EP0414319B1 - Circuit for supplying a reference voltage - Google Patents

Circuit for supplying a reference voltage Download PDF

Info

Publication number
EP0414319B1
EP0414319B1 EP90202235A EP90202235A EP0414319B1 EP 0414319 B1 EP0414319 B1 EP 0414319B1 EP 90202235 A EP90202235 A EP 90202235A EP 90202235 A EP90202235 A EP 90202235A EP 0414319 B1 EP0414319 B1 EP 0414319B1
Authority
EP
European Patent Office
Prior art keywords
transistor
whose
circuit
emitter
collector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP90202235A
Other languages
German (de)
French (fr)
Other versions
EP0414319A1 (en
Inventor
Stéphane Société Civile S.P.I.D. Barbu
Richard Société Civile S.P.I.D. Morisson
Philippe Société Civile S.P.I.D. Gandy
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koninklijke Philips NV
Original Assignee
Photonis SAS
Philips Gloeilampenfabrieken NV
Koninklijke Philips Electronics NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Photonis SAS, Philips Gloeilampenfabrieken NV, Koninklijke Philips Electronics NV filed Critical Photonis SAS
Publication of EP0414319A1 publication Critical patent/EP0414319A1/en
Application granted granted Critical
Publication of EP0414319B1 publication Critical patent/EP0414319B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/10Regulating voltage or current
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/10Regulating voltage or current
    • G05F1/46Regulating voltage or current wherein the variable actually regulated by the final control device is dc
    • G05F1/56Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices
    • G05F1/565Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices sensing a condition of the system or its load in addition to means responsive to deviations in the output of the system, e.g. current, voltage, power factor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S323/00Electricity: power supply or regulation systems
    • Y10S323/901Starting circuits

