EP0287503B1 - Method of and pressure cooling apparatus for cooling a continuous product - Google Patents

Method of and pressure cooling apparatus for cooling a continuous product Download PDF

Info

Publication number
EP0287503B1
EP0287503B1 EP88730063A EP88730063A EP0287503B1 EP 0287503 B1 EP0287503 B1 EP 0287503B1 EP 88730063 A EP88730063 A EP 88730063A EP 88730063 A EP88730063 A EP 88730063A EP 0287503 B1 EP0287503 B1 EP 0287503B1
Authority
EP
European Patent Office
Prior art keywords
cooling
pressure
presswater
chamber
rolling stock
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP88730063A
Other languages
German (de)
French (fr)
Other versions
EP0287503A3 (en
EP0287503A2 (en
Inventor
Walter Dipl.-Ing. Krenn
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KRENN, WALTER, DIPL.-ING.
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of EP0287503A2 publication Critical patent/EP0287503A2/en
Publication of EP0287503A3 publication Critical patent/EP0287503A3/en
Application granted granted Critical
Publication of EP0287503B1 publication Critical patent/EP0287503B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B45/00Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
    • B21B45/02Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills for lubricating, cooling, or cleaning
    • B21B45/0203Cooling
    • B21B45/0209Cooling devices, e.g. using gaseous coolants
    • B21B45/0215Cooling devices, e.g. using gaseous coolants using liquid coolants, e.g. for sections, for tubes
    • B21B45/0224Cooling devices, e.g. using gaseous coolants using liquid coolants, e.g. for sections, for tubes for wire, rods, rounds, bars
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/62Quenching devices
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/54Furnaces for treating strips or wire
    • C21D9/56Continuous furnaces for strip or wire
    • C21D9/573Continuous furnaces for strip or wire with cooling

