EP0292070A1 - Current mirror with a high output voltage - Google Patents

Current mirror with a high output voltage Download PDF

Info

Publication number
EP0292070A1
EP0292070A1 EP88200988A EP88200988A EP0292070A1 EP 0292070 A1 EP0292070 A1 EP 0292070A1 EP 88200988 A EP88200988 A EP 88200988A EP 88200988 A EP88200988 A EP 88200988A EP 0292070 A1 EP0292070 A1 EP 0292070A1
Authority
EP
European Patent Office
Prior art keywords
transistor
diode
base
emitter
branch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP88200988A
Other languages
German (de)
French (fr)
Other versions
EP0292070B1 (en
Inventor
Philippe Raguet
Jean-Denis Coupe
Marc Ryat
Jean-Paul Bardyn
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koninklijke Philips NV
Original Assignee
Radiotechnique Compelec RTC SA
Photonis SAS
Philips Gloeilampenfabrieken NV
Koninklijke Philips Electronics NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Radiotechnique Compelec RTC SA, Photonis SAS, Philips Gloeilampenfabrieken NV, Koninklijke Philips Electronics NV filed Critical Radiotechnique Compelec RTC SA
Publication of EP0292070A1 publication Critical patent/EP0292070A1/en
Application granted granted Critical
Publication of EP0292070B1 publication Critical patent/EP0292070B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F3/00Non-retroactive systems for regulating electric variables by using an uncontrolled element, or an uncontrolled combination of elements, such element or such combination having self-regulating properties
    • G05F3/02Regulating voltage or current
    • G05F3/08Regulating voltage or current wherein the variable is dc
    • G05F3/10Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics
    • G05F3/16Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices
    • G05F3/20Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices using diode- transistor combinations
    • G05F3/26Current mirrors
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F3/00Non-retroactive systems for regulating electric variables by using an uncontrolled element, or an uncontrolled combination of elements, such element or such combination having self-regulating properties
    • G05F3/02Regulating voltage or current
    • G05F3/08Regulating voltage or current wherein the variable is dc
    • G05F3/10Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics
    • G05F3/16Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices
    • G05F3/20Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices using diode- transistor combinations
    • G05F3/26Current mirrors
    • G05F3/265Current mirrors using bipolar transistors only

