EP0298334B1 - Shock wave generator - Google Patents

Shock wave generator Download PDF

Info

Publication number
EP0298334B1
EP0298334B1 EP88110225A EP88110225A EP0298334B1 EP 0298334 B1 EP0298334 B1 EP 0298334B1 EP 88110225 A EP88110225 A EP 88110225A EP 88110225 A EP88110225 A EP 88110225A EP 0298334 B1 EP0298334 B1 EP 0298334B1
Authority
EP
European Patent Office
Prior art keywords
shock wave
membrane
wave source
source according
shock
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP88110225A
Other languages
German (de)
French (fr)
Other versions
EP0298334A1 (en
Inventor
Manfred Rattner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP0298334A1 publication Critical patent/EP0298334A1/en
Application granted granted Critical
Publication of EP0298334B1 publication Critical patent/EP0298334B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K9/00Devices in which sound is produced by vibrating a diaphragm or analogous element, e.g. fog horns, vehicle hooters or buzzers
    • G10K9/12Devices in which sound is produced by vibrating a diaphragm or analogous element, e.g. fog horns, vehicle hooters or buzzers electrically operated
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/18Methods or devices for transmitting, conducting or directing sound
    • G10K11/26Sound-focusing or directing, e.g. scanning
    • G10K11/32Sound-focusing or directing, e.g. scanning characterised by the shape of the source

Definitions

  • the invention relates to a shock wave source for the treatment of concretions in the body of a patient with a liquid-filled shock wave tube, one end of which is closed by a flexible sack that can be pressed against the patient by means of the liquid pressure and the other end of which is a membrane with an electrically conductive material which, separated by an insulating material layer, opposite a surface coil which is connected to a supply unit for generating high-voltage pulses.
  • shock wave source of this kind, e.g. EP-A-0 209 053 focused shock waves can be generated which are directed to the concrement to be broken, e.g. a kidney stone, can be straightened and smashed it so far that it comes off naturally.
  • the shock wave is generated by the fact that a high-voltage capacitor is connected across the surface coil, e.g. can have a spiral winding, is discharged, repelling the membrane and directing a shock wave over the liquid and possibly an acoustic lens in the shock wave tube to the stone to be broken.
  • the invention has for its object to design the membrane in a shock wave source of the type mentioned so that a favorable shock wave course is achieved.
  • the membrane has a flexible base which is covered by a plurality of plates made of electrically conductive material.
  • each of the plates provided on the membrane is repelled.
  • the propagation of the shock wave is much faster in the edge area of the membrane compared to a homogeneous membrane.
  • An optimal shock wave course can be achieved if the platelets have different mass inertia and / or electrical conductivity.
  • the desired shock wave course can be achieved by a suitable choice of the inertia and / or conductivity.
  • the membrane can be flat, but also curved. Suitable curvature can be used to focus the shock waves without an acoustic lens.
  • the shock wave source according to FIGS. 1 and 2 has a shock wave tube 1, which is closed on its application side by an elastic bag 2 that can be placed on a patient and on its opposite side by a membrane 3.
  • the space between components 1, 2, 3 is filled with water as the coupling medium.
  • An acoustic lens 4 for focusing the generated shock waves is arranged in it.
  • the shock wave is generated with the aid of a surface coil 6 opposite the membrane, which is spirally wound and separated from the membrane 3 by an insulating layer 7.
  • One connection of the surface coil 6 is grounded and the second connection can be connected to a high-voltage generator 8 for generating shock waves.
  • the membrane 3 has a flexible base 9, for example a rubber sheet made of a variety of Plate 10 is coated from an electrically conductive material.
  • the plates 10 are hexagonal in the example and therefore have a high area coverage. Other shapes with high surface coverage, for example rectangular or square shapes, are also conceivable.
  • the high-voltage pulse generated in this way causes the membrane 3 to be repelled, as a result of which a shock wave propagates through the water in the shock-wave tube 1 to the stone in the patient.
  • the large number of platelets 10 results in a favorable shock wave course, in particular rapid shock wave generation in the edge region of the membrane 3.
  • the desired shock wave course can be achieved by a suitable choice of the inertia and / or electrical conductivity of the individual platelets 10.
  • FIG. 3 there is a membrane 3a curved around a focus area 11, which is again covered on its inside with platelets 10a made of conductive material of suitable inertia.
  • the surface coil 6a like the membrane 3a and the insulating material layer 7a, is curved around the focus area 11. No acoustic lens is provided in the water-filled space between the bag 2a and the membrane 3a since the focusing is achieved by the curvature of the components 3a, 6a, 7a, 9a.
  • the coil support 12 can have a central hole 13, which makes it possible to insert an ultrasound probe to locate the concrements.
  • a membrane 3b is provided in the housing 1b closed by the bag 2b and is curved toward the interior of the shock wave source.
  • the shock waves generated by the platelets 10b are directed against the inner wall of the cylindrical housing 1b and are reflected from there to the focus area 11.
  • the carrier 14 for the surface coil 6b has a central opening 15 for the insertion of the ultrasound probe 16.
  • An insulating material layer 7b and the membrane 3b with the components 9b, 10b again lie over the surface coil 6b.
  • the embodiment according to FIG. 3 allows a relatively short lead section for higher-frequency pulses, while the embodiment according to FIG. 4 has a relatively long water lead section.
  • the platelets 10, 10a, 10b can be vulcanized, glued or laminated onto the flexible base 9, 9a, 9b.
  • the shock wave source 3c, 6c, 7c, 9c, 10c is frustoconical.
  • the inner wall of the shock wave tube 1c is step-shaped, that is, it forms step reflectors for focusing on the focus area 11.

