EP0291493B1 - Process for electrolytic pickling of chrome containing stainless steel - Google Patents

Process for electrolytic pickling of chrome containing stainless steel Download PDF

Info

Publication number
EP0291493B1
EP0291493B1 EP88890097A EP88890097A EP0291493B1 EP 0291493 B1 EP0291493 B1 EP 0291493B1 EP 88890097 A EP88890097 A EP 88890097A EP 88890097 A EP88890097 A EP 88890097A EP 0291493 B1 EP0291493 B1 EP 0291493B1
Authority
EP
European Patent Office
Prior art keywords
solution
na2so4
redox potential
acid
pickling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP88890097A
Other languages
German (de)
French (fr)
Other versions
EP0291493A1 (en
Inventor
Gerald Dipl.-Ing. Dr. Techn. Maresch
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Andritz AG
Original Assignee
Andritz AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Andritz AG filed Critical Andritz AG
Publication of EP0291493A1 publication Critical patent/EP0291493A1/en
Application granted granted Critical
Publication of EP0291493B1 publication Critical patent/EP0291493B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25FPROCESSES FOR THE ELECTROLYTIC REMOVAL OF MATERIALS FROM OBJECTS; APPARATUS THEREFOR
    • C25F1/00Electrolytic cleaning, degreasing, pickling or descaling
    • C25F1/02Pickling; Descaling
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25FPROCESSES FOR THE ELECTROLYTIC REMOVAL OF MATERIALS FROM OBJECTS; APPARATUS THEREFOR
    • C25F1/00Electrolytic cleaning, degreasing, pickling or descaling
    • C25F1/02Pickling; Descaling
    • C25F1/04Pickling; Descaling in solution
    • C25F1/06Iron or steel

Definitions

  • the invention relates to a process for the electrolytic pickling of chromium-containing stainless steel, in which firstly in an aqueous Na2SO4 solution and then in acid, preferably mixed acid, optionally pickled without current.
  • acid preferably mixed acid
  • Such a method is described in AT-PS 252.685, hydrofluoric acid plus nitric acid being used as the mixed acid.
  • the scale is removed, while in the second step the chrome-depleted layer underneath the scale, which is formed during the annealing process, is detached.
  • This method has established itself worldwide, for example for pickling stainless steel strips, but has the disadvantage that the Cr in the scale through the current to the CrO 2- 4th is oxidized, while Fe dissolved as Fe (OH) 3 precipitates immediately.
  • the CrO formed 2- 4th remains in solution and is only dragged out when desludging or with the stainless steel belt and only then detoxified by reducing agents. For this, reduction with an aqueous FeSO4 solution in the pH range of 0-2 or 7-8 has mainly prevailed. In both cases, neutralization must then be carried out again in order to precipitate all metal ions in the solution as hydroxides. In addition, if there is a very large, sudden attack of CrO 2- 4th solutions always contain the risk of a breakthrough of CrO 2- 4th given, which then came into the sewage. Another disadvantage of the process is that only a fraction of the CrO 2- 4th is removed from the aqueous solution of Na2SO4, but the rest increases the concentration in the solution and leads to increased attack on plastic pipes and pumps.
  • the object of the invention is to provide a method of type mentioned, which avoids the disadvantages mentioned.
  • aqueous Na2SO4 solution acid and reducing agent are added according to the pH and redox potential, so that a CrO 2- 4th -free pickling solution is achieved.
  • the pH of the solution is less than 3, preferably 1.5 to 2.5, advantageously 2, by adding H2SO4.
  • the oxidation of these substances also forms Na2SO4, which again serves as the conductive salt in the Na2SO4 solution and by suitable choice of the pH of this solution it is possible to let the dissolved Fe3+ precipitate as Fe (OH) 3 after the solubility has been exceeded , whereby the solution does not have to be completely discarded at a certain Fe concentration, but only has to be freed from the Fe (OH) 3 sludge.
  • the concentration of Na2SO4 in the solution is 10 to 250g / l, preferably 170 to 200g / l.
  • the pH for these reactions is chosen to be less than 3, preferably 1.5 to 2.5, advantageously 2.
  • the reaction rate in the solution is sufficiently high and the redox potential measured against a calomel electrode in the CrO 2- 4th containing solution 50 to 100mV larger than in the CrO 2- 4th -free solution.
  • the redox potential measured against a calomel electrode in the CrO 2- 4th containing solution 50 to 100mV larger than in the CrO 2- 4th -free solution.
  • other, analyt in addition to the redox potential, other, analyt.
  • the addition of reducing agent was stopped until the redox potential again 620 mV had risen. After about another 4 hours the analyte was. certain Cr6+ concentration o, 11 g Cr6+ / l.
  • solid Na2S2O5 in an amount of 0.9 g Na2S2O5 (62%) per liter, the redox potential could be set to 520 mV again, measured against a calomel electrode, and no Cr6+ could be detected analytically.
  • the pH of the solution dropped from 2.0 to 1.9.
  • the stainless steel strip was free of scale and silvery after treatment with acid or mixed acid.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Cleaning And De-Greasing Of Metallic Materials By Chemical Methods (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Treatment Of Sludge (AREA)