Definitions

  • the invention relates to a circuit for supplying a reference voltage, comprising a voltage generator having a supply terminal and an output for delivering a voltage of given nominal value and comprising a differential amplifier presenting a supply terminal for a source. supply voltage, a non-inverting input connected to the output of the voltage generator, an inverting input and an output as well as a first output follower stage, the output of which delivers said reference voltage is retro-coupled to the inverting input of the amplifier via a divider bridge.
  • the voltage generator is liable, when it is switched on, to give rise to instabilities.
  • the invention relates to a circuit making it possible to avoid this drawback.
  • the basic idea of the invention consists in transmitting the voltage generator signal only when the supply voltage is sufficient for the region of possible instabilities to be exceeded.
  • the circuit according to the invention is for this purpose characterized in that the output of the differential amplifier is connected to the input of the first follower stage through a controlled switching device, the first follower stage having its input connected to terminal d power supply through a first resistor, and having its output connected to the supply terminal of the voltage generator and in that it comprises a circuit for controlling the switching device arranged to receive at least the supply voltage so that the switching device is closed when the first supply voltage reaches a threshold for which both the voltage generator and the differential amplifier are in a nominal operating zone .
  • the voltage generator is supplied by the reference voltage produced by the circuit, and the reference voltage, once the switching device is closed, is 1 / k times higher than the voltage produced by the voltage generator, k being the division ratio of the first divider bridge.
  • the first supply voltage has a low value, insufficient for the switching device to be closed, the voltage at the output of the circuit, which also supplies the voltage generator, varies with the same slope as the first supply voltage, at a constant close.
  • the output voltage curve as a function of the first supply voltage therefore no longer presents a risk of instability.
  • control circuit and the controlled switching circuit cooperate directly with the differential amplifier. This makes it possible to simplify the electronic diagram.
  • the differential amplifier may include a first branch, the input of which is said non-inverting input and a second branch, the input of which is said inverting input
  • the control circuit may be arranged to inhibit the passage of current through the second branch when the supply voltage is lower than said threshold
  • the controlled switching circuit may include a second follower stage which is arranged to be conductive only when current flows through the second branch.
  • the first branch may include the emitter-collector path of a first transistor of a first type, the base and the collector of which are connected respectively to the emitter and to the base of a second transistor of the first type whose collector is connected to a second supply voltage source, the collector of the first transistor being connected to that of a third transistor of the second type opposite to the first, the emitter of which is connected to the second voltage source d 'power supply through a second resistor and whose base constitutes the non-inverting input of the differential amplifier.
  • Such a branch has a structure such that it derives from the current from low levels of the first supply voltage.
  • the second branch may include the emitter-collector path of a fourth transistor of the first type, the base of which is connected to that of the first transistor, the collector of the fourth transistor being connected to that of a fifth transistor of the second type, the emitter of which is connected to that of the third transistor and whose base constitutes the inverting input of the differential amplifier.
  • Such a branch has a structure such that it derives from the current only from a relatively high significant level of the first supply voltage.
  • the fourth transistor can have its emitter connected to that of the first transistor.
  • control circuit is advantageously common to the two branches.
  • the control circuit may include a sixth transistor of the second type, the collector of which is connected to the first supply voltage source, the emitter of which is connected to the emitters of the first and fourth transistors, and the base of which is connected to the terminal of the first resistor which is not connected to the first source of supply voltage.
  • the voltage on the basis of the sixth transistor determines the threshold from which the differential amplifier produces an output signal.
  • the second follower stage may include a seventh transistor whose base is connected to the collector of the fifth transistor, whose collector is connected to the second supply voltage source and whose emitter is connected to the input of the first follower stage, possibly via a live diode.
  • the value of said threshold can be chosen more precisely by having a second resistance between the first resistance and the input of the first follower stage.
  • the first follower stage advantageously comprises an eighth transistor with two emitters, the base of which constitutes the input, the collector of which is connected to the first supply voltage source, the first emitter of which is connected to one end of the bridge and the second of which transmitter constitutes the output of the first follower stage.
  • a voltage generator REF delivers a voltage V R which is applied to the non-inverting input of a differential amplifier A supplied with a supply voltage V cc .
  • the output S of the amplifier A drives a follower circuit T whose output, which delivers a regulated reference voltage V O is retro-coupled to the inverting input of the amplifier A via a resistive divider bridge R3, R4.
  • the REF voltage generator is supplied by the supply voltage V cc .
  • the voltage generator REF delivers a voltage V at the output + i which is applied to the non-inverting input of the differential amplifier A supplied with a supply voltage V cc .
  • the output S of the amplifier A is connected via a controlled switching device 1 to the input S 'of the follower circuit.
  • a resistance R1 is arranged between the input S 'and the supply voltage source V cc .
  • the output of the follower circuit delivers the regulated reference voltage V O. This output is looped over the inverting input of amplifier A (signal V - i ) using a divider bridge comprising resistors R3 and R4.
  • the signal V - i is present at the common point (or mid point) of the divider bridge.
  • the other end of the divider point is connected to a second source of supply voltage (here the common mode pole).
  • the follower circuit is represented as a transistor T whose base is the point S ', whose emitter delivers the signal V O and whose collector is connected to the supply voltage source V cc .
  • the signal V O is applied to the supply terminal of the voltage generator REF.
  • a control circuit C which receives the supply voltage V cc (and optionally the voltage V O ) is arranged so as to close the switching device 1 when the supply voltage V cc exceeds a given threshold for which the voltage V + i delivered by the REF voltage generator has exceeded the portion of its characteristic in which instabilities may occur.
  • the supply voltage V cc starts from the value 0 and increases to reach its nominal value.
  • the switching current 1 is open and the voltage V O changes in proportion to the instantaneous value of the voltage V cc and independently of the voltage V + i .
  • the input S 'of the follower stage is referenced to the potential V cc through the resistor R1.
  • the switching circuit 1 is closed, and the voltage V O then has the value: For a certain value of V cc , V + i reaches its nominal value V REF .
  • a voltage generator (said to be of the "band gap" type) described in the aforementioned work p.295, comprises a transistor T11 of the npn type whose collector is connected to the aforementioned point B and which has a resistance R15, acting as a current source, between its collector and its base.
  • the emitter of the transistor T11 which delivers the voltage V + i is connected to a diode (npn transistor T12 mounted as a diode by base-collector short-circuit) through a resistor R11.
  • the emitter of transistor T12 is connected to the common mode pole, and its base to that of a transistor T14 whose emitter is connected to the common mode pole through a resistor R14 and whose collector is firstly connected to the transistor emitter T11 through a resistor R16 and on the other hand connected to the base of an npn transistor T15 whose emitter is connected to the common mode pole, and whose collector is connected to the transistor base T11.
  • Amplifier A comprises a first branch having a transistor T type of the pnp type whose emitter is connected to a point F, whose base is connected to the emitter of a transistor T transistor of the pnp type, whose collector is connected to the common mode pole and whose base is connected to the transistor collector T5.
  • the collector of transistor T5 is connected to that of a transistor T8 of the npn type, the base of which is attacked by the voltage V + i available on the emitter of transistor T11, and whose emitter is connected to the common mode pole through a resistor R8.
  • the transistors T5 and T7 have two emitter-base junctions in series, which means that a current is likely to flow in the first branch even for a low potential value at point F.
  • the second branch has a pnp transistor T6 whose emitter is connected to point F, whose base is connected to that of transistor T du and whose collector (point S) is connected to that of an npn transistor T9 whose emitter is connected to the common mode pole through the resistor R8.
  • the control circuit comprises an npn transistor T3 whose collector is connected to the supply voltage source V cc , whose emitter is connected to said point F and whose base is preferably connected to the mid point H of a bridge divider R1, R2 having two resistors R1 and R2 in series between the supply voltage source V cc and the point S ′, or else directly at the point S ′, the resistance R2 being omitted.
  • the switching circuit comprises a pnp transistor T10 whose base is connected to point S (output of amplifier A), whose collector is connected to the common mode pole and whose emitter is connected to point S ′ through a live diode D.
  • the output follower stage comprises a transistor (T1, T2) with two emitters (or two transistors T1 and T2 mounted as a follower emitter), the emitter of T1 connected to the divider bridge (R3, R4) and that of T2 delivering the voltage V o at point B.
  • T1, T2 with two emitters (or two transistors T1 and T2 mounted as a follower emitter), the emitter of T1 connected to the divider bridge (R3, R4) and that of T2 delivering the voltage V o at point B.
  • V cc When V cc has a value below the given threshold, the first branch of the amplifier is likely to be crossed by a current, but the second branch is not crossed by any current. The transistor T10 is then blocked. The base of the transistors T1 and T2 is then at a potential very close to the instantaneous value of V cc .
  • V cc When V cc reaches the given threshold, the second branch of the amplifier is crossed by a current sufficient for the transistor T10 to be in conduction state.
  • the amplifier is in its operating region and we have: V S ′ denoting the voltage at point S ′.
  • V + i ⁇ V REF that is to say that for the calculation, it is considered that the voltage threshold corresponds practically to the correct operating threshold of the voltage generator. He comes : For the amplifier described, correct operation requires that V H is at least equal to 5V D (in fact it is necessary that V H is significantly greater than this value). We then have: The report It therefore makes it possible to determine the threshold V ccO of V cc from which the switching circuit is closed. If the resistance R2 is omitted, the points H and S 'are merged, and and the resistance R1 is no longer involved in determining the threshold.
  • the base of transistor T3 is connected to the midpoint H 'of a divider bridge R'1 and R'2 disposed between the voltage source V cc and the common mode pole.
  • the base of the transistor T1 is connected to the voltage source V cc through the resistor R1.
  • the emitter of transistor T3 is connected to point C, that of transistor T1 is connected to point A through resistor R3, and that of transistor T2 is connected to point B.
  • the rest of the circuit is as in Figure 3.
  • the threshold condition is then: V H ' > 5V D
  • the report determines the threshold V cco of V cc from which the switching circuit is closed.
  • the voltages V + i , V - i and V0 increase as soon as V cc reaches V D (0.7 V), the regulation being obtained from 6 V D (approximately 4.2 V).

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • Amplifiers (AREA)
  • Continuous-Control Power Sources That Use Transistors (AREA)

Description

L'invention concerne un circuit destiné à fournir une tension de référence, comportant un générateur de tension présentant une borne d'alimentation et une sortie pour délivrer une tension de valeur nominale donnée et comportant un amplificateur différentiel présentant une borne d'alimentation pour une source de tension d'alimentation, une entrée non inverseuse connectée à la sortie du générateur de tension, une entrée inverseuse et une sortie ainsi qu'un premier étage suiveur de sortie, dont la sortie qui délivre ladite tension de référence est rétro-couplée à l'entrée inverseuse de l'amplificateur par l'intermédiaire d'un pont diviseur.The invention relates to a circuit for supplying a reference voltage, comprising a voltage generator having a supply terminal and an output for delivering a voltage of given nominal value and comprising a differential amplifier presenting a supply terminal for a source. supply voltage, a non-inverting input connected to the output of the voltage generator, an inverting input and an output as well as a first output follower stage, the output of which delivers said reference voltage is retro-coupled to the inverting input of the amplifier via a divider bridge.