Definitions

  • the present invention relates to a current mirror comprising a first branch for receiving an input current to be copied and comprising in series a first diode in the forward direction and the main current path of a first transistor whose emitter is connected to a common mode pole, and a second branch for delivering an output current copying said input current and comprising in series the main current path of a second transistor and a second diode in the direct direction, having a first electrode connected to the base of the first transistor and to the emitter of the second transistor, and a second electrode connected to the common mode pole.
  • Such a current mirror in which the first electrode of the first diode is connected to the base of the second transistor, is known by the name "current mirror of the WILSON type".
  • the output voltage which can produce such a current mirror is limited, because the copying of the input current is not precise until the second transistor is in avalanche mode.
  • the invention provides a current mirror in which the output current accurately copies the input current for significantly higher output voltages.
  • a current mirror according to the invention is characterized in that the first branch comprises, in series and in the direct direction, a third diode with a first electrode for receiving the input current to be copied, in that the second branch comprises the main current path of a third transistor whose emitter is connected to the collector of the second transistor and whose collec tor delivers the output current, as well as a preferably Zener diode connected in reverse between the base of the third transistor and the emitter of the second transistor, in that it comprises a fourth diode in the direct direction of which a first electrode is connected to a supply voltage pole and a second electrode at the base of the third transistor as well as a fourth transistor whose base is connected to the first electrode of the third diode, the collector of which is connected to said voltage pole power supply, and whose emitter is connected to the base of the second transistor.
  • a WILSON type current mirror comprises an input branch receiving an input current I E and comprising the main current path of a transistor T1, and an output branch crossed by an output current I s and comprising the main current path of a transistor T2.
  • the first branch further comprises, in series with the main current path of the transistor T1, and directly, a diode D1, represented here in the form of an npn transistor whose base and collector are short-circuited and connected to the base of transistor T2, and whose emitter is connected to the collector of transistor T1 whose emitter is connected to the common mode pole.
  • the second branch further comprises, in series with the main current path of the transistor T2, and directly, a diode D2, represented here in the form of an npn transistor whose base and collector are short-circuited and connected to the base of transistor T1 and the emitter of transistor T2, and whose emitter is connected to the common mode pole.
  • a diode D2 represented here in the form of an npn transistor whose base and collector are short-circuited and connected to the base of transistor T1 and the emitter of transistor T2, and whose emitter is connected to the common mode pole.
  • I b1 and I b2 be the base currents of the transistors T1 and T2 respectively.
  • the current arriving at the collector of T1 has the value I E -I b2 and therefore the current flowing in the emitter of T1 has the value I E -I b2 + I b1 .
  • This last current due to the interconnection between the base of the transistor T1 and the anode of the diode D2, is the same as that which crosses the diode D2 if it is supposed that this diode is carried out starting from a transistor of same dimensions as the transistor T1.
  • the maximum output voltage which can be obtained at the collector of transistor T2 is limited by the structure of the output branch to a value of the order of B VCEO + V BE , because when the collector-emitter voltage of T2 reaches the value B VCEO , the operation is no longer linear (avalanche regime), and Is no longer copies I E only approximately.
  • the basic idea of the invention consists in allowing operation in B VCB mode by conduction of a diode inducing a negative base current in a transistor of the second branch.
  • Figure 2 shows how such a function can be realized with npn transistors.
  • the first branch comprises in series and successively, a transistor D3 mounted as a diode by short-circuiting its base and its collector which receives the input current I E , a transistor D1 mounted as a diode by short-circuiting of its base and its collector which are connected to the emitter of D3, is a transistor T1 whose collector is connected to the emitter of D1, and whose emitter is connected to ground.
  • the second branch comprises in series and successively, a transistor T3 whose collector provides the neck output rant Is copying the input current I E , and whose emitter is connected (point A) to the collector of a transistor T2 whose emitter is connected to the base and to the interconnected collector of a transistor D2 mounted diode and whose transmitter is connected to ground.
  • the base and the collector of D2 are also connected to the base of the transistor T1.
  • the second branch also includes at least one reverse diode, for example a Zener diode, connected between the base of the transistor T3 and the emitter of the transistor T2.
  • the base of transistor T2 is connected to the emitter of a transistor T4 whose collector is connected to a voltage source U and the base, to the interconnected collector and base of D3.
  • V the value of the supply voltage
  • V BE the value of the emitter-base voltage of a transistor (around 0.7V).
  • Vs the output voltage taken from the collector of transistor T3.
  • B VCEO (T3) designates the avalanche voltage of transistor T3.
  • the voltage across diode Z is also U-2V BE .
  • Zener voltage V Z of the diode Z is greater than U-2V BE , the diode Z is blocked and the current mirror operates in a conventional manner.
  • V CE (T3) B VCEO (T3).
  • I b (T3) I b (T3).
  • VA Vs - B VCEO (T3).
  • the voltage across the diode Z is close to Vs - B VCEO (T3) - V BE and therefore remains below V Z , which implies that the diode Z remains blocked
  • Diode Z starts to drive.
  • a current I B (T3) ⁇ 0 can be established and the transistor T3 begins to work in the area of B VCB
  • the output current Is tends towards I E + 2I B.
  • the maximum value of Vs is either B VCBO (T3) + V Z + V BE , or the collector-substrate breakdown voltage of the transistor T3 if the latter is lower.
  • Vz must be such that the BV CEO of the transistor T2 is not reached.
  • Zener diode can be replaced by a reverse diode, or by several diodes in series and in reverse. In this eventuality, it will simply follow that the operating modes described will be less clearly separated.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Nonlinear Science (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • Amplifiers (AREA)
  • Control Of Electrical Variables (AREA)
  • Electronic Switches (AREA)

Abstract

Un miroir de courant comporte une première branche présentant en série une diode (D₁) et le trajet de courant principal d'un transistor (T₁), et une deuxième branche pré­sentant en série le trajet de courant principal d'un transis­tor (T₂) et une diode (D₂).A current mirror comprises a first branch having in series a diode (D₁) and the main current path of a transistor (T₁), and a second branch having in series the main current path of a transistor (T₂) and a diode (D₂).