Description

Die Erfindung betrifft ein Verfahren zum elektrolytischen Beizen von chromhältigem Edelstahl, bei dem zuerst in einer wässrigen Na₂SO₄-Lösung und anschließend in Saure, vorzugsweise Mischsäure, gegebenenfalls stromlos gebeizt wird. Ein derartiges Verfahren wird in der AT-PS 252.685 beschrieben, wobei als Mischsäure Flußsäure plus Salpetersäure dient. Im ersten Schritt wird der Zunder entfernt, während im zweiten Schritt die Ablösung der unter dem Zunder gelegenen chromverarmten Schicht erfolgt, die beim Glühvorgang entsteht. Dieses Verfahren hat sich weltweit z.B. zum Beizen von Edelstahlbändern durchgesetzt, hat jedoch den Nachteil, daß das Cr im Zunder durch den Strom bis zum CrO 2- 4 

Figure imgb0001
oxidiert wird, während Fe gelöst sofort als Fe(OH)₃ ausfällt. Das gebildete CrO 2- 4 
Figure imgb0002
bleibt dabei in Lösung und wird nur beim Entschlammen bzw. mit dem Edelstahlband ausgeschleppt und erst dann durch Reduktionsmittel entgiftet. Dafür hat sich hauptsächlich die Reduktion mit einer wässrigen FeSO₄-Lösung im pH-Bereich von 0-2 bzw. 7-8 durchgesetzt. In beiden Fällen muß anschließend nochmals neutralisiert werden, um alle Metallionen in der Lösung als Hydroxide zu fällen. Außerdem ist bei sehr großem, plötzlichem Anfall von CrO 2- 4 
Figure imgb0003
-hältigen Lösungen immer die Gefahr eines Durchbruches von CrO 2- 4 
Figure imgb0004
gegeben, das dann in das Abwasser gelangen kam. Ein weiterer Nachteil des Verfahrens ist, daß nur ein Bruchteil des gebildeten CrO 2- 4 
Figure imgb0005
aus der wässrigen Lösung von Na₂SO₄ entfernt wird, der Rest jedoch die Konzentration in der Lösung erhöht und zu verstärktem Angriff auf Kunststoffrohrleitungen und Pumpen führt.The invention relates to a process for the electrolytic pickling of chromium-containing stainless steel, in which firstly in an aqueous Na₂SO₄ solution and then in acid, preferably mixed acid, optionally pickled without current. Such a method is described in AT-PS 252.685, hydrofluoric acid plus nitric acid being used as the mixed acid. In the first step, the scale is removed, while in the second step the chrome-depleted layer underneath the scale, which is formed during the annealing process, is detached. This method has established itself worldwide, for example for pickling stainless steel strips, but has the disadvantage that the Cr in the scale through the current to the CrO 2- 4th
Figure imgb0001
is oxidized, while Fe dissolved as Fe (OH) ₃ precipitates immediately. The CrO formed 2- 4th
Figure imgb0002
remains in solution and is only dragged out when desludging or with the stainless steel belt and only then detoxified by reducing agents. For this, reduction with an aqueous FeSO₄ solution in the pH range of 0-2 or 7-8 has mainly prevailed. In both cases, neutralization must then be carried out again in order to precipitate all metal ions in the solution as hydroxides. In addition, if there is a very large, sudden attack of CrO 2- 4th
Figure imgb0003
solutions always contain the risk of a breakthrough of CrO 2- 4th
Figure imgb0004
given, which then came into the sewage. Another disadvantage of the process is that only a fraction of the CrO 2- 4th
Figure imgb0005
is removed from the aqueous solution of Na₂SO₄, but the rest increases the concentration in the solution and leads to increased attack on plastic pipes and pumps.