Description

Die Erfindung betrifft eine Stoßwellenquelle zur Behandlung von Konkrementen im Körper eines Patienten mit einem flüssigkeitsgefüllten Stoßwellenrohr, dessen eines Ende von einem über den Flüssigkeitsdruck an den Patienten andrückbaren, flexiblen Sack verschlossen ist und an dessen anderem Ende eine Membran mit elektrisch leitfähigem Material liegt, der, durch eine Isolierstoffschicht getrennt, eine Flächenspule gegenüberliegt, welche an einer Versorgungseinheit zur Erzeugung von Hochspannungsimpulsen angeschlossen ist.The invention relates to a shock wave source for the treatment of concretions in the body of a patient with a liquid-filled shock wave tube, one end of which is closed by a flexible sack that can be pressed against the patient by means of the liquid pressure and the other end of which is a membrane with an electrically conductive material which, separated by an insulating material layer, opposite a surface coil which is connected to a supply unit for generating high-voltage pulses.

Durch eine Stoßwellenquelle dieser Art siche z.B. EP-A-0 209 053 können fokussierte Stoßwellen erzeugt werden, die auf das zu zertrümmernde Konkrement, z.B. einen Nierenstein, gerichtet werden können und diesen soweit zertrümmern, daß er auf natürlichem Weg abgeht. Die Stoßwellenerzeugung erfolgt dadurch, daß ein Hochspannungskondensator über die Flächenspule, die z.B. eine spiralige Wicklung aufweisen kann, entladen wird, wodurch die Membran abgestoßen wird und eine Stoßwelle über die Flüssigkeit und gegebenenfalls eine akustische Linse im Stoßwellenrohr auf den zu zertrümmernden Stein richtet.With a shock wave source of this kind, e.g. EP-A-0 209 053 focused shock waves can be generated which are directed to the concrement to be broken, e.g. a kidney stone, can be straightened and smashed it so far that it comes off naturally. The shock wave is generated by the fact that a high-voltage capacitor is connected across the surface coil, e.g. can have a spiral winding, is discharged, repelling the membrane and directing a shock wave over the liquid and possibly an acoustic lens in the shock wave tube to the stone to be broken.

Der Erfindung liegt die Aufgabe zugrunde, bei einer Stoßwellenquelle der eingangs genannten Art die Membran so zu gestalten, daß ein günstiger Stoßwellenverlauf erzielt wird.The invention has for its object to design the membrane in a shock wave source of the type mentioned so that a favorable shock wave course is achieved.

Diese Aufgabe ist erfindungsgemäß dadurch gelöst, daß die Membran eine flexible Basis aufweist, die von einer Vielzahl von Plättchen aus elektrisch leitfähigem Material überzogen ist. Bei der erfindungsgemäßen Stoßwellenquelle wird jedes einzelne der auf der Membran vorgesehenen Plättchen abgestoßen. Die Ausbreitung der Stoßwelle ist dabei im Randbereich der Membran im Vergleich zu einer homogenen Membran wesentlich schneller.This object is achieved in that the membrane has a flexible base which is covered by a plurality of plates made of electrically conductive material. In the shock wave source according to the invention, each of the plates provided on the membrane is repelled. The propagation of the shock wave is much faster in the edge area of the membrane compared to a homogeneous membrane.

