EP0290702B1 - Klimaanlage - Google Patents

Klimaanlage Download PDF

Info

Publication number
EP0290702B1
EP0290702B1 EP87420127A EP87420127A EP0290702B1 EP 0290702 B1 EP0290702 B1 EP 0290702B1 EP 87420127 A EP87420127 A EP 87420127A EP 87420127 A EP87420127 A EP 87420127A EP 0290702 B1 EP0290702 B1 EP 0290702B1
Authority
EP
European Patent Office
Prior art keywords
air
air conditioning
conditioning unit
unit
fan
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP87420127A
Other languages
English (en)
French (fr)
Other versions
EP0290702A1 (de
Inventor
Lawrence E. Wetzel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Clestra Hauserman SA
Original Assignee
Clestra Hauserman SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US06/841,674 priority Critical patent/US4667580A/en
Application filed by Clestra Hauserman SA filed Critical Clestra Hauserman SA
Priority to DE8787420127T priority patent/DE3774571D1/de
Priority to AT87420127T priority patent/ATE69496T1/de
Priority to ES198787420127T priority patent/ES2027313T3/es
Priority to EP87420127A priority patent/EP0290702B1/de
Publication of EP0290702A1 publication Critical patent/EP0290702A1/de
Application granted granted Critical
Publication of EP0290702B1 publication Critical patent/EP0290702B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/16Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by purification, e.g. by filtering; by sterilisation; by ozonisation
    • F24F3/167Clean rooms, i.e. enclosed spaces in which a uniform flow of filtered air is distributed

