EP0292070A1 - Current mirror with a high output voltage - Google Patents
Current mirror with a high output voltage Download PDFInfo
- Publication number
- EP0292070A1 EP0292070A1 EP88200988A EP88200988A EP0292070A1 EP 0292070 A1 EP0292070 A1 EP 0292070A1 EP 88200988 A EP88200988 A EP 88200988A EP 88200988 A EP88200988 A EP 88200988A EP 0292070 A1 EP0292070 A1 EP 0292070A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- transistor
- diode
- base
- emitter
- branch
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000015556 catabolic process Effects 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05F—SYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
- G05F3/00—Non-retroactive systems for regulating electric variables by using an uncontrolled element, or an uncontrolled combination of elements, such element or such combination having self-regulating properties
- G05F3/02—Regulating voltage or current
- G05F3/08—Regulating voltage or current wherein the variable is dc
- G05F3/10—Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics
- G05F3/16—Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices
- G05F3/20—Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices using diode- transistor combinations
- G05F3/26—Current mirrors
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05F—SYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
- G05F3/00—Non-retroactive systems for regulating electric variables by using an uncontrolled element, or an uncontrolled combination of elements, such element or such combination having self-regulating properties
- G05F3/02—Regulating voltage or current
- G05F3/08—Regulating voltage or current wherein the variable is dc
- G05F3/10—Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics
- G05F3/16—Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices
- G05F3/20—Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices using diode- transistor combinations
- G05F3/26—Current mirrors
- G05F3/265—Current mirrors using bipolar transistors only
Definitions
- the present invention relates to a current mirror comprising a first branch for receiving an input current to be copied and comprising in series a first diode in the forward direction and the main current path of a first transistor whose emitter is connected to a common mode pole, and a second branch for delivering an output current copying said input current and comprising in series the main current path of a second transistor and a second diode in the direct direction, having a first electrode connected to the base of the first transistor and to the emitter of the second transistor, and a second electrode connected to the common mode pole.
- Such a current mirror in which the first electrode of the first diode is connected to the base of the second transistor, is known by the name "current mirror of the WILSON type".
- the output voltage which can produce such a current mirror is limited, because the copying of the input current is not precise until the second transistor is in avalanche mode.
- the invention provides a current mirror in which the output current accurately copies the input current for significantly higher output voltages.
- a current mirror according to the invention is characterized in that the first branch comprises, in series and in the direct direction, a third diode with a first electrode for receiving the input current to be copied, in that the second branch comprises the main current path of a third transistor whose emitter is connected to the collector of the second transistor and whose collec tor delivers the output current, as well as a preferably Zener diode connected in reverse between the base of the third transistor and the emitter of the second transistor, in that it comprises a fourth diode in the direct direction of which a first electrode is connected to a supply voltage pole and a second electrode at the base of the third transistor as well as a fourth transistor whose base is connected to the first electrode of the third diode, the collector of which is connected to said voltage pole power supply, and whose emitter is connected to the base of the second transistor.
- a WILSON type current mirror comprises an input branch receiving an input current I E and comprising the main current path of a transistor T1, and an output branch crossed by an output current I s and comprising the main current path of a transistor T2.
- the first branch further comprises, in series with the main current path of the transistor T1, and directly, a diode D1, represented here in the form of an npn transistor whose base and collector are short-circuited and connected to the base of transistor T2, and whose emitter is connected to the collector of transistor T1 whose emitter is connected to the common mode pole.
- the second branch further comprises, in series with the main current path of the transistor T2, and directly, a diode D2, represented here in the form of an npn transistor whose base and collector are short-circuited and connected to the base of transistor T1 and the emitter of transistor T2, and whose emitter is connected to the common mode pole.
- a diode D2 represented here in the form of an npn transistor whose base and collector are short-circuited and connected to the base of transistor T1 and the emitter of transistor T2, and whose emitter is connected to the common mode pole.
- I b1 and I b2 be the base currents of the transistors T1 and T2 respectively.
- the current arriving at the collector of T1 has the value I E -I b2 and therefore the current flowing in the emitter of T1 has the value I E -I b2 + I b1 .
- This last current due to the interconnection between the base of the transistor T1 and the anode of the diode D2, is the same as that which crosses the diode D2 if it is supposed that this diode is carried out starting from a transistor of same dimensions as the transistor T1.