Ein optimaler Stoßwellenverlauf ist erzielbar, wenn die Plättchen unterschiedliche Massenträgheit und/oder elektrische Leitfähigkeit besitzen. Durch geeignete Wahl der Massenträgheit und/oder Leitfähigkeit kann dabei der gewünschte Stoßwellenverlauf erzielt werden.An optimal shock wave course can be achieved if the platelets have different mass inertia and / or electrical conductivity. The desired shock wave course can be achieved by a suitable choice of the inertia and / or conductivity.

Die Membran kann eben, aber auch gekrümmt sein. Durch geeignete Krümmung ist dabei eine geeignete Fokussierung der Stoßwellen ohne eine akustische Linse erzielbar.The membrane can be flat, but also curved. Suitable curvature can be used to focus the shock waves without an acoustic lens.

Die Erfindung ist nachfolgend anhand von in der Zeichnung dargestellten Ausführungsbeispielen näher erläutert. Es zeigen:

  • Fig. 1 eine Stoßwellenquelle nach der Erfindung,
  • Fig. 2 eine Ansicht der Membran der Stoßwellenquelle gemäß Fig. 1, und
  • Fig. 3 bis 5 drei Varianten der Stoßwellenquelle nach der Erfindung.
The invention is explained in more detail below with reference to exemplary embodiments shown in the drawing. Show it:
  • 1 is a shock wave source according to the invention,
  • Fig. 2 is a view of the membrane of the shock wave source of FIG. 1, and
  • 3 to 5 three variants of the shock wave source according to the invention.

Die Stoßwellenquelle gemäß den Fig. 1 und 2 weist ein Stoßwellenrohr 1 auf, das auf seiner Applikationsseite von einem an einem Patienten anlegbaren, elastischen Sack 2 und auf seiner gegenüberliegenden Seite von einer Membran 3 verschlossen ist. Der Raum zwischen den Komponenten 1, 2, 3 ist mit Wasser als Koppelmedium gefüllt. In ihm ist eine akustische Linse 4 zur Fokussierung der erzeugten Stoßwellen angeordnet. Die Stoßwellenerzeugung erfolgt mit Hilfe einer der Membran gegenüberliegenden Flächenspule 6, die spiralig gewickelt und von der Membran 3 durch eine Isolierstoffschicht 7 getrennt ist. Der eine Anschluß der Flächenspule 6 ist geerdet und der zweite Anschluß ist an einen Hochspannungsgenerator 8 zur Stoßwellenerzeugung anschaltbar.The shock wave source according to FIGS. 1 and 2 has a shock wave tube 1, which is closed on its application side by an elastic bag 2 that can be placed on a patient and on its opposite side by a membrane 3. The space between components 1, 2, 3 is filled with water as the coupling medium. An acoustic lens 4 for focusing the generated shock waves is arranged in it. The shock wave is generated with the aid of a surface coil 6 opposite the membrane, which is spirally wound and separated from the membrane 3 by an insulating layer 7. One connection of the surface coil 6 is grounded and the second connection can be connected to a high-voltage generator 8 for generating shock waves.

Die Fig. 1 und 2 zeigen, daß die Membran 3 eine flexible Basis 9 aufweist, z.B. eine Gummifolie, die von einer Vielzahl von Plättchen 10 aus elektrisch leitfähigem Material überzogen ist. Die Plättchen 10 sind bei dem Beispiel sechseckig geformt und besitzen daher eine hohe Flächendeckung. Auch andere Formen mit hoher Flächendeckung, z.B. rechteckige oder quadratische Formen, sind denkbar.1 and 2 show that the membrane 3 has a flexible base 9, for example a rubber sheet made of a variety of Plate 10 is coated from an electrically conductive material. The plates 10 are hexagonal in the example and therefore have a high area coverage. Other shapes with high surface coverage, for example rectangular or square shapes, are also conceivable.