Un tel circuit est connu de "Analysis and Design of Analog Integrated Circuits" de Paul R. GRAY et ROBERT G. MEYER (John Wiley and Sons - New-York 1977) fig.d.37 p.516 Voltage regulator.Such a circuit is known from "Analysis and Design of Analog Integrated Circuits" by Paul R. GRAY and ROBERT G. MEYER (John Wiley and Sons - New-York 1977) fig.d.37 p.516 Voltage regulator.

Le générateur de tension est susceptible, lors de sa mise sous tension de donner lieu à des instabilités.The voltage generator is liable, when it is switched on, to give rise to instabilities.

L'invention a pour objet un circuit permettant d'éviter cet inconvénient.The invention relates to a circuit making it possible to avoid this drawback.

L'idée de base de l'invention consiste à ne transmettre en sortie le signal du générateur de tension que lorsque la tension d'alimentation est suffisante pour que la région d'instabilités possibles soit dépassée.The basic idea of the invention consists in transmitting the voltage generator signal only when the supply voltage is sufficient for the region of possible instabilities to be exceeded.

Le circuit selon l'invention est dans ce but caractérisé en ce que la sortie de l'amplificateur différentiel est reliée à l'entrée du premier étage suiveur à travers un dispositif de commutation commandé, le premier étage suiveur ayant son entrée reliée à borne d'alimentation à travers une première résistance, et ayant sa sortie reliée à la borne d'alimentation du générateur de tension et en ce qu'il comporte un circuit de commande du dispositif de commutation agencé pour recevoir au moins la tension d'alimentation de manière que le dispositif de commutation soit fermé lorsque la première tension d'alimentation atteint un seuil pour lequel à la fois le générateur de tension et l'amplificateur différentiel sont dans une zone de fonctionnement nominal.The circuit according to the invention is for this purpose characterized in that the output of the differential amplifier is connected to the input of the first follower stage through a controlled switching device, the first follower stage having its input connected to terminal d power supply through a first resistor, and having its output connected to the supply terminal of the voltage generator and in that it comprises a circuit for controlling the switching device arranged to receive at least the supply voltage so that the switching device is closed when the first supply voltage reaches a threshold for which both the voltage generator and the differential amplifier are in a nominal operating zone .

Le générateur de tension est alimenté par la tension de référence produite par le circuit, et la tension de référence, une fois le dispositif de commutation fermé, est 1/k fois plus élevée que la tension produite par le générateur de tension, k étant le rapport de division du premier pont diviseur. Lorsque la première tension d'alimentation a une valeur faible, insuffisante pour que le dispositif de commutation soit fermé, la tension en sortie du circuit, qui alimente également le générateur de tension varie avec la même pente que la première tension d'alimentation, à une constante près. La courbe de tension de sortie en fonction de la première tension d'alimentation ne présente donc plus de risque d'instabilité.The voltage generator is supplied by the reference voltage produced by the circuit, and the reference voltage, once the switching device is closed, is 1 / k times higher than the voltage produced by the voltage generator, k being the division ratio of the first divider bridge. When the first supply voltage has a low value, insufficient for the switching device to be closed, the voltage at the output of the circuit, which also supplies the voltage generator, varies with the same slope as the first supply voltage, at a constant close. The output voltage curve as a function of the first supply voltage therefore no longer presents a risk of instability.

Il est particulièrement avantageux que le circuit de commande et le circuit de commutation commandé coopèrent directement avec l'amplificateur différentiel. Ceci permet en effet de simplifier le schéma électronique.It is particularly advantageous that the control circuit and the controlled switching circuit cooperate directly with the differential amplifier. This makes it possible to simplify the electronic diagram.

Dans ce but, l'amplificateur différentiel peut comporter une première branche dont l'entrée est ladite entrée non inverseuse et une deuxième branche dont l'entrée est ladite entrée inverseuse, le circuit de commande peut être agencé pour inhiber le passage du courant dans la deuxième branche lorsque la tension d'alimentation est inférieure audit seuil, et le circuit de commutation commandé peut comporter un deuxième étage suiveur qui est agencé pour n'être conducteur que lorsque du courant traverse la deuxième branche.For this purpose, the differential amplifier may include a first branch, the input of which is said non-inverting input and a second branch, the input of which is said inverting input, the control circuit may be arranged to inhibit the passage of current through the second branch when the supply voltage is lower than said threshold, and the controlled switching circuit may include a second follower stage which is arranged to be conductive only when current flows through the second branch.

La première branche peut comporter le trajet émetteur-collecteur d'un premier transistor d'un premier type dont la base et le collecteur sont connectés respectivement à l'émetteur et à la base d'un deuxième transistor du premier type dont le collecteur est connecté à une deuxième source de tension d'alimentation, le collecteur du premier transistor étant connecté à celui d'un troisième transistor du deuxième type opposé au premier, dont l'émetteur est reliè à la deuxième source de tension d'alimentation à travers une deuxième résistance et dont la base constitue l'entrée non inverseuse de l'amplificateur différentiel. Une telle branche présente une structure telle qu'elle dérive du courant à partir de niveaux faibles de la première tension d'alimentation.The first branch may include the emitter-collector path of a first transistor of a first type, the base and the collector of which are connected respectively to the emitter and to the base of a second transistor of the first type whose collector is connected to a second supply voltage source, the collector of the first transistor being connected to that of a third transistor of the second type opposite to the first, the emitter of which is connected to the second voltage source d 'power supply through a second resistor and whose base constitutes the non-inverting input of the differential amplifier. Such a branch has a structure such that it derives from the current from low levels of the first supply voltage.

La deuxième branche peut comporter le trajet émetteur-collecteur d'un quatrième transistor de premier type dont la base est connectée à celle du premier transistor, le collecteur du quatrième transistor étant connecté à celui d'un cinquième transistor du deuxième type dont l'émetteur est connecté à celui du troisième transistor et dont la base constitue l'entrée inverseuse de l'amplificateur différentiel. Une telle branche présente une structure telle qu'elle dérive du courant seulement à partir d'un niveau significatif relativement élevé de la première tension d'alimentation.The second branch may include the emitter-collector path of a fourth transistor of the first type, the base of which is connected to that of the first transistor, the collector of the fourth transistor being connected to that of a fifth transistor of the second type, the emitter of which is connected to that of the third transistor and whose base constitutes the inverting input of the differential amplifier. Such a branch has a structure such that it derives from the current only from a relatively high significant level of the first supply voltage.