Definitions

  • This invention relates generally to controlled environment chambers, and has particular reference to an improved construction for a clean room module air conditioning unit.
  • modular type clean rooms have been developed wherein the principal components of the room are prefabricated at the factory and then are assembled on site.
  • the modular constructions are more efficient and have fewer problems than the completely on site constructions but some problems do remain.
  • An example of a modular type clean room is disclosed in U.S. Patent No. 4,409,889, issued October 18, 1983 to M. L. Burleson.
  • a prefabricated knockdown clean room is disclosed in U.S. Patent No.4,267,769, issued May 19, 1981 to G.B. Davis et al.
  • the present invention provides a self-supporting, self-contained air conditioning unit according to claim 1, connected with a clean-room module having all of the equipment necessary for maintaining the temperature, humidity and pressurization that are required for the work space within the room.
  • This air conditioning unit can be easily incorporated in the module as a whole.
  • the invention also relates to a clean room module combining a self-contained conditioning unit disclosed above.
  • This conditioning unit may be a component of the entire unit or separated for other uses.
  • This clean room module is factory built rather than built on site, and then precise quality control can be achieved and each module can be thoroughly tested before shipment. This obviously is advantageous to the end user who can avoid the problems and inefficiencies of a field erected, one-of-a kind clean room.
  • An important feature of the invention is the provision in the module of its own sealed base unit.
  • This base unit permits the module to be moved or relocated without having to be disassembled and also insures that the module will have a completely sealed sump area beneath its floor. Obtaining such a sealed area or plenum is difficult when the clean room is constructed or assembled on site.
  • An important object of this invention therefore is to provide a modular clean room, which will be a self-contained unit, with all the mechanical equipment necessary to control the air temperature, humidity, pressurization and cleanliness inside the space provided.
  • Another object of this invention is to provide a mobile modular clean room the base unit of which will include casters that can be cranked up and down to enable the invention to be rolled into position and set into place.
  • Another object of this invention is provide a modular clean room which will be so designed as to meet or exceed the U.S.A. Federal Standard 290B for a Class 100 Clean room. This means that there can be no more than 100 particles 0.5 microns in size and no more than four particles 2.0 microns in size per cubic foot (i.e. per 0.028 cublic metre).
  • a further object of this invention is to provide a modular clean room which will be so designed as to have its return floor plenum sealed underneath and epoxy coated to contain any chemical spills through the unit's perforated raised tiles.
  • Another object of this invention is to provide a modular clean room that can be moved or relocated as a complete unit, it only being necessary to disconnect electric, water and drain lines.
  • Yet another object of this invention is to provide modular clean rooms which can be joined to one another to form a multiple unit clean room with a minimum of labor and without extensive or complexe modifications.
  • the clean room module of the invention is essentially comprised of a base unit l5, a ceiling unit l6, a front wall l7, a side wall l8 and a back wall 20, Fig. 6, which abuts the inside panel or back wall of the air conditioning unit indicated generally at 2l.
  • An access door 22 is provided in the front wall l7 and, if desired, the side wall l8 can be provided with windows 24, Figs. l and 6.
  • the other side wall of the module can be formed by a panel shown fragmentarily at 25 in Fig. l; however, if this side of the module is connected to a like module to provide a larger work space, the side will be left open for communication between the two as shown in Fig. 7.
  • the base unit l5, Figs. l-4, comprises a sheet metal bottom 26 and four sheet metal side walls 27 that are welded together to form a sealed box-like receptacle that serves as an air and water tight sump area.
  • the module floor is comprised of perforated tiles 28, Fig.l, that are spaced above the bottom 26 of the base unit and supported by transversely extending steel strips 30 that are in turn supported by truss-like members 3l. Because the base unit is self-contained with its own sealed bottom and side walls, the complete module can be moved or relocated as required.
  • the base unit can be provided with casters 32 that can be raised or lowered by conventional crank means (not shown).
  • the ceiling unit l6 like the base unit l5 has a hollow chamber or plenum, the unit including a top panel 34 to which are secured four depending side panels 35 in an airtight manner.
  • a filter block 36 is spaced below the top panel 34 as best shown in Fig. 8 whereby a plenum chamber 37 is formed between the block and panel.