Definitions

  • the invention relates to a method for cooling hot rolled rolling stock, with / without direct patenting, in which pressurized water is pressed onto the hot rolling surface of the rolling stock within a pressure chamber between accumulation edges, the cooling unit being acted upon with a lot of pressurized water, preferably with the amount of heat to be extracted from the rolling stock is in equilibrium with the desired cooling temperature of the rolling stock with the heat removal by heating the pressurized water in the pressure chamber of a convection cooling part, and the heat removal by the evaporation heat given off to a pressurized water / steam mixture in the pressurized chamber of an evaporative cooling part, preferably up to the boiling point of the pressurized water is achieved and the cooling in pressurized water and in the pressurized water-steam mixture is controllable.
  • the invention also relates to a cooling unit for carrying out the method for cooling hot rolled rolling stock, with / without direct patenting, in which pressurized water is pressed within a pressure space between accumulation edges onto the hot rolling surface of the rolling stock, the cooling unit coming from the pressure space of a convection cooling part, the convection pressure space between the Accumulation edges, in which heat is withdrawn from the hot rolled rolling stock, primarily by convection, from inflowing pressure water that is pressed onto the hot rolling surface, preferably up to the boiling point of the pressurized water, and from the pressure chamber of an evaporative cooling part, the evaporation pressure chamber between the accumulation edges, 9); 8, in which the rolling stock Heat is further extracted primarily by the heat of vaporization, from the pressure water / steam mixture flowing through and pressed onto the surface of the rolling stock and produced in the convection pressure chamber. See EP-A 0 266 302 not previously published and falling under Art. 54 (3).
  • the cooling of shaped, hot, continuous production goods has a significant influence on the quality and manufacturing costs of finished products made of steel and metal.
  • the final rolling speed in the production of hot wide strip has increased to 2.5 times, the coil weight to 45 t and the capacity to 6 million t / year, with wire rod, the final rolling speed has increased to 120 m / s and the coil weight to 3000 kg and the monthly production on 30,000 t / rolling core (Mommertz, KH: " Stahl u. Eisen” 106 (1968) No. 6, pp. 255/62).
  • cooling water quantities of the order of 10,000 m3 / h and more are used today.
  • the cooling in pressure cooling units should be run as deeply as possible so that the shortage from cooling with blower air can be reduced.
  • the method described in EP-A 0 266 302 with a pressure cooling unit it is possible to drive a cooling temperature which may already be closer to the quality-dependent martensite line in the ZTU diagram.
  • the invention has for its object to develop a method with a pressure cooling unit with which the heat removal during the cooling shaped, hot, continuous production goods made of steel and metal in pressurized water within a pressure cooling unit can be performed so that the majority of the production goods made of steel and metal can be cooled with increased metallurgical and temperature accuracy, greater uniformity across the width and length of the items to be cooled and better economy.
  • the object is achieved, on the one hand, in that for cooling hot rolled rolling stock, with / without direct patenting, in the pressurized water within a pressure space between accumulation edges is pressed onto the hot rolled rolling stock surface, the cooling unit being pressurized with a quantity of pressurized water, preferably with that
  • the amount of heat to be removed from the rolling stock is in equilibrium with the heat removal by heating the pressurized water in the pressure chamber of a convection cooling part and the heat removal by the evaporation heat given off to a pressurized water / steam mixture in the pressure chamber of an evaporative cooling part (2), preferably to the boiling point of the pressurized water, the desired cooling temperature of the rolling stock is reached and the cooling in pressurized water and in the pressurized water-steam mixture can be controlled.
  • the call is also resolved by a cooling unit for carrying out the method according to claim 1 for cooling hot rolled rolling stock, with / without direct patenting, in which pressurized water within a pressure chamber is pressed between the accumulation edges onto the rolling roll surface, the cooling unit coming from the pressure chamber of a convection cooling part, the convection pressure space between the accumulation edges, in which heat is withdrawn from the hot rolled material, primarily by convection, from inflowing pressure water pressed into the rolled material surface, preferably up to the boiling point of the pressure water, and from the pressure space of an evaporative cooling part, the evaporation -Pressure space (2) between the accumulation edges in the rolling stock, primarily by the evaporation heat, from the flowing through and pressed onto the rolling stock surface, generated in the convection pressure chamber, heat-steam mixture, and besides the cooling- and guide pressurized water inflow into the convection cooling section in the evaporative cooling section, further guide pressurized water inflows and condensation pressurized water inflows
  • the part of the pressure chamber in the pressure cooling unit in which the cooling pressurized water and the guide pressurized water flow in and extract heat from the production goods is referred to as the convection cooling part.
  • the evaporative cooling part is the part of the pressure chamber in the pressure cooling unit in which the pressurized water flowing in from the convection cooling part, as a hot water-steam mixture, conducted with the condensed pressurized water, further extracts heat from the product.
  • Cooling pressurized water is specified pressurized water that serves as the base load for heat extraction.
  • Leading pressurized water is regulated pressurized water that is used to guide the removal of heat and the removal of heat until the pressurized water is heated to the boiling point.
  • Condensed pressurized water is metered pressurized water that serves to control the degree of evaporation (the proportion of steam in the hot water / steam mixture).
  • the part of the pressure chamber into which the main amount of the pressurized water flows usually the middle part, is referred to as the convection pressure chamber, even if the pressure cooling unit has only a single part of the pressure chamber.
  • the evaporation pressure chamber All other parts of the pressure chamber are referred to as the evaporation pressure chamber, irrespective of whether the heat is extracted therein mainly by evaporation or by convection.
  • the water accumulation edge is the accumulation edge of a pressure chamber through which the product to be produced flows into the individual pressure chambers.
  • the inflow dam edge is the storage edge of a pressure chamber through which the pressurized water / hot water / steam mixture flows into the individual pressure chambers.
  • the advantages achieved by the invention are, in particular, that with the method according to the invention with a pressure cooling unit, a large part of the shaped, hot, continuous production goods can be cooled at all in a guided manner, so that the desired consequences of cooling intensity in accordance with the product, dimensions, quality and timing are comparatively very low Temperature range can be driven so that no undesirable structural components can form in the finished product and that only a comparatively small amount of pressurized water is required for this.
  • the measurement records in Fig. 5-6 and Fig. 7-8 show that the cooling temperature becomes stable to the extent that the amount of pressure water flowing through increases in relation to the length of the pressure chamber. In other words, the cooling temperature becomes stable to the extent that, in relation to the amount of pressurized water flowing through, the distance between the damming edges decreases and the pressure chamber becomes shorter.
  • the measurement records in the sequence Fig. 7 - Fig. 6, with the pressure chamber lengths 3 - 1, with the pressurized water quantities 10 11 (may be considered as apply equally) confirm this conclusion.
  • the numbers for the length of the pressure chamber and the amount of pressure water are ratio numbers.
  • the cooled product would have a cooling temperature of around 350 ° C in the order of magnitude the condensation water flowing in according to the invention does not limit the cooling intensity in the evaporation pressure spaces to, for example, 550 ° C.
  • the inflowing amount of pressurized water would be reduced in order not to have to limit the effect of heat removal by the heat of evaporation by a higher amount of condensed pressurized water.
  • FIG. 9 For the representation of the heat transfer coefficient ⁇ , the generally known diagram, FIG. 9, of the dependencies during container boiling, is used as a representation aid.
  • the measurement records in Fig. 6 show a heat removal at an ⁇ value of 100400 kJ / m3.h. ° C (point X).
  • point X the maximum of point Z.
  • the addition of cold condensed pressurized water in the evaporative cooling section of the pressurized cooling unit increases the density of the hot water -Vapor mixture increased, whereby the ⁇ value is stopped, stabilized or reduced in a guided manner on its self-propelled increase.
  • the ⁇ value is increased again by reducing the amount of condensed water under pressure in the same way.
  • the heat removal up to the ⁇ value X is primarily carried out with the guide pressure water and stabilized at this value with the condensation pressure water and held at this value when the input values change, so that it is possible for everyone to physically in Pressure water, product, dimension and quality-related cooling process, with molded, hot, continuous production goods, with a comparatively small cooling temperature range and a small amount of pressurized water.
  • the accumulation edges (3) and (4) also called the inlet and outlet stowage edge
  • the cooling flows through the inflows (5) and (6) - And guide pressurized water via the valves with actuator (13) and (14), from the pressurized water supply lines (10) and (11) into the pressure chamber (2).
  • the cooling and guiding pressurized water is preferably heated to its boiling temperature, which flows as a hot water-steam mixture in the evaporative cooling part (9), in which the pressure through the inflow (7) into the pressure chamber (2 ), via the valve with actuator (15), from the pressurized water supply line (12), inflowing condensed pressurized water the increasing, self-propelled evaporation (SV), through the metered inflowing condensed pressurized water, into a guided evaporation (GV) on the product -, dimension and quality-based evaporation guide point (VF) is converted.
  • a guided evaporation GV
  • a water hammer protection device (19) which is usefully coupled to a water suction device, is arranged in each pressure chamber, which is arranged during the breaks and sucks water up to the point in time at which the beginning of the production goods which have passed through has reached the outlet stowage edge of the pressure chamber in question.
  • a hot water / steam mixture extraction device (20) is arranged in individual pressure rooms. If two or more pressure cooling units are arranged one behind the other, the air should be admitted to the one to be cooled Product surface between these are prevented, so this space is covered with a sliding water dam (21).
  • Fig. 3 In the pressure cooling unit (1) flows into the convection pressure chamber (8.1), with the accumulation edges (3) and (4), through the inflow (16), the cooling and guiding pressure water together with the valve Stellglid (18), from the pressurized water supply line (17), is preferably heated there to its boiling point and flows as a hot water / steam mixture over the accumulation edges (3) and (4) into the evaporation pressure chambers (9.1) and (9.2) and flows from there, extracting heat from the production goods through the heat of vaporization, through the accumulation edges (3.1) and (4.1) from the pressure cooling unit.
  • the process of cooling medium-sized production goods starting with the second cooling process: at the moment of the discharge of the previously passed production goods, the inflow of the cooling and guide pressurized water is caused by the inflows (5) and (6) or (16) and by (6.1) and (6.2) reduced to a minimum value and the water suction device of the combined water hammer protection with water suction device (19), (19.1) and (19.2) switched on in a pulse-controlled manner, so that the water in the pressure chambers is depressurized and suctioned off.
  • the production goods run into the pressure cooling unit. If the water pressure currently occurring in a pressure room exceeds a certain level, the water hammer protection devices (19.1), (19) and (19.2) respond as soon as the beginning of the production goods reaches the respective outlet storage rim (3), ( 4) and (4.1) of the pressure chambers (9.1), (8.1) and (9.2), the respective water hammer protection and water suction device (19.1), (19) and (19.2) switches off, at the same time the inflows (7.1), ( 6.1), (5), (4) or (16), (6.2) and (7.2) with the relevant target pressure water quantity, product, dimension and quality related.
  • the target pressure water quantity specified in the recipe is applied to the shaped, hot, continuous surface of the production goods in a split second and extracts heat from it. If the cooling temperature measured after the pressure cooling unit is too high, the inflows (5) or (16), (6.1) and (6.2) are preferably increased in sequence until the target cooling temperature is reached. At this moment, the condensed pressure water flowing in through the inflows (7.1) and (7.2) is already leading the degree of evaporation of the hot water-steam mixture at the evaporation guide point VF, which would otherwise reach the outflow dam edges (3.1) and ( 4.1) would drive self-driving to the arbitrary point SV, so that the desired target cooling temperature is applied to the recorder.
  • baffle edges (3.1), (3), (4) and (4.1 ) In order to keep the wear of the baffle edges low, it is useful to increase the pressure of the pressurized water when the production goods that are getting heavier cool and to lengthen the constrictions in the baffle edges so that the baffle edges (3.1), (3), (4) and (4.1 ) also act as a water-lubricated plain bearing.
  • Fig. 4 The pressure cooling unit (1) functionally shown in Fig. 4, with the convection pressure chamber (8.1) and four evaporation pressure chambers (9.1 - 9.4), is both for cooling with a maximum of heat extraction achievable in such a pressure cooling unit as well suitable for cooling with minimally durable heat removal.
  • the procedure differs only in that the heat transfer value .alpha. Is driven at the quality-related maximum value in one process of heat extraction and at its minimum value in the other process at its pressure cooling unit.
  • the length of the pressure cooling unit is of the order of 1 m to 20 m and more. If the pressure cooling unit is used after shaping, if it is used within the deformation process, the lengths must adapt to the deformation conditions and be shortened to a fraction of a meter. Existing short pressure cooling units can also be functionally coupled to longer ones with the help of the water retention socket (21).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Metal Rolling (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)
  • Thermotherapy And Cooling Therapy Devices (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Description