Le quatrième transistor peut avoir son émetteur connecté à celui du premier transistor.The fourth transistor can have its emitter connected to that of the first transistor.

Le circuit de commande est avantageusement commun aux deux branches. Dans ce but, le circuit de commande peut comporter un sixième transistor du deuxième type dont le collecteur est connecté à la première source de tension d'alimentation, dont l'émetteur est connecté aux émetteurs des premier et quatrième transistors, et dont la base est connectée à la borne de la première résistance qui n'est pas connectée à la première source de tension d'alimentation. La tension sur la base du sixième transistor détermine le seuil à partir duquel l'amplificateur différentiel produit un signal de sortie.The control circuit is advantageously common to the two branches. For this purpose, the control circuit may include a sixth transistor of the second type, the collector of which is connected to the first supply voltage source, the emitter of which is connected to the emitters of the first and fourth transistors, and the base of which is connected to the terminal of the first resistor which is not connected to the first source of supply voltage. The voltage on the basis of the sixth transistor determines the threshold from which the differential amplifier produces an output signal.

Le deuxième étage suiveur peut comporter un septième transistor dont la base est connectée au collecteur du cinquième transistor, dont le collecteur est connecté à la deuxième source de tension d'alimentation et dont l'émetteur est relié à l'entrée du premier étage suiveur, éventuellement par l'intermédiaire d'une diode en direct.The second follower stage may include a seventh transistor whose base is connected to the collector of the fifth transistor, whose collector is connected to the second supply voltage source and whose emitter is connected to the input of the first follower stage, possibly via a live diode.

La valeur dudit seuil pourra être choisi avec plus de précision en disposant une deuxième résistance entre la première résistance et l'entrée du premier étage suiveur.The value of said threshold can be chosen more precisely by having a second resistance between the first resistance and the input of the first follower stage.

Le premier étage suiveur comporte avantageusement un huitième transistor à deux émetteurs dont la base constitue l'entrée, dont le collecteur est connecté à la première source de tension d'alimentation, dont le premier émetteur est connecté à une extrémité du pont et dont le deuxième émetteur constitue la sortie du premier étage suiveur.The first follower stage advantageously comprises an eighth transistor with two emitters, the base of which constitutes the input, the collector of which is connected to the first supply voltage source, the first emitter of which is connected to one end of the bridge and the second of which transmitter constitutes the output of the first follower stage.

L'invention sera mieux comprise à la lecture de la description qui va suivre, donnée à titre d'exemple non limitatif, en liaison avec les dessins qui représentent :

  • la figure 1, un circuit régulateur du type série selon l'art antérieur précité.
  • la figure 2, un circuit selon l'invention.
  • la figure 3, un mode préféré de réalisation de l'invention.
  • la figure 4, une variante de la figure 3.
  • et la figure 5, des courbes de tension en fonction de la tension d'alimentation selon la figure 3 ou 4.
The invention will be better understood on reading the description which follows, given by way of nonlimiting example, in conjunction with the drawings which represent:
  • Figure 1, a series type regulator circuit according to the aforementioned prior art.
  • Figure 2, a circuit according to the invention.
  • Figure 3, a preferred embodiment of the invention.
  • FIG. 4, a variant of FIG. 3.
  • and FIG. 5, voltage curves as a function of the supply voltage according to FIG. 3 or 4.

Selon la figure 1, un générateur de tension REF délivre une tension VR qui est appliquée à l'entrée non inverseuse d'un amplificateur différentiel A alimenté à une tension d'alimentation Vcc. La sortie S de l'amplificateur A attaque un circuit suiveur T dont la sortie, qui délivre une tension de référence régulée VO est rétro-couplée à l'entrée inverseuse de l'amplificateur A par l'intermédiaire d'un pont diviseur résistif R₃, R₄. Le générateur de tension REF est alimenté par la tension d'alimentation Vcc. Lors de la mise sous tension, toute instabilité de la tension VR du générateur de tension REF se répercute directement sur la tension VO.According to FIG. 1, a voltage generator REF delivers a voltage V R which is applied to the non-inverting input of a differential amplifier A supplied with a supply voltage V cc . The output S of the amplifier A drives a follower circuit T whose output, which delivers a regulated reference voltage V O is retro-coupled to the inverting input of the amplifier A via a resistive divider bridge R₃, R₄. The REF voltage generator is supplied by the supply voltage V cc . When powering up, any instability of the voltage V R of the voltage generator REF has a direct impact on the voltage V O.

Selon la figure 2, le générateur de tension REF délivre en sortie une tension V + i

Figure imgb0001
qui est appliquée à l'entrée non inverseuse de l'amplificateur différentiel A alimenté à une tension d'alimentation Vcc. La sortie S de l'amplificateur A est reliée par l'intermédiaire d'un dispositif de commutation commandé 1 à l'entrée S' du circuit suiveur. Une résistance R₁ est disposée entre l'entrée S' et la source de tension d'alimentation Vcc. La sortie du circuit suiveur délivre la tension de référence régulée VO. Cette sortie est bouclée sur l'entrée inverseuse de l'amplificateur A (signal V - i
Figure imgb0002
) à l'aide d'un pont diviseur comportant des résistances R₃ et R₄. Le signal V - i
Figure imgb0003
est présent au point commun (ou point milieu) du pont diviseur. L'autre extrémité du point diviseur est connectée à une deuxième source de tension d'alimentation (ici le pôle de mode commun). Le circuit suiveur est représenté comme un transistor T dont la base est le point S', dont l'émetteur délivre le signal VO et dont le collecteur est connecté à la source de tension d'alimentation Vcc. Le signal VO est appliqué à la borne d'alimentation du générateur de tension REF. Un circuit de commande C qui reçoit la tension d'alimentation Vcc (et éventuellement la tension VO) est agencée de manière à fermer le dispositif de commutation 1 lorsque la tension d'alimentation Vcc dépasse un seuil donné pour lequel la tension V + i
Figure imgb0004
délivrée par le générateur de tension REF a dépassé la portion de sa caractéristique dans laquelle peuvent se produire des instabilités. De ce fait, lorsque le circuit est mis sous tension, la tension d'alimentation Vcc part de la valeur 0 et augmente pour atteindre sa valeur nominale. Lorsque sa valeur est inférieure au seuil donné, le courant de commutation 1 est ouvert et la tension VO évolue proportionnellement à la valeur instantanée de la tension Vcc et indépendamment de la tension V + i
Figure imgb0005
. En effet, l'entrée S' de l'étage suiveur est référencée au potentiel Vcc à travers la résistance R₁. Par contre lorsque la valeur instantanée de la tension Vcc atteint le seuil donné, le circuit de commutation 1 est fermé, et la tension VO a alors pour valeur :
Figure imgb0006