  • the ceiling unit is entirely supported by four columns, one in each corner, such a column being shown at 38 in Figs. l, 7 and 8. With this construction, the side walls are not load bearing and can be removed as necessary when connecting two or more modules together.
  • the interior of the module or work space may be provided with a sink 40, storage cabinets 4l or any other needed equipment.
  • the air conditioning unit 2l is an upstanding, self-contained unit which abuts the back wall 20 of the module interior.
  • the top of the air conditioning unit is in communication with the ceiling unit plenum chamber 37 and the bottom of the unit is in communication with the interior of the base unit l5 as will be described in more detail hereinafter.
  • a shelf 42 in the air conditioning unit supports recirculating fans 44 which are driven by a motor 45. These fans direct the recirculating air into the ceiling unit plenum 37 as shown by arrow 46, Fig. 4.
  • the air conditioning components are located below the shelf 42 and comprise a compressor 47, a condenser 48 and the make-up air components 49 including a make-up air fan 50, a reheat coil 5l and a DX coil 52, all to be described in more detail below. Also located in this area of the air conditioning unit are a humidifier 54, the power supply 55 and a controls recorder 56. Between the components just listed and the back wall of the air conditioning unit there is an enclosed vertical air duct 57, Fig. 4, through which return air from the base unit sump is drawn upwardly by the fans 44 as indicated by the arrows 58. The air duct is also in communication with the make-up air components 49 as indicated by the arrows 60.
  • the exposed side of the air conditioning unit 2l is normally closed by a wall or panel 6l shown in Figs. 7 and 9 and fragmentarily in Figs. l and 2.
  • This wall has a smaller removable panel 62 that permits access to the air conditioning components.
  • the air conditioning unit can be provided with hinged, louvered access doors 64 as shown in Fig. 5.
  • Fig. ll is a schematic drawing that illustrates the operation of the air conditioning unit 2l and its relationship to the remainder of the clean room module.
  • the air conditioning components are all actually located within the confines of the unit.
  • the recirculating air is continuously blown through the interior of the clean room module by the fans 44, the air entering the ceiling unit plenum 37 and then passing down through the filter block 36 into the room. Because the air is under positive static pressure, it flows downwardly through the room in a vertical laminar flow. At the bottom of the room, the air passes through the floor tiles 28 and into the sump area of the base unit l5. From thence the air flows through an opening 65, Fig. ll, into the return air duct 57 which directs the air upwardly to the intake side of the fans 44. Before entering the fans, the air passes through recirculation prefilters 66.
  • the air conditioning system As the air passes through the return air duct 57, a portion of it is drawn into the air conditioning system where it is combined with a certain amount of make-up air which, because of room exhaust and leakage, is needed to maintain room pressurization. This combined air flow is then blown through cooling and reheating coils by a make-up air fan. The conditioned air is then reinjected into the recirculating air stream.
  • the portion of the recirculating air that is drawn into the air conditioning system passes through a spring loaded, weighted backdraft damper 67 into a by-pass air conduit 68 that takes it to the make-up air fan 50.
  • the make-up air enters the system through a conduit 70, passes through a prefilter 7l, damper 8l and then is drawn into the fan 50 where it is combined with the by-pass air.
  • the combined air flow is blown by the fan through the DX coil 52, the latter being a cooling coil that removes moisture from the make-up air.
  • the DX coil 52 is connected to the compressor 47 and condenser 48 through a suction throttling valve 72 and expansion valve 74, respectively, the operation of all of these and other commercially available components being well known.
  • the combined air flow that passes through the DX coil 52 is thereafter blown in part through the reheat coil 5l and in part through by-pass dampers 75 on the coil depending on the temperature of the air, the control settings, etc. From the coil 5l and dampers 75, the conditioned, combined air flows into a conduit 76 that takes it back into the return air duct 57 just upstream of the prefilters 66 as shown, the conditioned air being injected into the recirculating air stream at this point.
  • the temperature in the clean room is controlled by the temperature of the air leaving the air conditioning system, just described.
  • a dry bulb sensor 77 Fig. ll, is located in the return air duct 57, and this sensor transmits a signal to the controller 56 which signal is in proportion to the return air (room) temperature.
  • This signal is analyzed by the controller with respect to the set point and the controller sends an output signal to a control element 78 on the by-pass dampers 75.
  • the leaving air temperature of the conditioned air flow is varied to meet the controller's set point condition.