- the maximum output voltage which can be obtained at the collector of transistor T2 is limited by the structure of the output branch to a value of the order of B VCEO + V BE , because when the collector-emitter voltage of T2 reaches the value B VCEO , the operation is no longer linear (avalanche regime), and Is no longer copies I E only approximately.
- the basic idea of the invention consists in allowing operation in B VCB mode by conduction of a diode inducing a negative base current in a transistor of the second branch.
- Figure 2 shows how such a function can be realized with npn transistors.
- the first branch comprises in series and successively, a transistor D3 mounted as a diode by short-circuiting its base and its collector which receives the input current I E , a transistor D1 mounted as a diode by short-circuiting of its base and its collector which are connected to the emitter of D3, is a transistor T1 whose collector is connected to the emitter of D1, and whose emitter is connected to ground.
- the second branch comprises in series and successively, a transistor T3 whose collector provides the neck output rant Is copying the input current I E , and whose emitter is connected (point A) to the collector of a transistor T2 whose emitter is connected to the base and to the interconnected collector of a transistor D2 mounted diode and whose transmitter is connected to ground.
- the base and the collector of D2 are also connected to the base of the transistor T1.
- the second branch also includes at least one reverse diode, for example a Zener diode, connected between the base of the transistor T3 and the emitter of the transistor T2.
- the base of transistor T2 is connected to the emitter of a transistor T4 whose collector is connected to a voltage source U and the base, to the interconnected collector and base of D3.
- V the value of the supply voltage
- V BE the value of the emitter-base voltage of a transistor (around 0.7V).
- Vs the output voltage taken from the collector of transistor T3.
- B VCEO (T3) designates the avalanche voltage of transistor T3.
- the voltage across diode Z is also U-2V BE .
- Zener voltage V Z of the diode Z is greater than U-2V BE , the diode Z is blocked and the current mirror operates in a conventional manner.
- V CE (T3) B VCEO (T3).
- I b (T3) I b (T3).
- VA Vs - B VCEO (T3).
- the voltage across the diode Z is close to Vs - B VCEO (T3) - V BE and therefore remains below V Z , which implies that the diode Z remains blocked
- Diode Z starts to drive.
- a current I B (T3) ⁇ 0 can be established and the transistor T3 begins to work in the area of B VCB
- the output current Is tends towards I E + 2I B.
- the maximum value of Vs is either B VCBO (T3) + V Z + V BE , or the collector-substrate breakdown voltage of the transistor T3 if the latter is lower.
- Vz must be such that the BV CEO of the transistor T2 is not reached.
- Zener diode can be replaced by a reverse diode, or by several diodes in series and in reverse. In this eventuality, it will simply follow that the operating modes described will be less clearly separated.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Nonlinear Science (AREA)
- Electromagnetism (AREA)
- General Physics & Mathematics (AREA)
- Radar, Positioning & Navigation (AREA)
- Automation & Control Theory (AREA)
- Amplifiers (AREA)
- Control Of Electrical Variables (AREA)
- Electronic Switches (AREA)
Abstract
Un miroir de courant comporte une première branche présentant en série une diode (D₁) et le trajet de courant principal d'un transistor (T₁), et une deuxième branche présentant en série le trajet de courant principal d'un transistor (T₂) et une diode (D₂).A current mirror comprises a first branch having in series a diode (D₁) and the main current path of a transistor (T₁), and a second branch having in series the main current path of a transistor (T₂) and a diode (D₂).
Pour augmenter la tension Vs disponible en sortie, on dispose dans la première branche une diode (D₃) et dans la deuxième branche un transistor (T₃). Une électrode de la diode (D₃) est connectée à la base d'un transistor (T₄) dont le collecteur reçoit une tension d'alimentation (U) et dont l'émetteur est connecté à la base du transistor (T₂). La base du transistor (T₁) est connectée à une électrode de la diode (D₂) et à l'émetteur du transistor (T₂). Une diode (D₄) est disposée en direct entre la source de tension d'alimentation U et la base de transistor (T₃). Une diode Z est disposée en inverse entre la base du transistor T₃ et l'émetteur du transistor (T₂) de manière à permettre lors de sa mise en conduction, de faire fonctionner le transistor T₃ en mode BVCBO. To increase the voltage Vs available at the output, there is a diode (D₃) in the first branch and a transistor (T₃) in the second branch. An electrode of the diode (D₃) is connected to the base of a transistor (T₄) whose collector receives a supply voltage (U) and whose emitter is connected to the base of the transistor (T₂). The base of the transistor (T₁) is connected to an electrode of the diode (D₂) and to the emitter of the transistor (T₂). A diode (D₄) is arranged directly between the supply voltage source U and the transistor base (T₃). A diode Z is arranged in reverse between the base of the transistor T₃ and the emitter of the transistor (T₂) so as to allow, when it is turned on, to operate the transistor T₃ in B VCBO mode.