Pour une certaine valeur de Vcc, V + i
Figure imgb0007
atteint sa valeur nominale VREF.According to FIG. 2, the voltage generator REF delivers a voltage V at the output + i
Figure imgb0001
which is applied to the non-inverting input of the differential amplifier A supplied with a supply voltage V cc . The output S of the amplifier A is connected via a controlled switching device 1 to the input S 'of the follower circuit. A resistance R₁ is arranged between the input S 'and the supply voltage source V cc . The output of the follower circuit delivers the regulated reference voltage V O. This output is looped over the inverting input of amplifier A (signal V - i
Figure imgb0002
) using a divider bridge comprising resistors R₃ and R₄. The signal V - i
Figure imgb0003
is present at the common point (or mid point) of the divider bridge. The other end of the divider point is connected to a second source of supply voltage (here the common mode pole). The follower circuit is represented as a transistor T whose base is the point S ', whose emitter delivers the signal V O and whose collector is connected to the supply voltage source V cc . The signal V O is applied to the supply terminal of the voltage generator REF. A control circuit C which receives the supply voltage V cc (and optionally the voltage V O ) is arranged so as to close the switching device 1 when the supply voltage V cc exceeds a given threshold for which the voltage V + i
Figure imgb0004
delivered by the REF voltage generator has exceeded the portion of its characteristic in which instabilities may occur. Therefore, when the circuit is energized, the supply voltage V cc starts from the value 0 and increases to reach its nominal value. When its value is lower than the given threshold, the switching current 1 is open and the voltage V O changes in proportion to the instantaneous value of the voltage V cc and independently of the voltage V + i
Figure imgb0005
. Indeed, the input S 'of the follower stage is referenced to the potential V cc through the resistor R₁. On the other hand, when the instantaneous value of the voltage V cc reaches the given threshold, the switching circuit 1 is closed, and the voltage V O then has the value:
Figure imgb0006

For a certain value of V cc , V + i
Figure imgb0007
reaches its nominal value V REF .

Selon la figure 3, un générateur de tension (dit du type "band gap") décrit dans l'ouvrage précité p.295, comporte un transistor T₁₁ de type npn dont le collecteur est connecté au point B précité et qui présente une résistance R₁₅, faisant office de source de courant, entre son collecteur et sa base. L'émetteur du transistor T₁₁ qui délivre la tension V + i

Figure imgb0008
est reliée à une diode (transistor npn T₁₂ monté en diode par court-circuit base-collecteur) à travers une résistance R₁₁. L'émetteur du transistor T₁₂ est connecté au pôle de mode commun, et sa base à celle d'un transistor T₁₄ dont l'émetteur est relié au pôle de mode commun à travers une résistance R₁₄ et dont le collecteur est d'une part relié à l'émetteur de transistor T₁₁ à travers une résistance R₁₆ et d'autre part connecté à la base d'un transistor npn T₁₅ dont l'émetteur est connecté au pôle de mode commun, et dont le collecteur est connecté à la base de transistor T₁₁.According to FIG. 3, a voltage generator (said to be of the "band gap" type) described in the aforementioned work p.295, comprises a transistor T₁₁ of the npn type whose collector is connected to the aforementioned point B and which has a resistance R₁₅, acting as a current source, between its collector and its base. The emitter of the transistor T₁₁ which delivers the voltage V + i
Figure imgb0008
is connected to a diode (npn transistor T₁₂ mounted as a diode by base-collector short-circuit) through a resistor R₁₁. The emitter of transistor T₁₂ is connected to the common mode pole, and its base to that of a transistor T₁₄ whose emitter is connected to the common mode pole through a resistor R₁₄ and whose collector is firstly connected to the transistor emitter T₁₁ through a resistor R₁₆ and on the other hand connected to the base of an npn transistor T₁₅ whose emitter is connected to the common mode pole, and whose collector is connected to the transistor base T₁₁.

L'amplificateur A comporte une première branche présentant un transistor T₅ de type pnp dont l'émetteur est connecté à un point F, dont la base est connectée à l'émetteur d'un transistor T₇ de type pnp, dont le collecteur est connecté au pôle de mode commun et dont la base est connectée au collecteur de transistor T₅. Le collecteur du transistor T₅ est connecté à celui d'un transistor T₈ de type npn dont la base est attaquée par la tension V + i

Figure imgb0009
disponible sur l'émetteur du transistor T₁₁, et dont l'émetteur est relié au pôle de mode commun à travers une résistance R₈. Les transistors T₅ et T₇ présentent deux jonctions émetteur-base en série ce qui fait qu'un courant est susceptible de circuler dans la première branche même pour une faible valeur de potentiel au point F. La deuxième branche présente un transistor pnp T₆ dont l'émetteur est connecté au point F, dont la base est connectée à celle du transistor T₅ et dont le collecteur (point S) est connecté à celui d'un transistor npn T₉ dont l'émetteur est relié au pôle de mode commun à travers la résistance R₈. Le circuit de commande comporte un transistor npn T₃ dont le collecteur est connecté à la source de tension d'alimentation Vcc, dont l'émetteur est connecté audit point F et dont la base est connectée de préférence au point milieu H d'un pont diviseur R₁,R₂ présentant deux résistances R₁ et R₂ en série entre la source de tension d'alimentation Vcc et le point S′, ou bien directement au point S′, la résistance R₂ étant omise. Le circuit de commutation comporte un transistor pnp T₁₀ dont la base est connectée au point S (sortie de l'amplificateur A), dont le collecteur est connecté au pôle de mode commun et dont l'émetteur est relié au point S′ à travers une diode en direct D.Amplifier A comprises a first branch having a transistor T type of the pnp type whose emitter is connected to a point F, whose base is connected to the emitter of a transistor T transistor of the pnp type, whose collector is connected to the common mode pole and whose base is connected to the transistor collector T₅. The collector of transistor T₅ is connected to that of a transistor T₈ of the npn type, the base of which is attacked by the voltage V + i
Figure imgb0009
available on the emitter of transistor T₁₁, and whose emitter is connected to the common mode pole through a resistor R₈. The transistors T₅ and T₇ have two emitter-base junctions in series, which means that a current is likely to flow in the first branch even for a low potential value at point F. The second branch has a pnp transistor T₆ whose emitter is connected to point F, whose base is connected to that of transistor T du and whose collector (point S) is connected to that of an npn transistor T₉ whose emitter is connected to the common mode pole through the resistor R₈. The control circuit comprises an npn transistor T₃ whose collector is connected to the supply voltage source V cc , whose emitter is connected to said point F and whose base is preferably connected to the mid point H of a bridge divider R₁, R₂ having two resistors R₁ and R₂ in series between the supply voltage source V cc and the point S ′, or else directly at the point S ′, the resistance R₂ being omitted. The switching circuit comprises a pnp transistor T₁₀ whose base is connected to point S (output of amplifier A), whose collector is connected to the common mode pole and whose emitter is connected to point S ′ through a live diode D.