Die Erfundung betrifft ein Verfahren zum Abkühlen walzwarmen Walzguts, mit/ohne Direktpatentieren, bei dem Druckwasser innerhalb eines Druckraums zwischen Stauränder auf die walzwarme Walzgutoberfläche gedrückt wird, wobei das Kühlaggregat mit einer Menge Druckwasser beaufschlagt wird, die vorzugsweise mit der dem Walzgut zu entziehenden Menge Wärme im Gleichgewicht steht, um mit dem Wärmeentzug durch das Erwärmen des Druckwassers im Druckraum eines Konvektionskühlteils, und dem Wärmeentzug durch die an ein Druckwasser-Dampf-Gemisch abgegebene Verdampfungswärme im Druckraum eines Verdampfungskühlteils, vorzugsweise bis an den Siedepunkt des Druckwassers, die gewünschte Abkühltemperatur des Walzgutes erreicht wird und dabei die Abkühlung in Druckwasser und im Druckwasser-Dampf-Gemisch steuerbar ist.The invention relates to a method for cooling hot rolled rolling stock, with / without direct patenting, in which pressurized water is pressed onto the hot rolling surface of the rolling stock within a pressure chamber between accumulation edges, the cooling unit being acted upon with a lot of pressurized water, preferably with the amount of heat to be extracted from the rolling stock is in equilibrium with the desired cooling temperature of the rolling stock with the heat removal by heating the pressurized water in the pressure chamber of a convection cooling part, and the heat removal by the evaporation heat given off to a pressurized water / steam mixture in the pressurized chamber of an evaporative cooling part, preferably up to the boiling point of the pressurized water is achieved and the cooling in pressurized water and in the pressurized water-steam mixture is controllable.