Wird die Flächenspule 6 an den Hochspannungsgenerator 8 angeschaltet, so wird durch den so erzeugten Hochspannungsimpuls aufgrund der in den Plättchen 10 erzeugten Wirbelströme eine Abstoßung der Membran 3 bewirkt, wodurch sich eine Stoßwelle durch das Wasser im Stoßwellenrohr 1 zum Stein im Patienten fortpflanzt. Aufgrund der Vielzahl der Plättchen 10 ergibt sich dabei ein günstiger Stoßwellenverlauf, insbesondere ergibt sich eine schnelle Stoßwellenerzeugung im Randbereich der Membran 3. Durch geeignete Wahl der Massenträgheit und/oder elektrischen Leitfähigkeit der einzelnen Plättchen 10 kann dabei der gewünschte Stoßwellenverlauf erzielt werden.If the surface coil 6 is connected to the high-voltage generator 8, the high-voltage pulse generated in this way, due to the eddy currents generated in the plates 10, causes the membrane 3 to be repelled, as a result of which a shock wave propagates through the water in the shock-wave tube 1 to the stone in the patient. The large number of platelets 10 results in a favorable shock wave course, in particular rapid shock wave generation in the edge region of the membrane 3. The desired shock wave course can be achieved by a suitable choice of the inertia and / or electrical conductivity of the individual platelets 10.

Bei dem Beispiel gemäß Fig. 3 ist eine um einen Fokusbereich 11 gekrümmte Membran 3a vorhanden, die auf ihrer Innenseite wieder mit Plättchen 10a aus leitfähigem Material geeigneter Massenträgheit überzogen ist. Die Flächenspule 6a ist wie die Membran 3a und die Isolierstoffschicht 7a um den Fokusbereich 11 gekrümmt. Im wassergefüllten Raum zwischen dem Sack 2a und der Membran 3a ist dabei keine akustische Linse vorgesehen, da die Fokussierung durch die Krümmung der Komponenten 3a, 6a, 7a, 9a erzielt ist. Der Spulenträger 12 kann ein zentrisches Loch 13 aufweisen, das es ermöglicht, eine Ultraschall-Sonde zur Ortung der Konkremente einzuführen.In the example according to FIG. 3, there is a membrane 3a curved around a focus area 11, which is again covered on its inside with platelets 10a made of conductive material of suitable inertia. The surface coil 6a, like the membrane 3a and the insulating material layer 7a, is curved around the focus area 11. No acoustic lens is provided in the water-filled space between the bag 2a and the membrane 3a since the focusing is achieved by the curvature of the components 3a, 6a, 7a, 9a. The coil support 12 can have a central hole 13, which makes it possible to insert an ultrasound probe to locate the concrements.

Bei dem Beispiel gemäß Fig. 4 ist in dem vom Sack 2b abgeschlossenen Gehäuse 1b eine Membran 3b vorgesehen, die zum Inneren der Stoßwellenquelle hin gekrümmt ist. Auf diese Weise werden die von den Plättchen 10b erzeugten Stoßwellen gegen die Innenwand des zylinderförmigen Gehäuses 1b gerichtet und von dort zum Fokusbereich 11 reflektiert. Man erhält dabei einen relativ großen, von Stoßwellen freien Bereich 17, in dem eine Ultraschall-Sonde 16 zur Ortung der Konkremente angeordnet werden kann. Auch bei diesem Beispiel weist der Träger 14 für die Flächenspule 6b eine zentrische Öffnung 15 für das Einführen der Ultraschall-Sonde 16 auf. Über der Flächenspule 6b liegen wieder eine Isolierstoffschicht 7b und die Membran 3b mit den Komponenten 9b, 10b.In the example according to FIG. 4, a membrane 3b is provided in the housing 1b closed by the bag 2b and is curved toward the interior of the shock wave source. In this way, the shock waves generated by the platelets 10b are directed against the inner wall of the cylindrical housing 1b and are reflected from there to the focus area 11. This gives a relatively large area 17 free of shock waves, in which one Ultrasound probe 16 can be arranged to locate the calculus. In this example, too, the carrier 14 for the surface coil 6b has a central opening 15 for the insertion of the ultrasound probe 16. An insulating material layer 7b and the membrane 3b with the components 9b, 10b again lie over the surface coil 6b.