In der Literaturstelle "Chemical Abstracts", Vol. 87, No. 14, 3.Oktober 1977, Seite 396, Abstract No 108322s, wird zwar die Bildung von CrO₄'' bzw. Cr₂O₇'' beschrieben, es wird aber keine Lösung dieses Problems gegeben.In the reference "Chemical Abstracts", Vol. 87, No. 14, October 3, 1977, page 396, Abstract No 108322s, the formation of CrO₄ '' or Cr₂O₇ '' is described, but there is no solution to this problem.

Aufgabe der Erfindung ist die Schaffung eines Verfahrens der eingangs genannten Art, welches die genannten Nachteile vermeidet.The object of the invention is to provide a method of type mentioned, which avoids the disadvantages mentioned.

Diese Aufgabe wird erfindungsgemäß dadurch gelöst, daß der wässrigen Na₂SO₄-Lösung entsprechend dem pH-Wert und Redoxpotential Säure und Reduktionsmittel zugegeben werden, sodaß eine CrO 2- 4 

Figure imgb0006
-freie Beizlösung erzielt wird. In Ausgestaltung der Erfindung ist vorgesehen, daß der pH-Wert der Lösung kleiner als 3, vorzugsweise 1,5 bis 2,5, zweckmäßig 2, durch Zugabe von H₂SO₄ eingestellt wird. In weiterer Ausgestaltung der Erfindung ist vorgesehen, daß das Redoxpotential der Lösung gemessen gegen eine Kalomelelektrode durch Zugabe von Säure und Reduktionsmittel um 50 bis 100mV verringert wird, wobei als Reduktionsmittel eine Substanz aus der Gruppe Nax Hy Sz Ov verwendet wird, wobei x = 0 bis 2, y = 0 bis 2, z = 1 bis 6 und v = 2 bis 6 gilt, und daß bei der Reaktion auch Na₂SO₄ gebildet wird.This object is achieved in that the aqueous Na₂SO₄ solution acid and reducing agent are added according to the pH and redox potential, so that a CrO 2- 4th
Figure imgb0006
-free pickling solution is achieved. In an embodiment of the invention it is provided that the pH of the solution is less than 3, preferably 1.5 to 2.5, advantageously 2, by adding H₂SO₄. In a further embodiment of the invention it is provided that the redox potential of the solution, measured against a calomel electrode, is reduced by 50 to 100 mV by adding acid and reducing agent, a substance from the group Na x H y S z O v being used as the reducing agent, wherein x = 0 to 2, y = 0 to 2, z = 1 to 6 and v = 2 to 6, and that Na₂SO₄ is also formed in the reaction.

Für den Ablauf der Reduktion können folgende Reaktionsmechanismen formuliert werden:

  • Reaktion 1:
    3 Na₂SO₃ + 3H₂SO₄ + 2 H₂CrO₄ → Cr₂(SO₄)₃ + 3 Na₂SO₄ + 5 H₂O
  • Reaktion 2:
    6 Na₂S₂O₃+ 6H₂SO₄+2H₂CrO₄ → Cr₂(SO₄)₃+3Na₂SO₄ +3Na₂S₄O₆ + 8H₂O
  • Reaktion 3:
    3Na₂S₂O₄+3H₂SO₄+2H₂CrO₄ → Cr₂(SO₄)₃+3Na₂S₂O₅ +5H₂O
    3Na₂S₂O₅ + 3H₂O ⇄ 6 NaHSO₃
    6 NaHSO₃ + 2H₂CrO₄ → Cr₂(SO₃)₃ + 3Na₂SO₄ +5H₂O
    3 Na₂S₂O₄ +3H₂SO₄ + 4H₂CrO₄ → Cr₂(SO₄)₃+Cr₂ (SO₃)₃ +3Na₂SO₄+ 7 H₂O
  • Reaktion 4:
    3 Na₂S₂O₅+2H₂CrO₄ → Cr₂(SO₃)₃+3Na₂SO₄ +2H₂O
  • Reaktion 5:
    3Na₂S₂O₆+ 3H₂O ⇆ 3NaHSO₃ +3NaHSO₄
    3Na₂S₂O₆+ 2H₂CrO₄ → Cr₂(SO₄)₃ +3Na₂SO₄+2H₂O
Zusätzlich dazu wird auch das gelöste Fe₂(SO₄)₃ durch das Reduktionsmittel reduziert werden, wozu folgendes Beispiel dient:
   Fe₂(SO₄)₃ +Na₂SO₃+H₂O → 2FeSO₄+2NaHSO₄
und das gebildete FeSO₄ weiter mit H₂CrO₄ nach folgender Reaktionsgleichung reagieren:
   2H₂CrO₄+ 6 FeSO₄ + 6H₂SO₄ → Cr₂(SO₄)₃ +3Fe₂(SO₄)₃ + 8H₂O,
womit aber in Summe wieder die Reaktion 1 beschrieben ist.The following reaction mechanisms can be formulated for the reduction process:
  • Response 1:
    3 Na₂SO₃ + 3H₂SO₄ + 2 H₂CrO₄ → Cr₂ (SO₄) ₃ + 3 Na₂SO₄ + 5 H₂O
  • Response 2:
    6 Na₂S₂O₃ + 6H₂SO₄ + 2H₂CrO₄ → Cr₂ (SO₄) ₃ + 3Na₂SO₄ + 3Na₂S₄O₆ + 8H₂O
  • Response 3:
    3Na₂S₂O₄ + 3H₂SO₄ + 2H₂CrO₄ → Cr₂ (SO₄) ₃ + 3Na₂S₂O₅ + 5H₂O
    3Na₂S₂O₅ + 3H₂O ⇄ 6 NaHSO₃
    6 NaHSO₃ + 2H₂CrO₄ → Cr₂ (SO₃) ₃ + 3Na₂SO₄ + 5H₂O
    3 Na₂S₂O₄ + 3H₂SO₄ + 4H₂CrO₄ → Cr₂ (SO₄) ₃ + Cr₂ (SO₃) ₃ + 3Na₂SO₄ + 7 H₂O
  • Response 4:
    3 Na₂S₂O₅ + 2H₂CrO₄ → Cr₂ (SO₃) ₃ + 3Na₂SO₄ + 2H₂O
  • Response 5:
    3Na₂S₂O₆ + 3H₂O ⇆ 3NaHSO₃ + 3NaHSO₄
    3Na₂S₂O₆ + 2H₂CrO₄ → Cr₂ (SO₄) ₃ + 3Na₂SO₄ + 2H₂O
In addition, the dissolved Fe₂ (SO₄) ₃ will be reduced by the reducing agent, which is shown in the following example:
Fe₂ (SO₄) ₃ + Na₂SO₃ + H₂O → 2FeSO₄ + 2NaHSO₄
and the FeSO₄ formed further react with H₂CrO₄ according to the following reaction equation:
2H₂CrO₄ + 6 FeSO₄ + 6H₂SO₄ → Cr₂ (SO₄) ₃ + 3Fe₂ (SO₄) ₃ + 8H₂O,
which describes Reaction 1 in total.

Durch die Oxidation dieser Substanzen wird auch Na₂SO₄ gebildet, das wieder als Leitsalz in der Na₂SO₄-Lösung dient und durch geeignete Wahl des pH-Werts dieser Lösung gelingt es, das gelöste Fe³⁺ nach Überschreiten der Löslichkeit als Fe(OH)₃ ausfallen zu lassen, wodurch die Lösung bei einer bestimmten Fe-Konzentration nicht vollständig verworfen, sondern nur vom Fe(OH)₃ Schlamm befreit werden muß. Die Konzentration an Na₂SO₄ in der Lösung beträgt 10 bis 250g/l, vorzugsweise 170 bis 200g/l.The oxidation of these substances also forms Na₂SO₄, which again serves as the conductive salt in the Na₂SO₄ solution and by suitable choice of the pH of this solution it is possible to let the dissolved Fe³⁺ precipitate as Fe (OH) ₃ after the solubility has been exceeded , whereby the solution does not have to be completely discarded at a certain Fe concentration, but only has to be freed from the Fe (OH) ₃ sludge. The concentration of Na₂SO₄ in the solution is 10 to 250g / l, preferably 170 to 200g / l.