  • the humidity in the clean air room is maintained by regulating the amount of moisture taken out of or added to the combined air stream.
  • a sensor 79 located in the leaving air stream of the DX coil 52 sends a signal to the controller 56 which modulates the suction throttling valve 72 in the refrigeration lines to maintain setpoint.
  • This setpoint is selected as the upper limit of the room dewpoint at saturated air conditions, i.e. so that dry bulb approximately equals wet bulb and dewpoint.
  • the setpoint will control the refrigeration system to maintain maximum leaving air temperature and therefore the maximum amount of moisture in the air.
  • the steam generating humidifier 54 adds moisture to the recirculating air stream thereby controlling the minimum level of humidity.
  • Humidity sensor 80 controls humidifier 54 to add the proper amount of moisture for maintaining set point conditions.
  • the range between minimum and maximum is termed the humidity tolerance.
  • a relatively wide tolerance conserves energy because it allows the clean room humidity to float without refrigeration or steam energy. Closer tolerances require more energy. For a very close tolerance, the refrigeration must be set up to subcool the air slightly below the design dewpoint and then the steam humidifier 54 must continuously add moisture to hold the tolerance.
  • the pressurization in the clean air room is maintained by controlling the amount of make-up air that is drawn into the make-up air fan 50, Fig. ll, of the air conditioning unit.
  • This air as noted above, combines with a certain amount of bypass air from the recirculating air stream to maintain a constant air flow through the DX refrigeration coil 52. This prevents frosting of the coil and loss of efficiency.
  • the amount of make-up air is regulated by a damper 8l that can be either manually or automatically controlled.
  • a sensor 82 located in the clean air room immediately below the filter block 36 sends a pneumatic signal to a pressure gauge (not shown) located in the air conditioning unit and continuously indicates the room static pressure.
  • the damper 8l can be manually set to any pressure. If automatic operation is desired, the pneumatic signal is also sent to the controller 56 which then automatically controls the make-up air damper 8l to hold set point by means of a damper motor 84.
  • the controller 56 is preferably an electronic unit that senses not only the room static pressure, but also the rate of change of the room static pressure.
  • the controller 56 includes a continuously variable adjuster to move the make-up damper 8l in accordance with both the detected differential static pressure and the detected rate of change of static pressure.
  • Figs. 7 and 8 these drawings illustrate how two clean room modules can be joined to form a double unit having twice the work space of a single unit.
  • the Fig. 7 module is, except for its base unit l5a, essentially like the module of Figs. l-4 having a ceiling unit l6a, a front wall l7a, a side wall l8a and a back wall 20a abutting the air conditioning unit 2la.
  • the Fig. 8 module is in effect a mirror image of the Fig. 7 module so that the open back sides of the modules can be brought into registering engagement with each other to double the area of the work space.
  • the base units l5a and l5b of the mating modules are recessed at 85 and 86 respectively so that the modules can be "wrapped around" existing floor mounted fixtures or vibration isolated equipment such as electron beam units. Stated another way, an existing floor mounted fixture can be received in the space defined by the base unit recesses 85 and 86 which recesses can be shaped as required to fit around the particular fixture.
  • one module can be a master and the other module a slave meaning that the latter does not have its own air conditioning unit but receives its conditioned air from the master.
  • Fig. 9 illustrates the air conditioning unit as a free standing, independent unit 2lc that can be utilized for other types of clean rooms or the like.
  • the unit 2lc includes a discharge duct 87, or the discharge duct may optionally be located at 88.
  • the return air duct may be located at 90 with knockout 9l being provided for an alternative return air connection.
  • Knockout 92 is provided for supply air to adjacent units.
  • Fig. l0 illustrates a multiple module arrangement in which twelve clean room modules are connected together to form a relatively large clean room area.
  • the drawing also illustrates the versatility of the modules since it shows the different ways in which they can be joined with one another.
  • the multiple arrangement includes at least one access door 94 which may open into a gowning room 95. Windows 96 are provided as necessary, and for convenience one or more passthroughs 97 can also be provided.
  • Fig. l2 illustrates a multiple clean room assembly formed of three adjacent modules disposed side by side, with the central module functioning as master and the adjacent modules serving in a slave capacity.
  • One of these modules (identified with double-primed reference numbers) is shown only in ghost lines so as to minimize drawing clutter.
  • the modules are joined with their air conditioning units 2l, 2l ⁇ and 2l ⁇ adjacent one another.