Description
La présente invention a pour objet un miroir de courant comportant une première branche pour recevoir un courant d'entrée à recopier et comportant en série une première diode dans le sens direct et le trajet de courant principal d'un premier transistor dont l'émetteur est connecté à un pôle de mode commun, et une deuxième branche pour délivrer un courant de sortie recopiant ledit courant d'entrée et comportant en série le trajet de courant principal d'un deuxième transistor et une deuxième diode dans le sens direct, ayant une première électrode connectée à la base du premier transistor et à l'émetteur du deuxième transistor, et une deuxième électrode connectée au pôle de mode commun.The present invention relates to a current mirror comprising a first branch for receiving an input current to be copied and comprising in series a first diode in the forward direction and the main current path of a first transistor whose emitter is connected to a common mode pole, and a second branch for delivering an output current copying said input current and comprising in series the main current path of a second transistor and a second diode in the direct direction, having a first electrode connected to the base of the first transistor and to the emitter of the second transistor, and a second electrode connected to the common mode pole.
Un tel miroir de courant, dans lequel la première électrode de la première diode est connectée à la base du deuxième transistor, est connu sous la dénomination "miroir de courant du type WILSON". La tension de sortie qui peut produire un tel miroir de courant est limitée, car la recopie du courant d'entrée n'est précise tant que le deuxième transistor n'est pas en mode d'avalanche.Such a current mirror, in which the first electrode of the first diode is connected to the base of the second transistor, is known by the name "current mirror of the WILSON type". The output voltage which can produce such a current mirror is limited, because the copying of the input current is not precise until the second transistor is in avalanche mode.
L'invention propose un miroir de courant dans lequel le courant de sortie recopie avec une bonne précision le courant d'entrée pour des tensions de sortie nettement plus élevées.The invention provides a current mirror in which the output current accurately copies the input current for significantly higher output voltages.
Dans ce but, un miroir de courant selon l'invention est caractérisé en ce que la première branche comporte, en série et dans le sens direct, une troisième diode avec une première électrode pour recevoir le courant d'entrée à recopier, en ce que la deuxième branche comporte le trajet de courant principal d'un troisième transistor dont l'émetteur est connecté au collecteur du deuxième transistor et dont le collec teur délivre le courant de sortie, ainsi qu'une diode de préférence Zener connectée en inverse entre la base du troisième transistor et l'émetteur du deuxième transistor, en ce qu'il comporte une quatrième diode dans le sens direct dont une première électrode est connectée à un pôle de tension d'alimentation et une deuxième électrode à la base du troisième transistor ainsi qu'un quatrième transistor dont la base est connectée à la première électrode de la troisième diode, dont le collecteur est connecté audit pôle de tension d'alimentation, et dont l'émetteur est connecté à la base du deuxième transistor.For this purpose, a current mirror according to the invention is characterized in that the first branch comprises, in series and in the direct direction, a third diode with a first electrode for receiving the input current to be copied, in that the second branch comprises the main current path of a third transistor whose emitter is connected to the collector of the second transistor and whose collec tor delivers the output current, as well as a preferably Zener diode connected in reverse between the base of the third transistor and the emitter of the second transistor, in that it comprises a fourth diode in the direct direction of which a first electrode is connected to a supply voltage pole and a second electrode at the base of the third transistor as well as a fourth transistor whose base is connected to the first electrode of the third diode, the collector of which is connected to said voltage pole power supply, and whose emitter is connected to the base of the second transistor.
L'invention sera mieux comprise à la lecture de la description qui va suive, donnée à titre d'exemple non limitatif, en liaison avec les dessins qui représentent :
- - la figure 1 un miroir de courant du type WILSON de l'art antérieur.
- - la figure 2 un miroir de courant selon l'invention.
- - Figure 1 a current mirror of the WILSON type of the prior art.