Die Erfindung betrifft auch ein Kühlaggregat zur Durchführung des Verfahrens zum Abkühlen walzwarmen Walzguts, mit/ohne Direktpatentieren, bei dem Druckwasser innerhalb eines Druckraums zwischen Stauränder auf die walzwarme Walzgutoberfläche gedrückt wird, wobei das Kühlaggregat aus dem Druckraum eines Konvektionskühlteils, dem Konvektions-Druckraum zwischen den Staurändern, besteht, in dem dem walzwarmen Walzgut, vornehmlich durch Konvektion, von einströmendem und auf die walzwarme Walzgutoberfläche gedrücktem Druckwasser Wärme, vorzugsweise bis an den Siedepunkt des Druckwassers, entzogen wird und aus dem Druckraum eines Verdampfungskühlteils, dem Verdampfungs-Druckraum zwischen den Staurändern, 9); 8, in dem dem Walzgut vornehmlich durch die Verdampfungswärme, vom durchströmenden und auf die Walzgutoberfläche gedrückten, im Konvektions-Druckraum erzeugten Druckwasser-Dampf-Gemisch, weiter Wärme entzogen wird. Siehe nicht vorveröffentlichte und unter Art. 54 (3)' fallende EP-A 0 266 302.The invention also relates to a cooling unit for carrying out the method for cooling hot rolled rolling stock, with / without direct patenting, in which pressurized water is pressed within a pressure space between accumulation edges onto the hot rolling surface of the rolling stock, the cooling unit coming from the pressure space of a convection cooling part, the convection pressure space between the Accumulation edges, in which heat is withdrawn from the hot rolled rolling stock, primarily by convection, from inflowing pressure water that is pressed onto the hot rolling surface, preferably up to the boiling point of the pressurized water, and from the pressure chamber of an evaporative cooling part, the evaporation pressure chamber between the accumulation edges, 9); 8, in which the rolling stock Heat is further extracted primarily by the heat of vaporization, from the pressure water / steam mixture flowing through and pressed onto the surface of the rolling stock and produced in the convection pressure chamber. See EP-A 0 266 302 not previously published and falling under Art. 54 (3).