Pour augmenter la tension Vs disponible en sortie, on dispose dans la première branche une diode (D₃) et dans la deuxième branche un transistor (T₃). Une électrode de la diode (D₃) est connectée à la base d'un transistor (T₄) dont le col­lecteur reçoit une tension d'alimentation (U) et dont l'émet­teur est connecté à la base du transistor (T₂). La base du transistor (T₁) est connectée à une électrode de la diode (D₂) et à l'émetteur du transistor (T₂). Une diode (D₄) est dispo­sée en direct entre la source de tension d'alimentation U et la base de transistor (T₃). Une diode Z est disposée en inver­se entre la base du transistor T₃ et l'émetteur du transistor (T₂) de manière à permettre lors de sa mise en conduction, de faire fonctionner le transistor T₃ en mode BVCBO.

Figure imgaf001
To increase the voltage Vs available at the output, there is a diode (D₃) in the first branch and a transistor (T₃) in the second branch. An electrode of the diode (D₃) is connected to the base of a transistor (T₄) whose collector receives a supply voltage (U) and whose emitter is connected to the base of the transistor (T₂). The base of the transistor (T₁) is connected to an electrode of the diode (D₂) and to the emitter of the transistor (T₂). A diode (D₄) is arranged directly between the supply voltage source U and the transistor base (T₃). A diode Z is arranged in reverse between the base of the transistor T₃ and the emitter of the transistor (T₂) so as to allow, when it is turned on, to operate the transistor T₃ in B VCBO mode.
Figure imgaf001

Description

La présente invention a pour objet un miroir de courant comportant une première branche pour recevoir un courant d'entrée à recopier et comportant en série une pre­mière diode dans le sens direct et le trajet de courant prin­cipal d'un premier transistor dont l'émetteur est connecté à un pôle de mode commun, et une deuxième branche pour délivrer un courant de sortie recopiant ledit courant d'entrée et comportant en série le trajet de courant principal d'un deuxième transistor et une deuxième diode dans le sens direct, ayant une première électrode connectée à la base du premier transistor et à l'émetteur du deuxième transistor, et une deuxième électrode connectée au pôle de mode commun.The present invention relates to a current mirror comprising a first branch for receiving an input current to be copied and comprising in series a first diode in the forward direction and the main current path of a first transistor whose emitter is connected to a common mode pole, and a second branch for delivering an output current copying said input current and comprising in series the main current path of a second transistor and a second diode in the direct direction, having a first electrode connected to the base of the first transistor and to the emitter of the second transistor, and a second electrode connected to the common mode pole.

Un tel miroir de courant, dans lequel la première électrode de la première diode est connectée à la base du deu­xième transistor, est connu sous la dénomination "miroir de courant du type WILSON". La tension de sortie qui peut produi­re un tel miroir de courant est limitée, car la recopie du courant d'entrée n'est précise tant que le deuxième transistor n'est pas en mode d'avalanche.Such a current mirror, in which the first electrode of the first diode is connected to the base of the second transistor, is known by the name "current mirror of the WILSON type". The output voltage which can produce such a current mirror is limited, because the copying of the input current is not precise until the second transistor is in avalanche mode.

L'invention propose un miroir de courant dans le­quel le courant de sortie recopie avec une bonne précision le courant d'entrée pour des tensions de sortie nettement plus élevées.The invention provides a current mirror in which the output current accurately copies the input current for significantly higher output voltages.

Dans ce but, un miroir de courant selon l'invention est caractérisé en ce que la première branche comporte, en sé­rie et dans le sens direct, une troisième diode avec une pre­mière électrode pour recevoir le courant d'entrée à recopier, en ce que la deuxième branche comporte le trajet de courant principal d'un troisième transistor dont l'émetteur est con­necté au collecteur du deuxième transistor et dont le collec­ teur délivre le courant de sortie, ainsi qu'une diode de pré­férence Zener connectée en inverse entre la base du troisième transistor et l'émetteur du deuxième transistor, en ce qu'il comporte une quatrième diode dans le sens direct dont une pre­mière électrode est connectée à un pôle de tension d'alimenta­tion et une deuxième électrode à la base du troisième transis­tor ainsi qu'un quatrième transistor dont la base est connec­tée à la première électrode de la troisième diode, dont le collecteur est connecté audit pôle de tension d'alimentation, et dont l'émetteur est connecté à la base du deuxième transis­tor.For this purpose, a current mirror according to the invention is characterized in that the first branch comprises, in series and in the direct direction, a third diode with a first electrode for receiving the input current to be copied, in that the second branch comprises the main current path of a third transistor whose emitter is connected to the collector of the second transistor and whose collec tor delivers the output current, as well as a preferably Zener diode connected in reverse between the base of the third transistor and the emitter of the second transistor, in that it comprises a fourth diode in the direct direction of which a first electrode is connected to a supply voltage pole and a second electrode at the base of the third transistor as well as a fourth transistor whose base is connected to the first electrode of the third diode, the collector of which is connected to said voltage pole power supply, and whose emitter is connected to the base of the second transistor.