- - Figure 2 a current mirror according to the invention.
Selon la figure 1, un miroir de courant de type WILSON comporte une branche d'entrée recevant un courant d'entrée IE et comportant le trajet de courant principal d'un transistor T₁, et une branche de sortie traversée par un courant de sortie Is et comportant le trajet de courant principal d'un transistor T₂. La première branche comporte en outre, en série avec le trajet de courant principal du transistor T₁, et en direct, une diode D₁, représentée ici sous la forme d'un transistor npn dont la base et le collecteur sont court-circuités et connectés à la base du transistor T₂, et dont l'émetteur est connecté au collecteur du transistor T₁ dont l'émetteur est connecté au pôle de mode commun.According to FIG. 1, a WILSON type current mirror comprises an input branch receiving an input current I E and comprising the main current path of a transistor T₁, and an output branch crossed by an output current I s and comprising the main current path of a transistor T₂. The first branch further comprises, in series with the main current path of the transistor T₁, and directly, a diode D₁, represented here in the form of an npn transistor whose base and collector are short-circuited and connected to the base of transistor T₂, and whose emitter is connected to the collector of transistor T₁ whose emitter is connected to the common mode pole.
La deuxième branche comporte en outre, en série avec le trajet de courant principal du transistor T₂, et en direct, une diode D₂, représentée ici sous la forme d'un transistor npn dont la base et le collecteur sont court-circuités et connectés à la base du transistor T₁ et à l'émetteur du transistor T₂, et dont l'émetteur est connecté au pôle de mode commun. Soient Ib1 et Ib2 les courants de base respectivement des transistors T₁ et T₂.The second branch further comprises, in series with the main current path of the transistor T₂, and directly, a diode D₂, represented here in the form of an npn transistor whose base and collector are short-circuited and connected to the base of transistor T₁ and the emitter of transistor T₂, and whose emitter is connected to the common mode pole. Let I b1 and I b2 be the base currents of the transistors T₁ and T₂ respectively.
Le courant arrivant au collecteur de T₁ a pour valeur IE-Ib2 et donc le courant circulant dans l'émetteur de T₁ a pour valeur IE-Ib2+Ib1. Ce dernier courant, du fait de l'interconnection entre la base du transistor T₁ et l'anode de la diode D₂, est le même que celui qui traverse la diode D₂ si on suppose que cette diode est réalisée à partir d'un transistor de mêmes dimensions que le transistor T₁.The current arriving at the collector of T₁ has the value I E -I b2 and therefore the current flowing in the emitter of T₁ has the value I E -I b2 + I b1 . This last current, due to the interconnection between the base of the transistor T₁ and the anode of the diode D₂, is the same as that which crosses the diode D₂ if it is supposed that this diode is carried out starting from a transistor of same dimensions as the transistor T₁.
Le courant qui traverse l'émetteur du transistor T₂ a donc pour valeur IE-Ib2 + 2 Ib1 d'où :
Is = IE + 2(Ib1 - Ib2) ≃ IE
Par contre, la tension de sortie maximale qui peut être obtenue au collecteur du transistor T₂ est limitée par la structure de la branche de sortie à une valeur de l'ordre de BVCEO + VBE, car lorsque la tension collecteur-émetteur de T₂ atteint la valeur BVCEO, le fonctionnement n'est plus linéaire (régime d'avalanche), et Is ne recopie plus IE que de manière approximative.The current flowing through the emitter of transistor T₂ therefore has the value I E -I b2 + 2 I b1 , hence:
I s = I E + 2 (I b1 - I b2 ) ≃ I E
On the other hand, the maximum output voltage which can be obtained at the collector of transistor T₂ is limited by the structure of the output branch to a value of the order of B VCEO + V BE , because when the collector-emitter voltage of T₂ reaches the value B VCEO , the operation is no longer linear (avalanche regime), and Is no longer copies I E only approximately.
Or, il est en général souhaité que la précision de recopie soit de l'ordre de quelques %, ce qui implique de reconsidérer le montage si l'on veut obtenir des tensions de sorties supérieures à BVCEO.However, it is generally desired that the copying precision be of the order of a few%, which implies reconsidering the assembly if one wishes to obtain output voltages greater than B VCEO .