  • the central module air conditioning unit is of dual coil configuration, with two DX coils 52, two reheat coils 5l, two by-pass dampers 75, and two make-up air control dampers 8l defining two parallel air conditioning paths. These are both controlled by a single controller 56.
  • the output side of the by-pass dampers 75 and reheat coils 5l feeds the conditioned air into a generally wedge-shaped distribution chamber 98 that connects through an opening 99 at a central part of the air conditioning module into the return air conduit 57 where it flows through the prefilters 66 and thence into the main recirculating fans 44 which feed the recirculated air into the ceiling unit plenum 35.
  • the wedge-shaped distribution chamber 98 also feeds the treated air through corresponding wedge-shaped openings (corresponding to knock-out 92), to the distribution chambers of the slave modules through corresponding wedge-shaped knock-out openings 92 ⁇ and 92 ⁇ .
  • the central module air conditioning unit 2l (shown with cover removed) is used to dehumidify, cool, reheat, and control the pressure for all three modules. All three modules employ their own recirculating air systems to maintain the laminar vertical clean air flow in each module but the central or master module air conditioner 2l supplies the treated, temperature, humidity, and pressure controlled air to the main recirculating fans of all three modules.
  • the control 56 of the central master air conditioner 2l only is functional.
  • the side wall panels l8 or 25 are removed from the central or master module, and one side wall panel l8 or 25 is removed from each of the slave modules, so that they can be joined.
  • Gaskets disposed along the corner columns 38 and at the base and ceiling units l5,l6 compress together to form a seal when the modules are connected.
  • Bolts or other fasteners can be passed between abutting side walls of adjacent ceiling and base units of the master and slave modules to connect the modules together.
  • the slave module air conditioning unit 2l ⁇ here is shown as a standard module with doors in place.
  • a slave module does not contain any of the air treatment and make-up elements, but is provided with only the recirculating fans 44 and associated ducts and filters.
  • the rigid side and front walls are removably connected to the corner columns 38 as generally shown in horizontal cross section in Fig. l3.
  • the side wall panels l8 or 25 and the front panel l7 are each formed of a rigid panel and a surrounding mounting frame formed of an extruded aluminum "h"-shaped channel member l00.
  • the panel 25 or l8 itself fits into a channel l0l defined between two flanges l02 and abuts a gasket l03 to form a sealed entity.
  • An outer flange l04 then projects around the periphery of the column 38, and is fastened against the column 38 with a gasket l06 compressed between the channel l00- and the column 38.
  • These elements are easily fastened together with machine screws l08.
  • the top edge and bottom edge of the panels 25, l8 and l7 are fastened to the module base unit l5 and ceiling unit l6 in similar fashion.
  • the air conditioning circuit including the make-up air fan 50, the DX Coil 52, the reheat coil 5l and the by-pass damper 75 and return duct 98 or conduit 76 handles a constant volume of air per unit time, the volume being the sum of bypass air 68 plus make-up air 70. This volume constitutes only a fraction of the total recirculated air, typically, between 5% and 20%. Because only a small part of the total circulated air passes through this loop, the DX coil 52 can cool at full capacity for more efficient operation; the coil 52 need not be held at the much higher room interior dry bulb temperature but can be much cooler. Another benefit of the partial recirculation of the air is the ability to hold room temperature (typically ⁇ 0.l to ⁇ 0.4 degrees F -i.e. +or 0.06 to ⁇ 0.22 degrees C), even with the DX coil temperature variance ranging ⁇ 2.0 degrees - ⁇ l.l degree C -or more.
  • the reheat coil 5l receives its heat from the heat absorbed in the DX coil 52. This avoids the need for a separate electric heater.
  • the modular clean room of this invention has the advantage of being factory assembled, pre-packaged and pre-tested.
  • the modular unit can be simply connected to electric, water, and drain and turned on ready for use. If there is any residual dust, it will purge out in a short interval of time. Field certification is usually unnecessary, depending on local regulations, because the built-in air conditioning is pre-tested and factory certified.
  • Modules constructed according to this invention have been found to exceed federal quality standard 209B for a class l00 and better clean room, and have consistently met class l0 standard (i.e., less than ten particles of l/2 micron diameter per cubic foot (0.028 cubic metre), with no particles larger than five microns).
  • Temperature is maintained within ⁇ 0.l degree F ( ⁇ 0.05 degree C), humidity maintained within 2.0% relative humidity, and pressure maintained within ⁇ 0.02 inches ( ⁇ 0.05l cm) of water column of the desired set point.
  • the clean rooms are transportable and modular, and not field-assembled, they can be treated as capital expenditures by the purchaser, and are ideal for lease arrangements.