L'invention sera mieux comprise à la lecture de la description qui va suive, donnée à titre d'exemple non limita­tif, en liaison avec les dessins qui représentent :

  • - la figure 1 un miroir de courant du type WILSON de l'art an­térieur.
  • - la figure 2 un miroir de courant selon l'invention.
The invention will be better understood on reading the following description, given by way of nonlimiting example, in conjunction with the drawings which represent:
  • - Figure 1 a current mirror of the WILSON type of the prior art.
  • - Figure 2 a current mirror according to the invention.

Selon la figure 1, un miroir de courant de type WILSON comporte une branche d'entrée recevant un courant d'en­trée IE et comportant le trajet de courant principal d'un transistor T₁, et une branche de sortie traversée par un cou­rant de sortie Is et comportant le trajet de courant princi­pal d'un transistor T₂. La première branche comporte en outre, en série avec le trajet de courant principal du transistor T₁, et en direct, une diode D₁, représentée ici sous la forme d'un transistor npn dont la base et le collecteur sont court-cir­cuités et connectés à la base du transistor T₂, et dont l'é­metteur est connecté au collecteur du transistor T₁ dont l'é­metteur est connecté au pôle de mode commun.According to FIG. 1, a WILSON type current mirror comprises an input branch receiving an input current I E and comprising the main current path of a transistor T₁, and an output branch crossed by an output current I s and comprising the main current path of a transistor T₂. The first branch further comprises, in series with the main current path of the transistor T₁, and directly, a diode D₁, represented here in the form of an npn transistor whose base and collector are short-circuited and connected to the base of transistor T₂, and whose emitter is connected to the collector of transistor T₁ whose emitter is connected to the common mode pole.

La deuxième branche comporte en outre, en série avec le trajet de courant principal du transistor T₂, et en direct, une diode D₂, représentée ici sous la forme d'un tran­sistor npn dont la base et le collecteur sont court-circuités et connectés à la base du transistor T₁ et à l'émetteur du transistor T₂, et dont l'émetteur est connecté au pôle de mode commun. Soient Ib1 et Ib2 les courants de base respective­ment des transistors T₁ et T₂.The second branch further comprises, in series with the main current path of the transistor T₂, and directly, a diode D₂, represented here in the form of an npn transistor whose base and collector are short-circuited and connected to the base of transistor T₁ and the emitter of transistor T₂, and whose emitter is connected to the common mode pole. Let I b1 and I b2 be the base currents of the transistors T₁ and T₂ respectively.

Le courant arrivant au collecteur de T₁ a pour va­leur IE-Ib2 et donc le courant circulant dans l'émetteur de T₁ a pour valeur IE-Ib2+Ib1. Ce dernier courant, du fait de l'interconnection entre la base du transistor T₁ et l'anode de la diode D₂, est le même que celui qui traverse la diode D₂ si on suppose que cette diode est réalisée à partir d'un transistor de mêmes dimensions que le transistor T₁.The current arriving at the collector of T₁ has the value I E -I b2 and therefore the current flowing in the emitter of T₁ has the value I E -I b2 + I b1 . This last current, due to the interconnection between the base of the transistor T₁ and the anode of the diode D₂, is the same as that which crosses the diode D₂ if it is supposed that this diode is carried out starting from a transistor of same dimensions as the transistor T₁.