L'étage suiveur de sortie comporte un transistor (T₁, T₂) à deux émetteurs (ou deux transistors T₁ et T₂ montés en émetteur suiveur), l'émetteur de T₁ connecté au pont diviseur (R₃, R₄) et celui de T₂ délivrant la tension Vo au point B. La présence de ce double émetteur (ou des deux transistors) permet classiquement un meilleur découplage vis à vis de l'impédance de charge.The output follower stage comprises a transistor (T₁, T₂) with two emitters (or two transistors T₁ and T₂ mounted as a follower emitter), the emitter of T₁ connected to the divider bridge (R₃, R₄) and that of T₂ delivering the voltage V o at point B. The presence of this double transmitter (or of the two transistors) conventionally allows better decoupling with respect to the load impedance.

Lorsque Vcc a une valeur inférieure au seuil donné, la première branche de l'amplificateur est susceptible d'être traversée par un courant, mais la deuxième branche n'est traversée par aucun courant. Le transistor T₁₀ est alors bloqué. La base des transistors T₁ et T₂ est alors à un potentiel très voisin de la valeur instantanée de Vcc.When V cc has a value below the given threshold, the first branch of the amplifier is likely to be crossed by a current, but the second branch is not crossed by any current. The transistor T₁₀ is then blocked. The base of the transistors T₁ and T₂ is then at a potential very close to the instantaneous value of V cc .

On a alors V o = (V cc - V D )

Figure imgb0010

et
Figure imgb0011

avec VD = tension base-émetteur d'un transistor (environ 0,7V).We then have V o = (V CC - V D )
Figure imgb0010

and
Figure imgb0011

with V D = base-emitter voltage of a transistor (approximately 0.7V).

Lorsque Vcc atteint le seuil donné, la deuxième branche de l'amplificateur est traversée par un courant suffisant pour que le transistor T₁₀ soit en état de conduction. L'amplificateur est dans sa région de fonctionnement et on a :

Figure imgb0012

VS′ désignant la tension au point S′.When V cc reaches the given threshold, the second branch of the amplifier is crossed by a current sufficient for the transistor T₁₀ to be in conduction state. The amplifier is in its operating region and we have:
Figure imgb0012

V S ′ denoting the voltage at point S ′.

Considérons V + i

Figure imgb0013
≃ VREF c'est-à-dire que pour le calcul, on considère que le seuil de tension correspond pratiquement au seuil de fonctionnement correct du générateur de tension.
Il vient :
Figure imgb0014

Pour l'amplificateur décrit, un fonctionnement correct impose que VH soit au moins égal à 5VD (en fait il faut que VH soit sensiblement supérieur à cette valeur). On a alors :
Figure imgb0015

Le rapport
Figure imgb0016

Permet donc de déterminer le seuil VccO de Vcc à partir duquel le circuit de commutation est fermé. Si on omet la résistance R₂, les points H et S' sont confondus, et
Figure imgb0017

et la résistance R₁ n'intervient plus dans la détermination du seuil.
Il faut alors :
Figure imgb0018

   Suivant la figure 4, la base du transistor T₃ est connectée au point milieu H' d'un pont diviseur R'₁ et R'₂ disposé entre la source de tension Vcc et le pôle de mode commun. La base du transistor T₁ est reliée à la source de tension Vcc à travers la résistance R₁. L'émetteur du transistor T₃ est connecté au point C, celui du transistor T₁ est relié au point A à travers la résistance R₃, et celui du transistor T₂ est connecté au point B. Le reste du circuit est comme à la figure 3.
On a
Figure imgb0019

La condition de seuil est alors :
V H' > 5V D
Figure imgb0020
Figure imgb0021

Le rapport
Figure imgb0022

détermine le seuil Vcco de Vcc à partir duquel le circuit de commutation est fermé.Consider V + i
Figure imgb0013
≃ V REF, that is to say that for the calculation, it is considered that the voltage threshold corresponds practically to the correct operating threshold of the voltage generator.
He comes :
Figure imgb0014

For the amplifier described, correct operation requires that V H is at least equal to 5V D (in fact it is necessary that V H is significantly greater than this value). We then have:
Figure imgb0015

The report
Figure imgb0016

It therefore makes it possible to determine the threshold V ccO of V cc from which the switching circuit is closed. If the resistance R₂ is omitted, the points H and S 'are merged, and
Figure imgb0017

and the resistance R₁ is no longer involved in determining the threshold.
It is then necessary:
Figure imgb0018

According to Figure 4, the base of transistor T₃ is connected to the midpoint H 'of a divider bridge R'₁ and R'₂ disposed between the voltage source V cc and the common mode pole. The base of the transistor T₁ is connected to the voltage source V cc through the resistor R₁. The emitter of transistor T₃ is connected to point C, that of transistor T₁ is connected to point A through resistor R₃, and that of transistor T₂ is connected to point B. The rest of the circuit is as in Figure 3.
We have
Figure imgb0019

The threshold condition is then:
V H ' > 5V D
Figure imgb0020
Figure imgb0021

The report
Figure imgb0022

determines the threshold V cco of V cc from which the switching circuit is closed.