Der pH-Wert für diese Reaktionen wird erfindungsgemäß kleiner als 3, vorzugsweise 1,5 bis 2,5, zweckmäßig 2, gewählt. Bei diesem pH-Wert ist die Reaktionsgeschwindigkeit in der Lösung hinreichend groß und das Redoxpotential gemessen gegen eine Kalomelelektrode in der CrO 2- 4 

Figure imgb0007
hältigen Lösung um 50 bis 100mV größer als in der CrO 2- 4 
Figure imgb0008
-freien Lösung. Selbstverständlich können neben dem Redoxpotential auch andere, analyt. Methoden zur Bestimmung des CrO 2- 4 
Figure imgb0009
-Gehaltes der Lösung herangezogen werden, doch hat sich diese Methode als einfachste und kostengünstigste herausgestellt.According to the invention, the pH for these reactions is chosen to be less than 3, preferably 1.5 to 2.5, advantageously 2. At this pH the reaction rate in the solution is sufficiently high and the redox potential measured against a calomel electrode in the CrO 2- 4th
Figure imgb0007
containing solution 50 to 100mV larger than in the CrO 2- 4th
Figure imgb0008
-free solution. Of course, in addition to the redox potential, other, analyt. Methods for determining the CrO 2- 4th
Figure imgb0009
Content of the solution can be used, but this method has proven to be the simplest and cheapest.

Beispiel 1:Example 1:

In einer elektrolytischen Beizanlage mit einer wässrigen Lösung von Na₂SO₄ wurde ein Edelstahlband 1000 x 6,0mm mit einer Bandgeschwindigkeit von 8.4 m/min gebeizt und anschließend in einem Mischsäurebottich mit Salpeter-Flußsäure die unter der Zunderschicht gelegene chromverarmte Schicht entfernt. Bei einer frisch angesetzten wässrigen Na₂SO₄-Lösung betrug der Anstieg der Cr⁶⁺ Konzentration 0,2 g Cr⁶⁺/l während einer Zeitdauer von acht Stunden.
Nach Einstellen des pH-Wertes auf 2,0 durch Zugabe von H₂SO₄ 96%-ig wurde durch weitere Zugabe von 8,8 ml 10%iger Na₂SO₃ Lösung sowie 3,7 ml 96%iger H₂SO₄ pro Liter der wässrigen Lösung das gesamte Cr⁶⁺ reduziert, wobei sich das Redoxpotential der Lösung von vorher 620 mV auf 530 mV, gemessen gegen eine Kalomelelektrode, änderte.
In an electrolytic pickling line with an aqueous solution of Na₂SO₄, a stainless steel belt 1000 x 6.0 mm was pickled at a belt speed of 8.4 m / min and then the chromium-depleted layer located underneath the scale layer was removed in a mixed acid tub with nitric acid. With a freshly prepared aqueous Na₂SO₄ solution, the increase in Cr⁶⁺ concentration was 0.2 g Cr⁶⁺ / l over a period of eight hours.
After adjusting the pH to 2.0 by adding H₂SO₄ 96%, the entire Cr⁶⁺ was by further addition of 8.8 ml of 10% Na₂SO₃ solution and 3.7 ml of 96% H₂SO₄ per liter of the aqueous solution reduced, the redox potential of the solution changing from previously 620 mV to 530 mV, measured against a calomel electrode.

Während der nächsten acht Stunden wurde durch weitere, konstante Zugabe von Na₂SO₃-Lösung sowie Schwefelsäure dieses Redoxpotential konstant gehalten. Gegen Ende der acht Stunden konnte analytisch kein Cr⁶⁺ in der wässrigen Lösung nachgewiesen werden.During the next eight hours, this redox potential was kept constant by further, constant addition of Na₂SO₃ solution and sulfuric acid. At the end of the eight hours, no Cr⁶⁺ could be detected analytically in the aqueous solution.