Le courant qui traverse l'émetteur du transistor T₂ a donc pour valeur IE-Ib2 + 2 Ib1 d'où :
    Is = IE + 2(Ib1 - Ib2) ≃ IE
Par contre, la tension de sortie maximale qui peut être obte­nue au collecteur du transistor T₂ est limitée par la structu­re de la branche de sortie à une valeur de l'ordre de BVCEO + VBE, car lorsque la tension collecteur-émetteur de T₂ at­teint la valeur BVCEO, le fonctionnement n'est plus linéaire (régime d'avalanche), et Is ne recopie plus IE que de maniè­re approximative.
The current flowing through the emitter of transistor T₂ therefore has the value I E -I b2 + 2 I b1 , hence:
I s = I E + 2 (I b1 - I b2 ) ≃ I E
On the other hand, the maximum output voltage which can be obtained at the collector of transistor T₂ is limited by the structure of the output branch to a value of the order of B VCEO + V BE , because when the collector-emitter voltage of T₂ reaches the value B VCEO , the operation is no longer linear (avalanche regime), and Is no longer copies I E only approximately.

Or, il est en général souhaité que la précision de recopie soit de l'ordre de quelques %, ce qui implique de re­considérer le montage si l'on veut obtenir des tensions de sorties supérieures à BVCEO.However, it is generally desired that the copying precision be of the order of a few%, which implies reconsidering the assembly if one wishes to obtain output voltages greater than B VCEO .

L'idée de base de l'invention consiste à permettre un fonctionnement en régime de BVCB par mise en conduction d'une diode induisant un courant de base négatif dans un transistor de la deuxième branche.The basic idea of the invention consists in allowing operation in B VCB mode by conduction of a diode inducing a negative base current in a transistor of the second branch.

La figure 2 montre comment une telle fonction peut être réalisée avec des transistors npn.Figure 2 shows how such a function can be realized with npn transistors.

La première branche comporte en série et successi­vement, un transistor D₃ monté en diode par mise en court-cir­cuit de sa base et de son collecteur qui reçoit le courant d'entrée IE, un transistor D₁ monté en diode par mise en court-circuit de sa base et de son collecteur qui sont connec­tés à l'émetteur de D₃, est un transistor T₁ dont le collec­teur est connecté à l'émetteur de D₁, et dont l'émetteur est connecté à la masse.The first branch comprises in series and successively, a transistor D₃ mounted as a diode by short-circuiting its base and its collector which receives the input current I E , a transistor D₁ mounted as a diode by short-circuiting of its base and its collector which are connected to the emitter of D₃, is a transistor T₁ whose collector is connected to the emitter of D₁, and whose emitter is connected to ground.

La deuxième branche comporte en série et successi­vement, un transistor T₃ dont le collecteur fournit le cou­ rant de sortie Is recopiant le courant d'entrée IE, et dont l'émetteur est connecté (point A) au collecteur d'un transis­tor T₂ dont l'émetteur est connecté à la base et au collecteur interconnectés d'un transistor D₂ monté en diode et dont l'é­metteur est connecté à la masse. La base et le collecteur de D₂ sont également connectés à la base du transistor T₁.The second branch comprises in series and successively, a transistor T₃ whose collector provides the neck output rant Is copying the input current I E , and whose emitter is connected (point A) to the collector of a transistor T₂ whose emitter is connected to the base and to the interconnected collector of a transistor D₂ mounted diode and whose transmitter is connected to ground. The base and the collector of D₂ are also connected to the base of the transistor T₁.

La deuxième branche comporte également au moins une diode en inverse, par exemple une diode Zener, connectée entre la base du transistor T₃ et l'émetteur du transistor T₂. La base du transistor T₂ est connectée à l'émetteur d'un transis­tor T₄ dont le collecteur est connecté à une source de tension U et la base, au collecteur et à la base interconnectés de D₃. Un transistor D₄ monté en diode par mise en court-circuit de sa base et de son collecteur, connectés à la source de ten­sion d'alimentation U, a son émetteur connecté à la base du transistor T₃.The second branch also includes at least one reverse diode, for example a Zener diode, connected between the base of the transistor T₃ and the emitter of the transistor T₂. The base of transistor T₂ is connected to the emitter of a transistor T₄ whose collector is connected to a voltage source U and the base, to the interconnected collector and base of D₃. A transistor D₄ mounted as a diode by short-circuiting its base and its collector, connected to the supply voltage source U, has its emitter connected to the base of the transistor T₃.