Claims (9)

  1. Selbständige, in sich geschlossene Klimaanlage (21), die mit einem Reinraum-Modul oder dergleichen verbunden ist, in der:
    - ein erstes Gebläse (44) umlaufende Luft in einen Raum oder eine Zone des Moduls bläst;
    - ein Rückströmkanal (57), der einen ersten Zirkulationsweg bildet, eine Eintrittsöffnung (65) aufweist zur Aufnahme der umlaufenden Luft, nachdem diese den Raum durchlaufen hat, wobei der Kanal (57) dem ersten Gebläse (44) Luft zuführt, so daß der zu klimatisierende Raum und der Rückströmkanal einen ersten Luftkreislauf der Klimaanlage bilden;
    - ein zweites Gebläse (50) dem ersten Gebläse (44) Umgebungs-Frischluft zuführt;
    - ein Bypass (67,68) vor dem ersten Gebläse (44) mit dem Rückströmkanal zusammenwirkt und einen Teil der diesen durchlaufenden Luft abzweigt in das zweite Gebläse (50), welches in einem Gehäuse (49) der Klimaanlage (21) angeordnet ist, das im Austritt des zweiten Gebläses einen Luftkühler (52) und einen Lufterhitzer (51) enthält zur Behandlung der Luft aus dem zweiten Gebläse (50), derart, daß das zweite Gebläse (50) die Frischluft und die aus dem Kanal (57) abgezweigte Luft mischt und die Luftmischung durch den Luftkühler und den Lufterhitzer (51,52) bläst;
    - einen Auslaßkanal (76) zur Rückführung der behandelten Luft in den Rückströmkanal (57) zur Mischung mit der dort umlaufenden Luft, wobei der Bypass, das Gehäuse (49) des zweiten Gebläses und der Auslaßkanal (76) einen zweiten Luftkreislauf der Klimaanlage definieren, welcher mit dem Bypass (67,68) einen zweiten Zirkulationsweg bildet,
    dadurch gekennzeichnet, daß der zweite Zirkulationsweg (49,67,68,76) mit einem konstanten Volumenstrom von etwa 5 bis 20% des aus der Summe des verzweigten und des Frischluft-Stroms gebildeten Gesamtluftstroms durch den ersten Kreislauf (58) arbeitet und daß eine Regeleinrichtung, die einen mit dem Raum oder der Zone in Verbindung stehenden Drucksensor (82) aufweist, eine Frischluftdrossel (81) entsprechend dem Luftdruck in dem Raum oder der Zone regelt, so daß in dem Raum oder der Zone ein im wesentlichen konstanter Druck aufrechterhalten wird.
  2. Klimaanlage nach Anspruch 1, dadurch gekennzeichnet, daß der Rückströmkanal (57) im wesentlichen vertikal angeordnet ist, wobei das erste Gebläse (44) an das obere Ende des Kanals angrenzt und die Eintrittsöffnung (65) am unteren Ende des Kanals (57) angeordnet ist, so daß die Rückluft von der Eintrittsöffnung (65) aufwärts zu dem Gebläse (44) strömt.
  3. Klimaanlage nach Anspruch 2, dadurch gekennzeichnet, daß in dem Kanal (57) auf der Anströmseite des ersten Gebläses (44) ein Vorfilter (66) angeordnet ist.
  4. Klimaanlage nach Anspruch 2, dadurch gekennzeichnet, daß eine Abzweigvorrichtung (67) zum Abzweigen eines Teils der Kanalluft über die Zuleitung (68) zum zweiten Gebläse (50) am unteren Ende des Kanals (57) angeordnet ist, wobei die Abzweigvorrichtung (67) automatisch regelbar ist.
  5. Klimaanlage nach Anspruch 3, dadurch gekennzeichnet, daß der Auslaßkanal (76) auf der Anströmseite des Vorfilters (66) mit dem Kanal (57) verbunden ist.
  6. Klimaanlage nach Anspruch 1, dadurch gekennzeichnet, daß die Frischluft über einen mit der Zuleitung (68) gekoppelten Einlaß (70) in den zweiten Zirkulationsweg eingeleitet wird.