Beispiel 2:Example 2:

Anschließend an das Beispiel 1 wurde die Zugabe von Reduktionsmittel gestoppt, bis das Redoxpotential wieder auf 620 mV angestiegen war.Nach etwa weiteren 4 Stunden betrug die analyt. bestimmte Cr⁶⁺ Konzentration o,11 g Cr⁶⁺/l. Durch Zugabe von festem Na₂S₂O₅ in einer Menge von 0,9 g Na₂S₂O₅ (62%ig) pro Liter konnte das Redoxpotential wieder auf 520 mV, gemessen gegen eine Kalomelelektrode, eingestellt und analytisch kein Cr⁶⁺ mehr nachgewiesen werden. Während der Zugabe des Na₂S₂O₅ sank der pH-Wert der Lösung von 2,0 auf 1,9 ab.Following the example 1, the addition of reducing agent was stopped until the redox potential again 620 mV had risen. After about another 4 hours the analyte was. certain Cr⁶⁺ concentration o, 11 g Cr⁶⁺ / l. By adding solid Na₂S₂O₅ in an amount of 0.9 g Na₂S₂O₅ (62%) per liter, the redox potential could be set to 520 mV again, measured against a calomel electrode, and no Cr⁶⁺ could be detected analytically. During the addition of Na₂S₂O₅, the pH of the solution dropped from 2.0 to 1.9.

Beispiel 3:Example 3:

Nach der Zugabe gemäß Beispiel 2 wurde in der wässrigen Lösung erneut der Zusatz eines Reduktionsmittels unterbrochen, bis wieder eine Cr⁶ ⁺Konzentration von 0,16 g Cr⁶⁺/l erreicht war. Durch Zugabe von 3,9 ml 10%iger Na₂S₂O₄-Lösung sowie 1,3 ml 96%iger H₂SO₄ pro Liter Lösung wurde das Redoxpotential wieder auf 515 mV eingestellt und es konnte analytisch kein Cr⁶⁺ mehr nachgewiesen werden.After the addition according to Example 2, the addition of a reducing agent was interrupted again in the aqueous solution until a Cr⁶ ⁺ concentration of 0.16 g Cr⁶⁺ / l was reached again. By adding 3.9 ml of 10% Na₂S₂O₄ solution and 1.3 ml of 96% H₂SO₄ per liter of solution, the redox potential was reset to 515 mV and no Cr⁶⁺ could be detected analytically.

Bei allen Beispielen war das Edelstahlband nach der Behandlung mit Säure bzw. Mischsäure zunderfrei und silbrig-glänzend.In all examples, the stainless steel strip was free of scale and silvery after treatment with acid or mixed acid.

Claims (3)

  1. A method for electrolytic pickling of chromium-containing high-grade steel, wherein pickling firstly takes place in an aqueous Na₂SO₄ solution, and subsequently in acid, preferably mixed acid, optionally in a currentless manner, characterised in that the pH value of the aqueous Na₂SO₄ solution is adjusted by the addition of H₂SO₄ so as to be less than 3, preferably between 1.5 and 2.5, advisably 2, the redox potential of the solution is measured against a calomel electrode, and acid and reducing agents are added, the hexavalent chromium thus being reduced, until the redox potential is reduced to 50 to 100 mV, and the redox potential is maintained at the value reached, so that a pickling solution is obtained which is free of CrO₄²⁻.
  2. A method in accordance with claim 1, characterised in that a substance from the group Nax Hy Sz Ov is used as a reducing agent, wherein x = 0 to 2, y = 0 to 2, z = 1 to 6 and v = 2 to 6, and Na₂SO₄ is also formed during the reaction.
  3. A method in accordance with claim 1, characterised in that the Na₂SO₄ concentration in the solution is adjusted so as to be from 100 to 250 g/l, preferably 170 to 200 g/l.
EP88890097A 1987-05-07 1988-04-20 Process for electrolytic pickling of chrome containing stainless steel Expired - Lifetime EP0291493B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
AT0114787A AT387406B (en) 1987-05-07 1987-05-07 METHOD FOR ELECTROLYTICALLY STICKING CHROME-CONTAINING STAINLESS STEEL
AT1147/87 1987-05-07

Publications (2)

Publication Number Publication Date
EP0291493A1 EP0291493A1 (en) 1988-11-17
EP0291493B1 true EP0291493B1 (en) 1994-08-17

Family

ID=3507621

Family Applications (1)

Application Number Title Priority Date Filing Date
EP88890097A Expired - Lifetime EP0291493B1 (en) 1987-05-07 1988-04-20 Process for electrolytic pickling of chrome containing stainless steel