Soit U la valeur de la tension d'alimentation, et VBE la valeur de la tension émetteur-base d'un transistor (environ 0,7V). Soit Vs la tension de sortie prise sur le col­lecteur du transistor T₃.Let U be the value of the supply voltage, and V BE the value of the emitter-base voltage of a transistor (around 0.7V). Let Vs be the output voltage taken from the collector of transistor T₃.

On distingue trois zones de fonctionnement.There are three areas of operation.

1) Vs < U - 2VBE + BVCEO(T₃)1) Vs <U - 2V BE + B VCEO (T₃)

    BVCEO (T₃) désigne la tension d'avalanche du transistor T₃.
    La tension VA au point A est constante et vaut :
    VA = U - 2VBE
car la tension collecteur-émetteur VCE (T₃) est inférieure à BVCEO(T₃).
B VCEO (T₃) designates the avalanche voltage of transistor T₃.
The voltage V A at point A is constant and is equal to:
V A = U - 2V BE
because the collector-emitter voltage VCE (T₃) is less than B VCEO (T₃).

La tension aux bornes de la diode Z vaut également U-2VBE.The voltage across diode Z is also U-2V BE .

Si la tension Zener VZ de la diode Z est supé­rieure à U-2VBE, la diode Z est bloquée et le miroir de cou­rant fonctionne de manière classique.If the Zener voltage V Z of the diode Z is greater than U-2V BE , the diode Z is blocked and the current mirror operates in a conventional manner.

On a alors Is = IE en négligeant le courant de base du transistor T₄ qui est très voisin de

Figure imgb0001
β désignant le gain en courant d'un transistor.We then have Is = I E by neglecting the base current of transistor T₄ which is very close to
Figure imgb0001
β designating the current gain of a transistor.

2) Vs>U - 2VBE + BVCEO(T₃) et Vs<VZ+ BVCEO(T₃)+ VBE.2) Vs> U - 2V BE + B VCEO (T₃) and Vs <V Z + BV CEO (T₃) + V BE .

Dans ce cas, on a :
VCE(T₃) = BVCEO(T₃).
Le courant de base de T₃, Ib(T₃) s'annule et la tension VA suit Vs :

VA = Vs - BVCEO(T₃).

La tension aux bornes de la diode Z est voisine de Vs - BVCEO(T₃) - VBE et reste donc inférieure à VZ, ce qui implique que la diode Z reste bloquée
On a : Is = IE + IB car IB (T₃) = 0
In this case, we have:
V CE (T₃) = B VCEO (T₃).
The base current of T₃, I b (T₃) is canceled and the voltage V A follows Vs:

VA = Vs - B VCEO (T₃).

The voltage across the diode Z is close to Vs - B VCEO (T₃) - V BE and therefore remains below V Z , which implies that the diode Z remains blocked
We have: Is = I E + I B because I B (T₃) = 0

3) Vs>VZ + BVCEO (T₃) + VBE 3) Vs> V Z + B VCEO (T₃) + V BE

La diode Z se met à conduire. Un courant IB(T₃)<0 peut s'établir et le transistor T₃ commence à travailler dans la zone de BVCB
Plus la tension de sortie Vs augmente, plus le courant Is re­monte la jonction collecteur-base du transistor T₃ à travers la diode Z.
Le courant de sortie Is tend vers IE + 2IB.
La valeur maximale de Vs est soit BVCBO(T₃) + VZ + VBE, soit la tension de claquage collecteur-substrat du transistor T₃ si cette dernière est plus faible.
Diode Z starts to drive. A current I B (T₃) <0 can be established and the transistor T₃ begins to work in the area of B VCB
The more the output voltage Vs increases, the more the current Is goes up the collector-base junction of the transistor T₃ through the diode Z.
The output current Is tends towards I E + 2I B.
The maximum value of Vs is either B VCBO (T₃) + V Z + V BE , or the collector-substrate breakdown voltage of the transistor T₃ if the latter is lower.

On notera également que Vz doit être tel que le BVCEO du transistor T₂ ne soit pas atteint.It will also be noted that Vz must be such that the BV CEO of the transistor T₂ is not reached.