Die Abkühlung geformten, heißen, durchlaufenden Produktionsguts beeinflußt die Qualität und Herstellungskosten von Fertigprodukten aus Stahl und Metall wesentlich. Zur Steigerung der Produktionsmenge pro Zeiteinheit beim Stranggieß-, Bandgieß Walzgut und dgl., durch Vergrößern des Fertigproduktgewichts/m und durch Steigern der Produktionsdurchlaufgeschwindigkeit in der Formgebung und Verformung, ist es nützlich ein Verfahren mit Kühlaggregat anzuwenden, daß es ermöglicht, daß die Abkühlung den vielseitigen Anforderungen im Hinblick auf die Qualität des Fertigprodukts, die Intensität des Wärmeentzugs, die Zeitspanne des Wärmeentzugs, die Bandbreite der gewünschten Abkühltemperatur, die reproduzierbare Treffsicherheit der Soll-Abkühltemperaturlinie nach dem ZTU-Schaubild und die Wirtschaftlichkeit gerecht wird.
In den letzten Jahren stieg bei der Herstellung von Warmbreitband die Endwalzgeschwindigkeit auf das 2,5fache, das Bundgewicht auf 45 t und die Kapazität auf 6 Mio. t/Jahr, bei Walzdraht stieg die Endwalzgeschwindigkeit bis auf 120 m/s, das Bundgewicht auf 3000 kg und die Monatserzeugung auf 30.000 t/Walzader (Mommertz, K.H.: "Stahl u. Eisen" 106 (1968) Nr. 6, S. 255/62).
The cooling of shaped, hot, continuous production goods has a significant influence on the quality and manufacturing costs of finished products made of steel and metal. In order to increase the production quantity per unit time in continuous casting, strip casting, rolling stock and the like, by increasing the finished product weight / m and by increasing the production throughput speed in the shaping and deformation, it is useful to use a method with a cooling unit that enables the cooling to take place versatile requirements with regard to the quality of the finished product, the intensity of the heat removal, the time period of the heat removal , the range of the desired cooling temperature, the reproducible accuracy of the target cooling temperature line according to the ZTU diagram and the economy.
In the last few years, the final rolling speed in the production of hot wide strip has increased to 2.5 times, the coil weight to 45 t and the capacity to 6 million t / year, with wire rod, the final rolling speed has increased to 120 m / s and the coil weight to 3000 kg and the monthly production on 30,000 t / rolling core (Mommertz, KH: " Stahl u. Eisen" 106 (1968) No. 6, pp. 255/62).