L'idée de base de l'invention consiste à permettre un fonctionnement en régime de BVCB par mise en conduction d'une diode induisant un courant de base négatif dans un transistor de la deuxième branche.The basic idea of the invention consists in allowing operation in B VCB mode by conduction of a diode inducing a negative base current in a transistor of the second branch.
La figure 2 montre comment une telle fonction peut être réalisée avec des transistors npn.Figure 2 shows how such a function can be realized with npn transistors.
La première branche comporte en série et successivement, un transistor D₃ monté en diode par mise en court-circuit de sa base et de son collecteur qui reçoit le courant d'entrée IE, un transistor D₁ monté en diode par mise en court-circuit de sa base et de son collecteur qui sont connectés à l'émetteur de D₃, est un transistor T₁ dont le collecteur est connecté à l'émetteur de D₁, et dont l'émetteur est connecté à la masse.The first branch comprises in series and successively, a transistor D₃ mounted as a diode by short-circuiting its base and its collector which receives the input current I E , a transistor D₁ mounted as a diode by short-circuiting of its base and its collector which are connected to the emitter of D₃, is a transistor T₁ whose collector is connected to the emitter of D₁, and whose emitter is connected to ground.
La deuxième branche comporte en série et successivement, un transistor T₃ dont le collecteur fournit le cou rant de sortie Is recopiant le courant d'entrée IE, et dont l'émetteur est connecté (point A) au collecteur d'un transistor T₂ dont l'émetteur est connecté à la base et au collecteur interconnectés d'un transistor D₂ monté en diode et dont l'émetteur est connecté à la masse. La base et le collecteur de D₂ sont également connectés à la base du transistor T₁.The second branch comprises in series and successively, a transistor T₃ whose collector provides the neck output rant Is copying the input current I E , and whose emitter is connected (point A) to the collector of a transistor T₂ whose emitter is connected to the base and to the interconnected collector of a transistor D₂ mounted diode and whose transmitter is connected to ground. The base and the collector of D₂ are also connected to the base of the transistor T₁.
La deuxième branche comporte également au moins une diode en inverse, par exemple une diode Zener, connectée entre la base du transistor T₃ et l'émetteur du transistor T₂. La base du transistor T₂ est connectée à l'émetteur d'un transistor T₄ dont le collecteur est connecté à une source de tension U et la base, au collecteur et à la base interconnectés de D₃. Un transistor D₄ monté en diode par mise en court-circuit de sa base et de son collecteur, connectés à la source de tension d'alimentation U, a son émetteur connecté à la base du transistor T₃.The second branch also includes at least one reverse diode, for example a Zener diode, connected between the base of the transistor T₃ and the emitter of the transistor T₂. The base of transistor T₂ is connected to the emitter of a transistor T₄ whose collector is connected to a voltage source U and the base, to the interconnected collector and base of D₃. A transistor D₄ mounted as a diode by short-circuiting its base and its collector, connected to the supply voltage source U, has its emitter connected to the base of the transistor T₃.
Soit U la valeur de la tension d'alimentation, et VBE la valeur de la tension émetteur-base d'un transistor (environ 0,7V). Soit Vs la tension de sortie prise sur le collecteur du transistor T₃.Let U be the value of the supply voltage, and V BE the value of the emitter-base voltage of a transistor (around 0.7V). Let Vs be the output voltage taken from the collector of transistor T₃.
On distingue trois zones de fonctionnement.There are three areas of operation.
BVCEO (T₃) désigne la tension d'avalanche du transistor T₃.
La tension VA au point A est constante et vaut :
VA = U - 2VBE
car la tension collecteur-émetteur VCE (T₃) est inférieure à BVCEO(T₃).
B VCEO (T₃) designates the avalanche voltage of transistor T₃.
The voltage V A at point A is constant and is equal to:
V A = U - 2V BE
because the collector-emitter voltage VCE (T₃) is less than B VCEO (T₃).
La tension aux bornes de la diode Z vaut également U-2VBE.The voltage across diode Z is also U-2V BE .
Si la tension Zener VZ de la diode Z est supérieure à U-2VBE, la diode Z est bloquée et le miroir de courant fonctionne de manière classique.If the Zener voltage V Z of the diode Z is greater than U-2V BE , the diode Z is blocked and the current mirror operates in a conventional manner.
On a alors Is = IE en négligeant le courant de base du transistor T₄ qui est très voisin de
Dans ce cas, on a :
VCE(T₃) = BVCEO(T₃).