Exemple:Example:

BVCEO = 27V      BVCBO = 67V      BVCS = 72V
VZ = 7,2V      U = 3V      IE = 100µA

Figure imgb0002
B VCEO = 27V B VCBO = 67V B VCS = 72V
V Z = 7.2V U = 3V I E = 100µA
Figure imgb0002

Les mesures ont été effectiées avec des résistances de 1kΩ dans les émetteurs de T₁ et D₂.The measurements were made with resistances of 1kΩ in the transmitters of T₁ and D₂.

L'invention ne se limite pas aux modes de réalisa­tion décrits et représentés. Ainsi, la diode Zener mentionnée peut être remplacée par une diode en inverse, ou par plusieurs diodes en série et en inverse. Dans cette éventualité, il en résultera simplement que les modes de fonctionnement décrits seront séparés de manière moins nette.The invention is not limited to the embodiments described and shown. Thus, the mentioned Zener diode can be replaced by a reverse diode, or by several diodes in series and in reverse. In this eventuality, it will simply follow that the operating modes described will be less clearly separated.

Claims (2)

1. Miroir de courant comportant une première branche pour recevoir un courant d'entrée à recopier et comportant en série une première diode dans le sens direct et le trajet de courant principal d'un premier transistor dont l'émetteur est connecté à un pôle de mode commun, et une deuxième branche pour délivrer un courant de sortie recopiant ledit courant d'entrée et comportant en série le trajet de courant principal d'un deuxième transistor et une deuxième diode dans le sens direct, ayant une première électrode connectée à la base du premier transistor et à l'émetteur du deuxième transistor et une deuxième électrode connectée au pôle de mode commun caractérisé en ce que la première branche comporte, en série et dans le sens direct, une troisième diode (D₃) avec une première électrode pour recevoir le courant d'entrée (IE) à recopier, en ce que la deuxième branche comporte le trajet de courant principal d'un troisième transistor (T₃) dont l'émetteur est connecté au collecteur du deuxième transistor (T₂) et dont le collecteur délivre le courant de sortie (Is), ainsi qu'une diode (Z) connectée en inverse entre la base du troisième transistor (T₃) et l'émetteur du deuxième transistor (T₂), en ce qu'il comporte une quatrième diode (D₄) dans le sens direct dont une première électrode est connectée à un pôle de tension d'alimentation et une deuxième électrode à la base du troisième transistor (T₃) ainsi qu'un quatrième transistor dont la base est connectée à la première électrode de la troisième diode (D₃), dont le collecteur est connecté audit pôle de tension d'alimentation, et dont l'émetteur est connecté à la base du deuxième transistor (T₂).1. Current mirror comprising a first branch for receiving an input current to be copied and comprising in series a first diode in the direct direction and the main current path of a first transistor whose emitter is connected to a pole of common mode, and a second branch for delivering an output current copying said input current and comprising in series the main current path of a second transistor and a second diode in the forward direction, having a first electrode connected to the base of the first transistor and the emitter of the second transistor and a second electrode connected to the common mode pole characterized in that the first branch comprises, in series and in the forward direction, a third diode (D₃) with a first electrode for receiving the input current (I E ) to be copied, in that the second branch comprises the main current path of a third transistor (T₃) whose emitter is connected to the collector of the second me transistor (T₂) and whose collector delivers the output current (Is), as well as a diode (Z) connected in reverse between the base of the third transistor (T₃) and the emitter of the second transistor (T₂), what it comprises a fourth diode (D₄) in the direct direction of which a first electrode is connected to a pole of supply voltage and a second electrode at the base of the third transistor (T₃) as well as a fourth transistor whose base is connected to the first electrode of the third diode (D₃), whose collector is connected to said supply voltage pole, and whose emitter is connected to the base of the second transistor (T₂). 2. Miroir de courant selon la revendication 1 caracté­risé en ce que la diode (Z) est une diode Zener.2. Current mirror according to claim 1 characterized in that the diode (Z) is a Zener diode.
EP88200988A 1987-05-22 1988-05-18 Current mirror with a high output voltage Expired - Lifetime EP0292070B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8707218A FR2615637B1 (en) 1987-05-22 1987-05-22 HIGH OUTPUT VOLTAGE CURRENT MIRROR
FR8707218 1987-05-22

Publications (2)

Publication Number Publication Date
EP0292070A1 true EP0292070A1 (en) 1988-11-23
EP0292070B1 EP0292070B1 (en) 1992-08-05