Country Status (8)

Country Link
US (1) US4851092A (en)
EP (1) EP0291493B1 (en)
JP (1) JP2649380B2 (en)
KR (1) KR960001599B1 (en)
AT (1) AT387406B (en)
DE (1) DE3851086D1 (en)
ES (1) ES2058340T3 (en)
FI (1) FI86649C (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT391486B (en) * 1988-09-14 1990-10-10 Andritz Ag Maschf METHOD FOR ELECTROLYTICALLY STICKING STAINLESS STEEL STRIP
KR920003063B1 (en) * 1990-02-28 1992-04-13 재단법인 한국화학연구소 Novel-2(2-imidazolinc-2yl)-3-(amino oxoacetyl)-pyridine derivatives and its salt
AT395601B (en) * 1990-07-27 1993-02-25 Andritz Ag Maschf METHOD FOR STAINLESSING STAINLESS STEEL
JPH0762279B2 (en) * 1991-08-02 1995-07-05 日本冶金工業株式会社 Neutral salt electrolytic descaling method for stainless steel
TW401471B (en) * 1994-07-28 2000-08-11 Hitachi Ltd Treatment of neutral salt electrolyte, and treating device therefor, descaling of stanless steel and device therefor
AT401183B (en) * 1995-02-15 1996-07-25 Andritz Patentverwaltung METHOD FOR REGENERATING ELECTROLYTES, ESPECIALLY NA2SO4 FROM STAINLESS STEEL, IN PARTICULAR STAINLESS STEEL TAPES
AT404030B (en) * 1995-02-15 1998-07-27 Andritz Patentverwaltung METHOD OF STAINLESSING STEEL MATERIALS, ESPECIALLY STAINLESS STEEL
US5830291C1 (en) * 1996-04-19 2001-05-22 J & L Specialty Steel Inc Method for producing bright stainless steel
US6096183A (en) * 1997-12-05 2000-08-01 Ak Steel Corporation Method of reducing defects caused by conductor roll surface anomalies using high volume bottom sprays
AT406486B (en) * 1998-12-22 2000-05-25 Andritz Patentverwaltung METHOD FOR STAINLESSING STAINLESS STEEL
AT408451B (en) 1999-11-18 2001-12-27 Andritz Ag Maschf METHOD FOR PRODUCING STAINLESS STEEL TAPES WITH IMPROVED SURFACE PROPERTIES

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3025225A (en) * 1959-10-05 1962-03-13 Boeing Co Electrolytic acid descaling of metals
AT252685B (en) * 1964-12-22 1967-03-10 Ruthner Ind Planungs Ag Process for pickling high-alloy steels and special alloys
US3715308A (en) * 1971-06-04 1973-02-06 Oxy Metal Finishing Corp Apparatus and process for treating toxic waste materials
JPS495866A (en) * 1972-02-08 1974-01-19
JPS5047827A (en) * 1973-08-31 1975-04-28
JPS5216863A (en) * 1975-07-28 1977-02-08 Onomichi Kumika Kogyo Kk Treating agent and method for wastewater containing hexa-chromium ions
JPS5256755A (en) * 1975-11-06 1977-05-10 Tokico Ltd Process for treating aqueous solution containing chromate ions which i ncludes insoluble heavy metal hydroxide
JPS5321078A (en) * 1976-08-11 1978-02-27 Hitachi Ltd Treating method for waste liquid for electrolytic processing
JPS5710200A (en) * 1980-06-20 1982-01-19 Matsushita Electric Ind Co Ltd Voice synthesizer
US4363709A (en) * 1981-02-27 1982-12-14 Allegheny Ludlum Steel Corporation High current density, acid-free electrolytic descaling process
JPS5956600A (en) * 1982-09-27 1984-04-02 Sumitomo Metal Ind Ltd Production of one side electroplated steel sheet
US4415415A (en) * 1982-11-24 1983-11-15 Allegheny Ludlum Steel Corporation Method of controlling oxide scale formation and descaling thereof from metal articles
JPS60122092A (en) * 1983-12-05 1985-06-29 Suirei:Kk Device for treating waste water containing hexad chromium
JPS60234998A (en) * 1984-05-02 1985-11-21 Chem Yamamoto:Kk Method for decontamination and cleaning of metallic material surface