Das Ausführungsbeispiel gemäß Fig. 3 erlaubt eine relativ kurze Vorlaufstrecke für höherfrequente Pulse, während das Ausführungsbeispiel gemäß Fig. 4 eine relativ lange Wasservorlaufstrecke aufweist.The embodiment according to FIG. 3 allows a relatively short lead section for higher-frequency pulses, while the embodiment according to FIG. 4 has a relatively long water lead section.

Die Plättchen 10, 10a, 10b können auf der flexiblen Basis 9, 9a, 9b aufvulkanisiert, aufgeklebt oder aufkaschiert sein.The platelets 10, 10a, 10b can be vulcanized, glued or laminated onto the flexible base 9, 9a, 9b.

Bei der Ausführung gemäß Fig. 5 ist die Stoßwellenquelle 3c, 6c, 7c, 9c, 10c kegelstumpfförmig ausgebildet. Die Innenwand des Stoßwellenrohres 1c ist stufenförmig ausgebildet, bildet also Stufenreflektoren zur Fokussierung auf den Fokusbereich 11.5, the shock wave source 3c, 6c, 7c, 9c, 10c is frustoconical. The inner wall of the shock wave tube 1c is step-shaped, that is, it forms step reflectors for focusing on the focus area 11.

Claims (6)

1. Shock wave source for the treatment of calculi in the body of a patient, having a liquid-filled shock wave tube (1, 1a, 1b, 1c), one end of which is sealed by a flexible bag (2, 2a, 2b, 2c) which can be pressed against the patient by way of the liquid pressure, and at the other end of which there is a membrane (3, 3a, 3b, 3c) with electrically conductive material (10, 10a, 10b, 10c), opposite which membrane, separated by a layer of insulating material (7, 7a, 7b, 7c), there lies a surface coil (6, 6a, 6b, 6c) which is attached to a supply unit (8) for generating high voltage pulses, characterised in that the membrane (3, 3a, 3b, 3c) has a flexible base (9, 9a, 9b, 9c) which is covered by a multiplicity of platelets (10, 10a, 10b, 10c) made of electrically conductive material.
2. Shock wave source according to claim 1, characterised in that the platelets (10, 10a, 10b, 10c) have various mass moments of inertia and/or electrical conductivity.
3. Shock wave source according to claim 1 or 2, characterised in that the platelets (10, 10a, 10b, 10c) have a shape with high surface coverage.
4. Shock wave source according to one of claims 1 to 3, characterised in that the membrane (3a) is curved around a focal region (11).
5. Shock wave source according to one of claims 1 to 3, characterised in that the membrane (3b) is curved towards the inside of the shock wave source, so that the shock waves are directed against the internal wall of the cylindrical housing (1b) of the shock wave source and are reflected from there towards a focal region (11).
6. Shock wave source according to one of claims 1 to 3, characterised in that the membrane (3c) forms the surface of a cone directed inside the shock wave tube, and in that the internal wall of the shock wave tube (1c) is constructed in a stepped shape for reflecting the shock waves.
EP88110225A 1987-07-07 1988-06-27 Shock wave generator Expired - Lifetime EP0298334B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE8709363U 1987-07-07
DE8709363U DE8709363U1 (en) 1987-07-07 1987-07-07

Publications (2)

Publication Number Publication Date
EP0298334A1 EP0298334A1 (en) 1989-01-11
EP0298334B1 true EP0298334B1 (en) 1991-06-12

Family

ID=6809817

Family Applications (1)

Application Number Title Priority Date Filing Date
EP88110225A Expired - Lifetime EP0298334B1 (en) 1987-07-07 1988-06-27 Shock wave generator

Country Status (3)

Country Link
US (1) US4901709A (en)
EP (1) EP0298334B1 (en)
DE (2) DE8709363U1 (en)