Family

ID=9351351

Family Applications (1)

Application Number Title Priority Date Filing Date
EP88200988A Expired - Lifetime EP0292070B1 (en) 1987-05-22 1988-05-18 Current mirror with a high output voltage

Country Status (6)

Country Link
US (1) US4829231A (en)
EP (1) EP0292070B1 (en)
JP (1) JPS63305415A (en)
KR (1) KR960007515B1 (en)
DE (1) DE3873412T2 (en)
FR (1) FR2615637B1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5159425A (en) * 1988-06-08 1992-10-27 Ixys Corporation Insulated gate device with current mirror having bi-directional capability
EP0561469A3 (en) * 1992-03-18 1993-10-06 National Semiconductor Corporation Enhancement-depletion mode cascode current mirror
WO2004081688A1 (en) * 2003-03-10 2004-09-23 Koninklijke Philips Electronics N.V. Current mirror

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1982000550A1 (en) * 1980-08-05 1982-02-18 Inc Motorola Cascode current source
EP0155720A1 (en) * 1984-02-29 1985-09-25 Koninklijke Philips Electronics N.V. Cascode current source arrangement

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6022391B2 (en) * 1975-11-17 1985-06-01 三菱電機株式会社 current square circuit
US4471236A (en) * 1982-02-23 1984-09-11 Harris Corporation High temperature bias line stabilized current sources

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1982000550A1 (en) * 1980-08-05 1982-02-18 Inc Motorola Cascode current source
EP0155720A1 (en) * 1984-02-29 1985-09-25 Koninklijke Philips Electronics N.V. Cascode current source arrangement

Also Published As

Publication number Publication date
FR2615637B1 (en) 1989-07-28
DE3873412T2 (en) 1993-03-04
DE3873412D1 (en) 1992-09-10
US4829231A (en) 1989-05-09
FR2615637A1 (en) 1988-11-25
KR960007515B1 (en) 1996-06-05
KR880014440A (en) 1988-12-23
JPS63305415A (en) 1988-12-13
EP0292070B1 (en) 1992-08-05

Similar Documents

Publication Publication Date Title
EP0414319B1 (en) Circuit for supplying a reference voltage
US4636743A (en) Front end stage of an operational amplifier
US4870533A (en) Transistor protection circuit
EP0159233A1 (en) Control circuit for switching a power transistor
EP0292070B1 (en) Current mirror with a high output voltage
US4539492A (en) Darlington transistor circuit
EP0292071B1 (en) Current mirror with a high output voltage
JPH07212156A (en) Limiter circuit
JPS62128307A (en) Thermal protection circuit
JPH0795249B2 (en) Constant voltage device
US4527104A (en) Speed control apparatus for d.c. motor
US4783637A (en) Front end stage of an operational amplifier
EP0353808B1 (en) Current compensating circuit
JP2697273B2 (en) Differential amplifier circuit
JP3181770B2 (en) Light emitting diode drive circuit
JP3019039B2 (en) Internal combustion engine ignition device
JPS58110072A (en) Semiconductor device
JPS58159384A (en) Darlington photo-transistor
JPS6155200B2 (en)
JPS6314491Y2 (en)
FR2669790A1 (en) Integrated circuit having a switchable current generator
SU1262669A1 (en) Device for controlling power transistor
JPH10107604A (en) Integrated circuit device with open collector transistor configured to be npn transistor
EP0083890A1 (en) Logic driven switching device for analogous voltages
JPH07141044A (en) Terminal current limiting circuit for scsi interface

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT NL

17P Request for examination filed

Effective date: 19890517

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: N.V. PHILIPS' GLOEILAMPENFABRIEKEN

Owner name: PHILIPS COMPOSANTS

17Q First examination report despatched

Effective date: 19910218

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT NL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19920805

REF Corresponds to:

Ref document number: 3873412

Country of ref document: DE

Date of ref document: 19920910

ITF It: translation for a ep patent filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
ITTA It: last paid annual fee
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
ITPR It: changes in ownership of a european patent

Owner name: CAMBIO RAGIONE SOCIALE;PHILIPS ELECTRONICS N.V.

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19950428

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19950523

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19950724

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19960518

REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19960518

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19970131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19970201

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050518