  7. Reinraum-Modul, bestehend aus der Kombination eines selbständigen, einheitlichen Basisbauteils (15), welches einen Boden (28) und Rück- und Seitenwände (18,20) aufweist, die unter dem Boden (28) eine Sumpfkammer (15) bilden; vertikaler Seitenwände (27), die auf dem Basisbauteil (15) befestigt und von diesem getragen sind; einer aufrechtstehenden, in sich geschlossenen Klimaanlage (21) nach einem der Ansprüche 1 bis 6, die an einer Seitenwand des Reinraum-Moduls mit dem Basisbauteil (15) verbunden ist; eines die oberen Ränder der Seitenwände umgreifenden Deckenbauteils (16) und Stützen (38), die das Deckenbauteil unabhängig von den Seitenwänden tragen, wobei sich in dem Deckenbauteil (16) Filtermaterial (36) und über dem Filtermaterial (36) eine Luftkammer (37) befindet und der Boden, die Wände und das Deckenbauteil einen geschlossenen Reinraum bilden, dessen Luftkammer im Deckenbauteil und Sumpfkammer im Basisbauteil mit der Klimaanlage in Verbindung stehen, dadurch gekennzeichnet, daß der erste Zirkulationsweg (57) der Klimaanlage (21) sich von der Sumpfkammer (15) im Basisbauteil bis zur Luftkammer (37) im Deckenbauteil erstreckt, so daß die Klimaanlage (21) gefilterte Luft mit konstantem vorbestimmtem Druck in abwärtsgerichteter, laminarer Strömung durch den geschlossenen Reinraum zirkulieren läßt.
  8. Reinraum-Modul nach Anspruch 7, dadurch gekennzeichnet, daß die Verteilerleitung einen querverlaufenden Verteilerkanal (98,99) mit mindestens einem in einer Seitenwand der Klimaanlage (21) angeordneten Durchlaß (92) aufweist, wobei der Durchlaß (92) zum Anschluß eines korrespondierenden Durchlasses (92' oder 92") zu einem Verteilerkanal einer Klimaanlage (21' oder 21") von einem angrenzend angeschlossenen Reinraum-Modul dient, für die Zufuhr der behandelten Luft des erstgenannten Reinraum- Moduls zum ersten Zirkulationsweg des zweitgenannten Reinraum-Moduls, so daß der erstgenannte Modul als Haupteinheit und der zweitgenannte Modul als Nebeneinheit wirkt, welche die behandelte Luft nur von der Klimaanlage (21) des erstgenannten Moduls erhält.
  9. Reinraum-Modul nach Anspruch 7, dadurch gekennzeichnet, daß der zweite Zirkulationsweg (49, 50, 51, 52 - Fig.12) auf einer Seite der Klimaanlage (21) angeordnet ist und daß diese einen dritten Zirkulationsweg auf ihrer anderen Seite aufweist mit einer automatisch regelbaren Abzweigvorrichtung (67), einem Gebläse (50), dessen Eintritt mit der Abzweigvorrichtung verbunden ist, einem mit dem Eintritt des Gebläses verbundenen und eine regelbare Frischluftdrossel (81) enthaltenden Frischlufteinlaß (70), einem dem Gebläse (50) nachgeordneten Klimatisierungselement (52) und einer das Klimatisierungselement (52) an die Verteilerleitung anschließenden Leitung, wobei der erwähnte Drucksensor (82) die Frischluftdrossel (81) des dritten Zirkulationsweges sowie die Frischluftdrossel (81) des zweiten Zirkulationsweges regelt.
EP87420127A 1984-07-19 1987-05-14 Klimaanlage Expired - Lifetime EP0290702B1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US06/841,674 US4667580A (en) 1984-07-19 1986-03-19 Clean room module
DE8787420127T DE3774571D1 (de) 1987-05-14 1987-05-14 Klimaanlage.
AT87420127T ATE69496T1 (de) 1987-05-14 1987-05-14 Klimaanlage.
ES198787420127T ES2027313T3 (es) 1987-05-14 1987-05-14 Unidad de acondicionamiento de aire.
EP87420127A EP0290702B1 (de) 1987-05-14 1987-05-14 Klimaanlage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP87420127A EP0290702B1 (de) 1987-05-14 1987-05-14 Klimaanlage