Families Citing this family (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3835318C1 (en) * 1988-10-17 1990-06-28 Storz Medical Ag, Kreuzlingen, Ch
DE3907605C2 (en) * 1989-03-09 1996-04-04 Dornier Medizintechnik Shock wave source
DE3925322C2 (en) * 1989-07-31 1995-07-13 Storz Medical Ag Device for therapeutic treatment with focused acoustic wave fields
EP0412202A1 (en) * 1989-08-11 1991-02-13 Siemens Aktiengesellschaft Shock wave generator to produce focused shock waves with a reflector shaped as a paraboloid of revolution
DE3932745A1 (en) * 1989-09-30 1991-04-18 Dornier Medizintechnik FLAT REEL
DE3942253A1 (en) * 1989-12-21 1991-06-27 Dornier Medizintechnik SUPPORT FOR A DIAGNOSTIC ULTRASONIC TRANSDUCER
DE4117638A1 (en) * 1990-05-30 1991-12-05 Toshiba Kawasaki Kk SHOCK WAVE GENERATOR WITH A PIEZOELECTRIC ELEMENT
EP0461287B1 (en) * 1990-06-13 1994-05-04 Siemens Aktiengesellschaft Electrically-driven acoustic shock-wave generator
US5233972A (en) * 1990-09-27 1993-08-10 Siemens Aktiengesellschaft Shockwave source for acoustic shockwaves
DE4038651C2 (en) * 1990-12-04 1999-10-28 Siemens Ag Pressure pulse generator
US5350352A (en) * 1991-02-21 1994-09-27 Siemens Aktiengesellschaft Acoustic pressure pulse generator
DE4110102A1 (en) * 1991-03-27 1992-10-01 Siemens Ag Electromagnetically driven pressure pulse source for medical use - has electrically conducting membrane formed as annular array of zones activated by drive coils having variable timings
DE4120259A1 (en) * 1991-06-19 1992-12-24 Siemens Ag Acoustic wave generator for medical disintegration of calculi in body organs - uses vented air-free pressurised liquid as energy transmission medium
DE4125088C1 (en) * 1991-07-29 1992-06-11 Siemens Ag, 8000 Muenchen, De
DE19602686A1 (en) * 1995-01-26 1996-08-08 Storz Medical Ag Focussed acoustic wave generation equipment for dental surgery
SE504146C2 (en) * 1995-03-16 1996-11-18 Lars Ekberg ultrasound probe
DE19630180C1 (en) * 1996-07-26 1997-10-09 Dornier Medizintechnik Shock wave source, for use in e.g. hand-held therapeutic apparatus
US5941838A (en) * 1996-07-26 1999-08-24 Dornier Medizintechnik Gmbh Shock wave source based on the electromagnetic principle
US6352535B1 (en) 1997-09-25 2002-03-05 Nanoptics, Inc. Method and a device for electro microsurgery in a physiological liquid environment
IL119305A0 (en) * 1996-09-26 1996-12-05 Palanker Daniel A method and a device for electro microsurgery in a physiological liquid environment
DE19723499C1 (en) * 1997-06-05 1998-08-13 Dornier Medizintechnik Shock wave source based on electromagnetic principle
US8043286B2 (en) 2002-05-03 2011-10-25 The Board Of Trustees Of The Leland Stanford Junior University Method and apparatus for plasma-mediated thermo-electrical ablation
US6780178B2 (en) * 2002-05-03 2004-08-24 The Board Of Trustees Of The Leland Stanford Junior University Method and apparatus for plasma-mediated thermo-electrical ablation
DE10228830B4 (en) * 2002-06-27 2007-05-03 Siemens Ag Bellows for coupling a source of acoustic waves having an acoustic propagation medium to a living being
US7736361B2 (en) 2003-02-14 2010-06-15 The Board Of Trustees Of The Leland Stamford Junior University Electrosurgical system with uniformly enhanced electric field and minimal collateral damage
WO2004073752A2 (en) * 2003-02-14 2004-09-02 The Board Of Trustees Of The Leland Stanford Junior University Electrosurgical system with uniformly enhanced electric field and minimal collateral damage
US20050021028A1 (en) * 2003-06-18 2005-01-27 Daniel Palanker Electro-adhesive tissue manipulator
US8177783B2 (en) * 2006-11-02 2012-05-15 Peak Surgical, Inc. Electric plasma-mediated cutting and coagulation of tissue and surgical apparatus
US20090306642A1 (en) * 2008-06-10 2009-12-10 Vankov Alexander B Method for low temperature electrosugery and rf generator
US8137345B2 (en) 2009-01-05 2012-03-20 Peak Surgical, Inc. Electrosurgical devices for tonsillectomy and adenoidectomy
EP2451422B1 (en) 2009-07-08 2016-10-12 Sanuwave, Inc. Usage of extracorporeal and intracorporeal pressure shock waves in medicine
WO2012170364A1 (en) 2011-06-10 2012-12-13 Medtronic, Inc. Wire electrode devices for tonsillectomy and adenoidectomy
WO2013082352A1 (en) 2011-12-01 2013-06-06 Microbrightfield, Inc. Acoustic pressure wave/shock wave mediated processing of biological tissue, and systems, apparatuses, and methods therefor
CN104138638B (en) * 2014-07-15 2017-06-20 深圳市慧康精密仪器有限公司 A kind of erectile dysfunction shock wave treatment instrument
NL2013968B1 (en) * 2014-12-12 2016-10-11 Fugro N V Pressure tolerant seismic source.
US10658912B2 (en) * 2017-03-31 2020-05-19 Lite-Med Inc. Shock wave generating unit
KR102303492B1 (en) * 2021-02-19 2021-09-24 (주)영인바이오텍 Electromagnetic extracorporeal shock wave therapy device using a disc type coil
CN113925761A (en) * 2021-11-16 2022-01-14 深圳市慧康精密仪器有限公司 Shock wave therapeutic instrument for women