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
A.ARANEO -"CHIMICA ANALITICA QUALITATIVA" LIBRERIA ED., p.112 *

Also Published As

Publication number Publication date
FI882098A (en) 1988-11-08
FI882098A0 (en) 1988-05-05
JP2649380B2 (en) 1997-09-03
EP0291493A1 (en) 1988-11-17
KR880014141A (en) 1988-12-23
ES2058340T3 (en) 1994-11-01
ATA114787A (en) 1988-06-15
FI86649C (en) 1992-09-25
AT387406B (en) 1989-01-25
US4851092A (en) 1989-07-25
KR960001599B1 (en) 1996-02-02
FI86649B (en) 1992-06-15
JPS63286600A (en) 1988-11-24
DE3851086D1 (en) 1994-09-22

Similar Documents

Publication Publication Date Title
EP0291493B1 (en) Process for electrolytic pickling of chrome containing stainless steel
DE69114265T2 (en) Process for pickling and passivating stainless steel without using nitric acid.
DE68912517T2 (en) Process for descaling stainless steel and device therefor.
EP1013800B1 (en) Process for pickling stainless steel
DE2827697A1 (en) METHOD FOR STAINLESSING STAINLESS STEEL
DE60102387T2 (en) METHOD FOR CONTINUOUS ELECTROLYTICIZING OF METALS USING AC-SUSTAINED CELLS
DE1161740B (en) Process for pickling alloy steels
CH624995A5 (en)
US3304246A (en) Method of electrolytically descaling steel including selective recovery of dissolved scale products
DE69217726T2 (en) Process for the regeneration of cleaning agents for aluminum surfaces
DE4127980A1 (en) METHOD FOR THE AUTOMATICALLY CONTROLLABLE REDUCTION OF THE NITRITE CONTENT OF NITRITE-CONTAINING AQUEOUS SOLUTIONS TO VALUES LESS THAN 1 MG / L
DE2924601C2 (en) Process for cleaning and treating iron cathodes
DE2710459C2 (en) Process for electrolytic descaling of a metallic body and its application to alloy steel
DE69219072T2 (en) Process for the continuous pickling of steel material in a treatment line
DE60105653T2 (en) CONTINUOUS ELECTROLYTIC FURNING AND DECOMPOSITION OF UNLOCKED STEEL AND NON-STAINLESS STEEL
DE4435232C2 (en) Process for the regeneration of hydrofluoric acid pickling solutions
EP0359736B1 (en) Method of electrolytically pickling special steel
DE69804949T2 (en) METHOD FOR STAINING PRODUCTS CONTAINING METAL ALLOYS WITHOUT NITERIC ACID AND RECOVERING USED SOLUTIONS AND DEVICE THEREFOR
DE1496906B2 (en) Aqueous bath for the electrolysis of iron and steel
AT272039B (en) Process for anodic electrolytic descaling of materials made of iron and steel
EP1100982A1 (en) Stripper for special steel
AT213190B (en) Process for pickling alloy steels
DE19543468A1 (en) Waste water-free special steel pickling process
DE1269443B (en) Process for electrolytic degreasing, pickling and, if necessary, polishing of metals
DE1906304A1 (en) Etching of printed circuits with aqueous - copper (ii) chloride solutions

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): BE DE ES FR GB IT SE

17P Request for examination filed

Effective date: 19890414

17Q First examination report despatched

Effective date: 19901128

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE DE ES FR GB IT SE

REF Corresponds to:

Ref document number: 3851086

Country of ref document: DE

Date of ref document: 19940922

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19940901

ET Fr: translation filed
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2058340

Country of ref document: ES

Kind code of ref document: T3

ITF It: translation for a ep patent filed
EAL Se: european patent in force in sweden

Ref document number: 88890097.4

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20000313

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20000320

Year of fee payment: 13

Ref country code: DE

Payment date: 20000320

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20000327

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20000405

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20000418

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010420

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010421

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010421

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 20010430

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010430

BERE Be: lapsed

Owner name: MASCHINENFABRIK ANDRITZ A.G.

Effective date: 20010430

EUG Se: european patent has lapsed

Ref document number: 88890097.4

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20010420

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020201

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20030303

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050420