Publications (2)

Publication Number Publication Date
EP0290702A1 EP0290702A1 (de) 1988-11-17
EP0290702B1 true EP0290702B1 (de) 1991-11-13

Family

ID=8198291

Family Applications (1)

Application Number Title Priority Date Filing Date
EP87420127A Expired - Lifetime EP0290702B1 (de) 1984-07-19 1987-05-14 Klimaanlage

Country Status (4)

Country Link
EP (1) EP0290702B1 (de)
AT (1) ATE69496T1 (de)
DE (1) DE3774571D1 (de)
ES (1) ES2027313T3 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007006418B3 (de) * 2007-01-17 2008-11-27 Schako Klima Luft Ferdinand Schad Kg Zweigniederlassung Kolbingen Verfahren und Vorrichtung zum Be- oder Entlüften eines relativ lufdichten Raumes

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE9103371L (sv) * 1991-11-15 1993-03-15 Ventilatorverken Ab Ventilationsfoerfarande foer taelt eller liknande, t ex mobila sjukvaardsenheter, samt medel haerfoer
US5827118A (en) * 1996-08-28 1998-10-27 Seh America, Inc. Clean storage unit air flow system
ES2190290B1 (es) * 1999-03-24 2004-11-16 Jose Luis Perez Diaz Metodo y sistema de ventilacion y climatizacion esteril.
FR2878315B1 (fr) * 2004-11-19 2007-06-01 Matal Sa Installation pour menager une zone de travail sous atmosphere controlee au sein d'un local

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1749763A (en) * 1928-08-08 1930-03-11 Cooling & Air Conditioning Cor Method and means for reducing temperature by dehydration

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3975995A (en) * 1975-03-13 1976-08-24 American Air Filter Company, Inc. Ventilated ceiling construction
US4667580A (en) * 1984-07-19 1987-05-26 Wetzel Lawrence E Clean room module
US4608066A (en) * 1985-07-31 1986-08-26 Flanders Filters, Inc. Clean room adapted for variable work area configurations

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1749763A (en) * 1928-08-08 1930-03-11 Cooling & Air Conditioning Cor Method and means for reducing temperature by dehydration

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007006418B3 (de) * 2007-01-17 2008-11-27 Schako Klima Luft Ferdinand Schad Kg Zweigniederlassung Kolbingen Verfahren und Vorrichtung zum Be- oder Entlüften eines relativ lufdichten Raumes

Also Published As

Publication number Publication date
ATE69496T1 (de) 1991-11-15
DE3774571D1 (de) 1991-12-19
EP0290702A1 (de) 1988-11-17
ES2027313T3 (es) 1992-06-01

Similar Documents

Publication Publication Date Title
US4667580A (en) Clean room module
US5987908A (en) Self-contained air conditioner with discharge-air filter
US4191543A (en) Sterile air recycling apparatus
US4450900A (en) Mobile air conditioning unit
US5884500A (en) Self-contained air conditioner with discharge-air filter
JPH0136009B2 (de)
US11035586B2 (en) Energy recovery ventilator
US3324782A (en) Air treating apparatus
US3018642A (en) Air conditioner
US6481228B1 (en) Air conditioning module for room partition unit
US5619864A (en) Compact heat pump
EP0290702B1 (de) Klimaanlage
US2896428A (en) Air conditioning apparatus
JPH04174227A (ja) 空気調和機
US6230510B1 (en) Retrofit console air conditioning unit
US4745770A (en) Heater/cooler unit
CA1294169C (en) Clean room module
US2893220A (en) Air conditioner unit
JP3855194B2 (ja) クリーンルームの空調システム
US2184481A (en) Air conditioning apparatus
US3407867A (en) Frame construction for air treating assembly
CN219750773U (zh) 雪茄多温层供应链存仓储库
JPH06323570A (ja) 層階室内の空調方法とその装置
NO872048L (no) Absolutt ren rommodul.
JPH0749300Y2 (ja) 床置形外気処理装置

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT CH DE ES FR GB IT LI SE

17P Request for examination filed

Effective date: 19890210

17Q First examination report despatched

Effective date: 19900329

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: CLESTRA HAUSERMAN, S.A.

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT CH DE ES FR GB IT LI SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19911113

Ref country code: AT

Effective date: 19911113

REF Corresponds to:

Ref document number: 69496

Country of ref document: AT

Date of ref document: 19911115

Kind code of ref document: T

ITF It: translation for a ep patent filed

Owner name: ING. A. GIAMBROCONO & C. S.R.L.

REF Corresponds to:

Ref document number: 3774571

Country of ref document: DE

Date of ref document: 19911219

ET Fr: translation filed
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2027313

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19940506

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 19940513

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19940516

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19940526

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19940527

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19950514

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19950516

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19950531

Ref country code: CH

Effective date: 19950531

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19950514

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19960201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19960229

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 19990301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050514