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB704633A (en) * 1950-09-23 1954-02-24 Brush Dev Co Electro-acoustic device
AU550225B2 (en) * 1982-05-26 1986-03-06 Ontario Cancer Institute, The Ultrasonic imaging device
DE3328068A1 (en) * 1983-08-03 1985-02-21 Siemens AG, 1000 Berlin und 8000 München DEVICE FOR CONTACTLESS CRUSHING OF CONCRETE
DE3328051A1 (en) * 1983-08-03 1985-02-14 Siemens AG, 1000 Berlin und 8000 München DEVICE FOR CONTACTLESS CRUSHING OF CONCRETE
EP0209053A3 (en) * 1985-07-18 1987-09-02 Wolfgang Prof. Dr. Eisenmenger Method and apparatus for the non-contacting disintegration of concretions in a living body
DE8627238U1 (en) * 1986-10-06 1988-02-04 Siemens Ag, 1000 Berlin Und 8000 Muenchen, De

Also Published As

Publication number Publication date
DE3863238D1 (en) 1991-07-18
US4901709A (en) 1990-02-20
DE8709363U1 (en) 1988-11-03
EP0298334A1 (en) 1989-01-11

Similar Documents

Publication Publication Date Title
EP0298334B1 (en) Shock wave generator
EP0189756B1 (en) Device for the production of out-of-phase sound shock waves
EP0308644B1 (en) Focusing ultrasonic transducer
EP0300315B1 (en) Shock wave generator for an apparatus for non-contact disintegration of concrements, present in a body
EP0326701A2 (en) Piezoelectric shockwaves source
EP0212352B1 (en) Ultrasonic generator
EP0133665B1 (en) Apparatus for the smashing at a distance of calculus
DE4117638C2 (en)
EP0133946B1 (en) Apparatus for the contactless disintegration of concrements
DE2913251C2 (en) Device for the contact-free crushing of stones in body cavities
DE4110102C2 (en)
DE4213586A1 (en) Therapy device using focussed acoustic waves - switches between therapy mode and localised treatment zone with higher acoustic wave frequency
EP0421286A2 (en) Piezoelectric transducer
DE2538960C2 (en) Device for the contactless smashing of calculus in a living being
EP0209053A2 (en) Method and apparatus for the non-contacting disintegration of concretions in a living body
EP0162959A1 (en) Apparatus for the contactless disintegration of concrements
EP0240923B1 (en) Shoke wave generator with a piezo ceramic transducer
DE2650624C2 (en) Device for smashing concretions in the body of a living being
EP0266538B1 (en) Shock wave generator
EP0263349A1 (en) Shock wave generator
DE2921444A1 (en) Non-invasive destruction of kidney stones - uses device with annular reflector and insulating support in focal line, having HV terminals and electrode segments
EP0243650B1 (en) Shockwave generator with an improved focus zone
DE3833862C2 (en)
DE3940808C2 (en)
WO1990010419A1 (en) Device for generating focussed acoustic wave fields

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB

17P Request for examination filed

Effective date: 19890126

17Q First examination report despatched

Effective date: 19901102

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

REF Corresponds to:

Ref document number: 3863238

Country of ref document: DE

Date of ref document: 19910718

ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19920521

Year of fee payment: 5

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19930618

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19930627

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19930627

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19950228

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19950818

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19970301