199770A1 (de) Metallisches hohlventil für eine brennkraftmaschine eines nutzkraftfahrzeugs
DE102004053362A1 (de) Verstärktes Bauteil
DE102017205384A1 (de) Zylinderkurbelgehäuse und Brennkraftmaschine mit einem solchen Zylinderkurbelgehäuse
DE69211105T2 (de) Hydraulikzylinder, insbesondere zum Durchführen einer Hilfskraftsteuerung und ähnlicher Mechanismen
EP3230591B1 (de) Gehäuse mit hiergegen gedichtetem zylindrischem einsatz
DE3031926A1 (de) Zylinder fuer hubkolbenmaschinen
EP1724446A1 (de) Gaswechselventil für eine Hubkolbenbrennkraftmaschine
DE102011084597A1 (de) Brennkraftmaschine mit Ölkreislauf und Verfahren zur Herstellung einer derartigen Brennkraftmaschine
DE102012004954B4 (de) Abgaskrümmer für eine Brennkraftmaschine
DE3134771A1 (de) Zylinderbuchse fuer brennkraftkolbenmaschinen
EP0971097A1 (de) Ventil für eine Brennkraftmaschine
DE10208299A1 (de) Brennkraftmaschine
DE8620938U1 (de) Korrosionsbeständige, gut wärmeleitende Armatur für Temperatursensoren von Warmwasserbereitern

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): DE FR GB IT

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): DE FR GB IT

17P Request for examination filed

Effective date: 19890829

17Q First examination report despatched

Effective date: 19891211

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 19911002

Ref country code: FR

Effective date: 19911002

Ref country code: GB

Effective date: 19911002

REF Corresponds to:

Ref document number: 3865267

Country of ref document: DE

Date of ref document: 19911107

EN Fr: translation not filed
GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19920818

Year of fee payment: 5

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19940401