Le courant de base de T₃, Ib(T₃) s'annule et la tension VA suit Vs :
VA = Vs - BVCEO(T₃).
La tension aux bornes de la diode Z est voisine de Vs - BVCEO(T₃) - VBE et reste donc inférieure à VZ, ce qui implique que la diode Z reste bloquée
On a : Is = IE + IB car IB (T₃) = 0In this case, we have:
V CE (T₃) = B VCEO (T₃).
The base current of T₃, I b (T₃) is canceled and the voltage V A follows Vs:
VA = Vs - B VCEO (T₃).
The voltage across the diode Z is close to Vs - B VCEO (T₃) - V BE and therefore remains below V Z , which implies that the diode Z remains blocked
We have: Is = I E + I B because I B (T₃) = 0
La diode Z se met à conduire. Un courant IB(T₃)<0 peut s'établir et le transistor T₃ commence à travailler dans la zone de BVCB
Plus la tension de sortie Vs augmente, plus le courant Is remonte la jonction collecteur-base du transistor T₃ à travers la diode Z.
Le courant de sortie Is tend vers IE + 2IB.
La valeur maximale de Vs est soit BVCBO(T₃) + VZ + VBE, soit la tension de claquage collecteur-substrat du transistor T₃ si cette dernière est plus faible.Diode Z starts to drive. A current I B (T₃) <0 can be established and the transistor T₃ begins to work in the area of B VCB
The more the output voltage Vs increases, the more the current Is goes up the collector-base junction of the transistor T₃ through the diode Z.
The output current Is tends towards I E + 2I B.
The maximum value of Vs is either B VCBO (T₃) + V Z + V BE , or the collector-substrate breakdown voltage of the transistor T₃ if the latter is lower.
On notera également que Vz doit être tel que le BVCEO du transistor T₂ ne soit pas atteint.It will also be noted that Vz must be such that the BV CEO of the transistor T₂ is not reached.
BVCEO = 27V BVCBO = 67V BVCS = 72V
VZ = 7,2V U = 3V IE = 100µA
V Z = 7.2V U = 3V I E = 100µA
Les mesures ont été effectiées avec des résistances de 1kΩ dans les émetteurs de T₁ et D₂.The measurements were made with resistances of 1kΩ in the transmitters of T₁ and D₂.
L'invention ne se limite pas aux modes de réalisation décrits et représentés. Ainsi, la diode Zener mentionnée peut être remplacée par une diode en inverse, ou par plusieurs diodes en série et en inverse. Dans cette éventualité, il en résultera simplement que les modes de fonctionnement décrits seront séparés de manière moins nette.The invention is not limited to the embodiments described and shown. Thus, the mentioned Zener diode can be replaced by a reverse diode, or by several diodes in series and in reverse. In this eventuality, it will simply follow that the operating modes described will be less clearly separated.
Claims (2)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR8707218A FR2615637B1 (en) | 1987-05-22 | 1987-05-22 | HIGH OUTPUT VOLTAGE CURRENT MIRROR |
FR8707218 | 1987-05-22 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0292070A1 true EP0292070A1 (en) | 1988-11-23 |
EP0292070B1 EP0292070B1 (en) | 1992-08-05 |
Family
ID=9351351
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP88200988A Expired - Lifetime EP0292070B1 (en) | 1987-05-22 | 1988-05-18 | Current mirror with a high output voltage |
Country Status (6)
Country | Link |
---|---|
US (1) | US4829231A (en) |
EP (1) | EP0292070B1 (en) |
JP (1) | JPS63305415A (en) |
KR (1) | KR960007515B1 (en) |
DE (1) | DE3873412T2 (en) |
FR (1) | FR2615637B1 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5159425A (en) * | 1988-06-08 | 1992-10-27 | Ixys Corporation | Insulated gate device with current mirror having bi-directional capability |
EP0561469A3 (en) * | 1992-03-18 | 1993-10-06 | National Semiconductor Corporation | Enhancement-depletion mode cascode current mirror |
WO2004081688A1 (en) * | 2003-03-10 | 2004-09-23 | Koninklijke Philips Electronics N.V. | Current mirror |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1982000550A1 (en) * | 1980-08-05 | 1982-02-18 | Inc Motorola | Cascode current source |
EP0155720A1 (en) * | 1984-02-29 | 1985-09-25 | Koninklijke Philips Electronics N.V. | Cascode current source arrangement |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6022391B2 (en) * | 1975-11-17 | 1985-06-01 | 三菱電機株式会社 | current square circuit |
US4471236A (en) * | 1982-02-23 | 1984-09-11 | Harris Corporation | High temperature bias line stabilized current sources |