Suivant la figure 5, les tensions V + i

Figure imgb0023
, V - i
Figure imgb0024
et V₀ croissent dès que Vcc atteint VD (0,7 V), la régulation étant obtenue à partir de 6 VD (environ 4,2 V).According to FIG. 5, the voltages V + i
Figure imgb0023
, V - i
Figure imgb0024
and V₀ increase as soon as V cc reaches V D (0.7 V), the regulation being obtained from 6 V D (approximately 4.2 V).

Claims (11)

  1. A circuit for supplying a reference voltage, comprising a voltage generator having a supply terminal and an output for supplying a voltage of given nominal value, a differential amplifier having a supply terminal for a first supply voltage source, a non-inverting input connected to the output of the voltage generator, an inverting input and an output, and a first output follower stage whose output, which supplies said reference voltage, provides feedback to the inverting input of the differential amplifier via a divider bridge, characterised in that the output of the differential amplifier (A) is coupled to the input of the first follower stage (T) via a controlled switching device (1), the first follower stage (T) having its input coupled to the supply terminal via a first resistor (R₁) and having its output, which supplies said reference voltage (Vo), coupled to the supply terminal of the voltage generator (REF), and in that it comprises a control circuit (C) for controlling the switching device (1), which control circuit is adapted to receive at least the supply voltage in such a manner that the switching device is closed when the supply voltage reaches a threshold for which both the voltage generator (REF) and the differential amplifier (A) are in a nominal operating range.
  2. A circuit as claimed in Claim 1, characterised in that the differential amplifier comprises a first branch, whose input constitutes said non-inverting input, and a second branch, whose input constitutes said inverting input, in that the control circuit is adapted to inhibit the flow of current in the second branch when the supply voltage is lower than said threshold, and in that the controlled switching circuit comprises a second follower stage, which is adapted to conduct only when current flows through the second branch.
  3. A circuit as claimed in Claim 2, characterised in that the first branch comprises an emitter-collector path of a first transistor (T₅) of a first type, whose base and collector are connected, respectively, to the emitter and the base of a second transistor (T₇) of the first type, whose collector is connected to a second supply voltage source, the collector of the first transistor (T₅) being connected to that of a third transistor (T₈) of the second type opposite to the first type, whose emitter is coupled to the second supply voltage source via a second resistor (R₈) and whose base constitutes the non-inverting input of the differential amplifier.
  4. A circuit as claimed in Claim 3, characterised in that the second branch comprises the emitter-collector path of a fourth transistor (T₆) of the first type, whose base is connected to that of the first transistor (T₅), the collector of the fourth transistor (T₆) being connected to that of a fifth transistor (T₉) of the second type, whose emitter is connected to that of the third transistor (T₈) and whose base constitutes the inverting input of the differential amplifier.
  5. A circuit as claimed in Claim 4, characterised in that the emitter of the fourth transistor (T₆) is connected to that of the first transistor (T₅).
  6. A circuit as claimed in Claim 5, characterised in that the control circuit comprises a sixth transistor (T₃) of the second type, whose collector is connected to the first supply voltage source, whose emitter is connected to the emitters of the first (T₅) and the fourth (T₆) transistor, and whose base is connected to that terminal of the first resistor (R₀) which is not coupled to the first supply voltage source (Vcc).
  7. A circuit as claimed in Claim 6, characterised in that the second follower stage comprises a seventh transistor (T₁₀), whose base is connected to the collector of the fifth transistor (T₉), whose collector is connected to the second supply voltage source and whose emitter is coupled to the input of the first follower stage.
  8. A circuit as claimed in Claim 7, characterised in that the emitter of the seventh transistor (T₁₀) is coupled to the input of the first follower stage via a diode poled in the forward direction.
  9. A circuit as claimed in Claim 7 or 8, characterised in that a second resistor (R₂) is disposed between the first resistor (R₁) and the input of the first follower stage.
  10. A circuit as claimed in any one of the Claims 7 to 9, characterised in that the first follower stage comprises an eighth transistor (T₁,T₂) having two emitters, whose base constitutes the input, whose collector is connected to the first supply voltage source, whose first emitter is connected to one end of the divider bridge and whose second emitter constitutes the output of the first follower stage.
  11. A circuit as claimed in any one of the Claims 7 to 10, characterised in that the divider bridge comprises a third (R₃) and a fourth (R₄) resistor.
EP90202235A 1989-08-22 1990-08-20 Circuit for supplying a reference voltage Expired - Lifetime EP0414319B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8911114 1989-08-22
FR8911114A FR2651343A1 (en) 1989-08-22 1989-08-22 CIRCUIT FOR PROVIDING REFERENCE VOLTAGE.

Publications (2)

Publication Number Publication Date
EP0414319A1 EP0414319A1 (en) 1991-02-27
EP0414319B1 true EP0414319B1 (en) 1994-08-03

Family

ID=9384840

Family Applications (1)

Application Number Title Priority Date Filing Date
EP90202235A Expired - Lifetime EP0414319B1 (en) 1989-08-22 1990-08-20 Circuit for supplying a reference voltage

Country Status (6)