Das Abkühlen geformten, heißen, durchlaufenden Produktionsguts aus Stahl und Metall erfolgt im wesentlichen durch Tauchen in oder Durchführen durch Wasserbecken, mit Spritzwasser, mit Spritzwasser und Gebläseluft, in Luft und seit 1983 bei Walzdraht und Stabstahl auch in Druckwasser innerhalb von Druckkühlrohren mit verengten Rohrenden (Staurändern), (Krenn, W.: DE-A 16 08 327 und DE-A 19 25 416; Schifferl, H.A., Eggerth, K.und Nöstelthaller, K.: "Berg- und Hüttenmännische Monatshefte", 131. Jahrgang (1986), Heft 11, S. 415/21; Limper, H-G. u. Hoffmann, G.: "Stahl u. Eisen" 105 (1985) Nr. 11, S. 631/37).The cooling of shaped, hot, continuous production goods made of steel and metal takes place essentially by immersion in or passing through water basins, with splash water, with splash water and blown air, in air and since 1983 with wire rod and steel bars also in pressurized water within pressure cooling pipes with narrowed pipe ends ( Accumulation edges), (Krenn, W .: DE-A 16 08 327 and DE-A 19 25 416; Schifferl, HA, Eggerth, K. and Nöstelthaller, K .: " Berg- und Hüttenmännchen Monthly Notebooks", Volume 131 (1986), Issue 11, pp. 415/21; Limper, HG. u. Hoffmann, G .: "Stahl u. Eisen" 105 (1985) No. 11, pp. 631/37).

Beim kritischen Betrachten des Abkühlens geformten, heißen, durchlaufenden Produktionsguts aus Stahl und Metall ist zu bedenken, wie sich die Durchlaufgeschwindigkeiten, die in m/s geläufig sind, auf einen für die Abkühlung noch großen Oberflächen-Längenabschnitt von 1 mm darstellt, da die sich bildenden Dampfkeime beim Entstehen einen Durchmesser haben, der davon nur einen Bruchteil beträgt.When critically examining the cooling of shaped, hot, continuous production items made of steel and metal, it must be considered how the throughput speeds, which are common in m / s, represent a surface length section of 1 mm, which is still large for cooling, since that forming steam nuclei have a diameter which is only a fraction of them.

1 mm Oberflächen-Längenabschnitt läuft bei einer Durchlaufgeschwindigkeit

Figure imgb0001

   durch die Kühlstrecke.
Diese außerordentlich kurze Zeit, s/mm, macht deutlich, daß die Intensität des Wärmeentzugs beim Auftreffen eines Wasserteilchens,bei der Spritz- und Laminarwasserkühlung, auf eine nur mit 15 m/s durchlaufenden Produktoberfläche und druckloser Umgebung nur sehr gering sein kann , weswegen alle Abkühlungen mit Spritz- und Laminarwasser den Einsatz sehr hoher Kühlwassermengen erfordern und bei verschiedenen Anwendungsgebieten schon an ihrer Wirkungs- und Wirtschaftlichkeitsgrenze geraten sind oder es bei zunehmendem Produktgewicht/m und/oder zunehmender Produktdurchlaufgeschwindigkeit durch die Kühlstrecke werden.1 mm surface length section runs at a throughput speed
Figure imgb0001

through the cooling section.
This extraordinarily short time, s / mm, makes it clear that the intensity of the heat removal when a water particle strikes, during spray and laminar water cooling, on a product surface that only runs at 15 m / s and in an unpressurized environment can only be very low, which is why everyone Cooling with spray and laminar water requires the use of very high amounts of cooling water and has already reached its limit of effectiveness and economy in various areas of application, or it becomes with increasing product weight / m and / or increasing product throughput speed through the cooling section.

Bei der Abkühlung von Warmbreitband mit Spritz- und Laminarwasser werden heute Kühlwassermengen in der Größenordnung von 10.000 m³/h und mehr gefahren.In the cooling of hot wide strip with spray and laminar water, cooling water quantities of the order of 10,000 m³ / h and more are used today.