-
1987
- 1987-05-22 FR FR8707218A patent/FR2615637B1/en not_active Expired
-
1988
- 1988-04-21 US US07/184,321 patent/US4829231A/en not_active Expired - Fee Related
- 1988-05-18 EP EP88200988A patent/EP0292070B1/en not_active Expired - Lifetime
- 1988-05-18 DE DE8888200988T patent/DE3873412T2/en not_active Expired - Fee Related
- 1988-05-19 JP JP63120772A patent/JPS63305415A/en active Pending
- 1988-05-20 KR KR1019880005948A patent/KR960007515B1/en active IP Right Grant
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1982000550A1 (en) * | 1980-08-05 | 1982-02-18 | Inc Motorola | Cascode current source |
EP0155720A1 (en) * | 1984-02-29 | 1985-09-25 | Koninklijke Philips Electronics N.V. | Cascode current source arrangement |
Also Published As
Publication number | Publication date |
---|---|
FR2615637B1 (en) | 1989-07-28 |
DE3873412T2 (en) | 1993-03-04 |
DE3873412D1 (en) | 1992-09-10 |
US4829231A (en) | 1989-05-09 |
FR2615637A1 (en) | 1988-11-25 |
KR960007515B1 (en) | 1996-06-05 |
KR880014440A (en) | 1988-12-23 |
JPS63305415A (en) | 1988-12-13 |
EP0292070B1 (en) | 1992-08-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0414319B1 (en) | Circuit for supplying a reference voltage | |
US4636743A (en) | Front end stage of an operational amplifier | |
US4870533A (en) | Transistor protection circuit | |
EP0159233A1 (en) | Control circuit for switching a power transistor | |
EP0292070B1 (en) | Current mirror with a high output voltage | |
US4539492A (en) | Darlington transistor circuit | |
EP0292071B1 (en) | Current mirror with a high output voltage | |
JPH07212156A (en) | Limiter circuit | |
JPS62128307A (en) | Thermal protection circuit | |
JPH0795249B2 (en) | Constant voltage device | |
US4527104A (en) | Speed control apparatus for d.c. motor | |
US4783637A (en) | Front end stage of an operational amplifier | |
EP0353808B1 (en) | Current compensating circuit | |
JP2697273B2 (en) | Differential amplifier circuit | |
JP3181770B2 (en) | Light emitting diode drive circuit | |
JP3019039B2 (en) | Internal combustion engine ignition device | |
JPS58110072A (en) | Semiconductor device | |
JPS58159384A (en) | Darlington photo-transistor | |
JPS6155200B2 (en) | ||
JPS6314491Y2 (en) | ||
FR2669790A1 (en) | Integrated circuit having a switchable current generator | |
SU1262669A1 (en) | Device for controlling power transistor | |
JPH10107604A (en) | Integrated circuit device with open collector transistor configured to be npn transistor | |
EP0083890A1 (en) | Logic driven switching device for analogous voltages | |
JPH07141044A (en) | Terminal current limiting circuit for scsi interface |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): DE FR GB IT NL |
|
17P | Request for examination filed |
Effective date: 19890517 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: N.V. PHILIPS' GLOEILAMPENFABRIEKEN Owner name: PHILIPS COMPOSANTS |
|
17Q | First examination report despatched |
Effective date: 19910218 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE FR GB IT NL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Effective date: 19920805 |
|
REF | Corresponds to: |
Ref document number: 3873412 Country of ref document: DE Date of ref document: 19920910 |
|
ITF | It: translation for a ep patent filed | ||
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) | ||
NLV1 | Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act | ||
ITTA | It: last paid annual fee | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
ITPR | It: changes in ownership of a european patent |
Owner name: CAMBIO RAGIONE SOCIALE;PHILIPS ELECTRONICS N.V. |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 19950428 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 19950523 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 19950724 Year of fee payment: 8 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Effective date: 19960518 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: CD |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 19960518 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Effective date: 19970131 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Effective date: 19970201 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED. Effective date: 20050518 |