Country Link
US (1) US5079497A (en)
EP (1) EP0414319B1 (en)
JP (1) JP2790364B2 (en)
KR (1) KR0154335B1 (en)
DE (1) DE69011239T2 (en)
FR (1) FR2651343A1 (en)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2727809B2 (en) * 1991-08-26 1998-03-18 日本電気株式会社 Semiconductor integrated circuit
JP3337079B2 (en) * 1991-11-26 2002-10-21 ローム株式会社 Power circuit
JP2901434B2 (en) * 1992-09-30 1999-06-07 シャープ株式会社 DC stabilized power supply
WO1994012921A1 (en) * 1992-12-03 1994-06-09 Motorola, Inc. Digital voltage regulator having capacitance selector
US5604466A (en) * 1992-12-08 1997-02-18 International Business Machines Corporation On-chip voltage controlled oscillator
US5486778A (en) * 1993-03-10 1996-01-23 Brooktree Corporation Input buffer for translating TTL levels to CMOS levels
FR2709005B1 (en) * 1993-08-13 1995-11-10 Motorola Semiconducteurs Circuit intended for use with a return arrangement.
US5583442A (en) * 1994-02-03 1996-12-10 Harris Corporation Differential voltage monitor using a bridge circuit with resistors on and off of an integrated circuit
JPH09128080A (en) * 1995-08-30 1997-05-16 Sgs Thomson Microelectron Inc Voltage regulator circuit
FR2750240B1 (en) * 1996-06-20 1998-07-31 Sgs Thomson Microelectronics VOLTAGE REFERENCE GENERATOR
JP3322145B2 (en) * 1996-12-26 2002-09-09 株式会社村田製作所 Current control circuit
KR100735440B1 (en) * 1998-02-13 2007-10-24 로무 가부시키가이샤 Semiconductor device and magnetic disk device
KR100533389B1 (en) * 1998-09-28 2006-02-08 매그나칩 반도체 유한회사 Clock Synchronous Reference Voltage Generator
JP4225630B2 (en) * 1999-05-27 2009-02-18 株式会社ルネサステクノロジ Voltage generation circuit
US6175223B1 (en) * 1999-09-04 2001-01-16 Texas Instruments Incorporated Controlled linear start-up in a linear regulator
US6353310B1 (en) * 2000-03-09 2002-03-05 Tongt-Huei Wang DC/DC charge and supply converting module
US6528975B2 (en) * 2000-12-15 2003-03-04 Tropian Inc. Saturation prevention and amplifier distortion reduction
US7439718B2 (en) * 2004-09-30 2008-10-21 Freescale Semiconductor, Inc. Apparatus and method for high speed voltage regulation
US7723112B2 (en) * 2005-10-31 2010-05-25 The Regents Of The University Of Michigan Compositions and methods for treating and diagnosing cancer
US8331882B1 (en) 2007-06-22 2012-12-11 Panasonic Corporation VSWR normalizing envelope modulator
US7554395B1 (en) 2007-06-28 2009-06-30 Panasonic Corporation Automatic low battery compensation scaling across multiple power amplifier stages
US7702300B1 (en) 2007-07-12 2010-04-20 Panasonic Corporation Envelope modulator saturation detection using a DC-DC converter
JP6772355B1 (en) * 2019-10-15 2020-10-21 株式会社京三製作所 Switching module
US11522572B1 (en) * 2021-05-18 2022-12-06 Qualcomm Incorporated Audio non-linearity cancellation for switches for audio and other applications

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3743923A (en) * 1971-12-02 1973-07-03 Rca Corp Reference voltage generator and regulator
JPS5543643A (en) * 1978-09-21 1980-03-27 Toshiba Corp Constant voltage circuit
US4270092A (en) * 1979-05-18 1981-05-26 International Business Machines Corporation Current controlling circuitry for logical circuit reference electric level circuitry
US4368420A (en) * 1981-04-14 1983-01-11 Fairchild Camera And Instrument Corp. Supply voltage sense amplifier
US4400661A (en) * 1981-10-02 1983-08-23 Ncr Corporation Voltage regulation and battery dissipation limiter circuit
JPS5999510A (en) * 1982-11-30 1984-06-08 Fujitsu Ltd Constant voltage circuit
EP0216792A1 (en) * 1985-03-13 1987-04-08 Analog Devices, Inc. Voltage/current source
DE3540209A1 (en) * 1985-11-13 1987-05-14 Ako Werke Gmbh & Co STABILIZING CIRCUIT FOR A MICROCOMPUTER

Also Published As

Publication number Publication date
JP2790364B2 (en) 1998-08-27
EP0414319A1 (en) 1991-02-27
JPH03103908A (en) 1991-04-30
DE69011239D1 (en) 1994-09-08
KR0154335B1 (en) 1998-12-15
DE69011239T2 (en) 1995-02-23
US5079497A (en) 1992-01-07
FR2651343A1 (en) 1991-03-01
KR910005125A (en) 1991-03-30

Similar Documents

Publication Publication Date Title
EP0414319B1 (en) Circuit for supplying a reference voltage
EP0816964B1 (en) Voltage regulating device with low internal power dissipation
EP0766436A1 (en) Circuit for a telephone set comprising a light emitting diode power supply
FR2676149A1 (en) DIFFERENTIAL AMPLIFIER, PARTICULARLY OF THE CASCODE TYPE.
EP0587509B1 (en) Voltage-current converter circuit
EP0700151A1 (en) Power amplifier stage of the follower type
EP1294095A2 (en) Current limiting logic interface circuit
EP0554196B1 (en) Telephone line current modulator
EP0843412B1 (en) A proximity detector with a stable current source
EP0533230B1 (en) Differential amplifier and mixer oscillator incorporating the same
EP0655176B1 (en) Amplifier stage with low thermal distortion
FR2744299A1 (en) DC=DC converter with low supply voltage and higher output voltage
FR2677781A1 (en) CURRENT SOURCE SUITABLE FOR QUICK VARIATIONS IN OUTPUT VOLTAGE.
FR2577083A1 (en) OPERATIONAL AMPLIFIER
EP0355922B1 (en) Input circuit with accelerated switching
FR2764714A1 (en) ANALOG TO DIGITAL CONVERTER
FR2479602A1 (en) CIRCUIT FOR CONTROLLING THE REST CURRENT OF A CLASS AB AMPLIFIER STAGE
FR2752961A1 (en) VOLTAGE CONTROLLER WITH SENSITIVITY TO ATTENUATED TEMPERATURE VARIATIONS
EP0353808B1 (en) Current compensating circuit
EP0292070B1 (en) Current mirror with a high output voltage
FR2688361A1 (en) PUSH-PULL OUTPUT STAGE FOR INTEGRATED CIRCUIT AMPLIFIER.
EP0890957A1 (en) Sample and hold circuit
FR2565292A1 (en) DEVICE FOR CONTROLLING AND ADJUSTING CURRENT THROUGH AN ELECTROMAGNETIC RECEIVER IN CONNECTION WITH AN INTERNAL COMBUSTION ENGINE
FR2632063A1 (en) DEVICE FOR MEASURING THE FLOW MASS OF GAS
FR2669790A1 (en) Integrated circuit having a switchable current generator

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT

17P Request for examination filed

Effective date: 19910808

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: N.V. PHILIPS' GLOEILAMPENFABRIEKEN

Owner name: PHILIPS COMPOSANTS

17Q First examination report despatched

Effective date: 19931011

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

REF Corresponds to:

Ref document number: 69011239

Country of ref document: DE

Date of ref document: 19940908

ITF It: translation for a ep patent filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19941026

ITPR It: changes in ownership of a european patent

Owner name: CAMBIO RAGIONE SOCIALE;PHILIPS ELECTRONICS N.V.

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20010824

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20010831

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20011015

Year of fee payment: 12

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020820

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030301

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20020820

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030430

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050820