Wie groß weltweit die Schwierigkeit bei der Abkühlung von schnellaufenden Walzdraht aus Hochleistungsdrahtwalzwerken geworden waren, vermittelt ein Fachbericht aus 1982 (Wagner, R. u.a.:"Stahl u Eisen" 102 (1982) Nr. 12, S. 595/99), in dem u.a. sogar gefordert worden war:
   Es wird als wünschenswert angesehen, daß der Walzwerkskonstrukteur neben den unterschiedlichen Luftabkühleinrichtungen endlich unter Nutzung wissenschaftlicher Erkenntnisse eine geeignete und gleichzeitig wirtschaftlich arbeitende Wasserkühlstrecke anbietet.
Das Problem war mit der Abkühlung in Druckwasser innerhalb von Druckkühlrohren mit verengten Rohrenden ab Anfang 1983 gelöst worden (Krenn, W.: DP 16 08 327 und 19 25 416). Ein europäisches Hüttenwerk ließ nach der Umrüstung der Spritzwasser-Kühlstrecken an deren Hochleistungsdrahtwalzwerk, Ende 1983 deren Stabstahlwalzwerk mit einer Abkühlung in Druckwasser innerhalb von Druckkühlrohren aus rüsten (Schifferl,H.A. u.a.: "Berg- und Hüttennlännische Monatshefte", 131. Jahrgang (1986) Heft 11, S. 418).
A specialist report from 1982 (Wagner, R. et al.: " Stahl u Eisen" 102 (1982) No. 12, pp. 595/99), in which, shows how great the worldwide difficulty in cooling high-speed wire rod from high-performance wire rod mills had become was even requested:
It is considered desirable that, in addition to the different air cooling devices, the mill designer finally offers a suitable and economically working water cooling section using scientific knowledge.
The problem was solved with cooling in pressurized water within pressure cooling pipes with narrow pipe ends from the beginning of 1983 (Krenn, W .: DP 16 08 327 and 19 25 416). A European iron and steel mill left the high-performance wire rod mill after the retrofitting of the spray water cooling sections, and in late 1983 theirs Equip a steel bar mill with cooling in pressurized water within pressure cooling tubes (Schifferl, HA et al.: " Berg- und Hüttennlännchen monthly booklets", 131st year (1986) issue 11, p. 418).

1986 wurde von der Abkühlung walzwarmen Walzdrahts, der auf einem Transportband ausgefächert mit Gebläseluft abgekühlt wird, berichtet, daß das Gefüge in jeder einzelnen Windung des Walzdrahtbunds ungleichmäßig ist, da von jeder Windung die beiden Teilstücke die im Bereich der Mitte des Transportbands liegen rascher abkühlen als die Teilstücke die an den beiden Außenseiten des Transportbands liegen (Hoss, K-F.: "Stahl u. Eisen" 106 (1986) Nr. 7, S. 313/16). Um die negative Auswirkung dieser Abkühlung der ausgefächerten Windungen in Gebläseluft zu vermeiden oder zu verringern, sollte die Abkühlung in Druckwasser auf eine so niedrige Abkühltemperatur, ohne in den Martensitbereich zu kommen, gefahren werden können, daß eine Abkühlung mit Gebläseluft entfallen kann. Wo dies qualitätsbedingt nicht möglich, ist die Abkühlung in Druckkühlaggregaten tiefstmöglich zu fahren, damit der Mangel aus der Abkühlung mit Gebläseluft verringert werden kann. Mit dem in der EP-A 0 266 302 beschriebenen Verfahren mit Druckkühlaggregat ist es möglich eine Abkühltemperatur zu fahren die schon näher an der qualitätsabhängigen Martensitlinie im ZTU.Schaubild liegen kann. Die genannten außerordentlich kurzen Zeiten, die für die thermischen Abläufe im Druckkühlaggregat zur Verfügung stehen, die unbekannten, unbenannten Imponderabilien beim Ablauf des Wärmeentzugs innerhalb des dreiteiligen druckwasserdurchströmten Druckraum des Druckkühlaggregats, lassen befürchten, daß die Führung der Abkühlung, nur über den einen gesteuerten Zustrom des Druckwassers in den Konvektions-Druckraum, nicht ausreichen könnte.In 1986, it was reported from the cooling of warm-rolled wire rod, which is fanned out on a conveyor belt with blown air, that the structure in each individual turn of the wire rod coil is uneven, since the two sections of each turn that lie in the area of the center of the conveyor belt cool faster than the sections that lie on the two outer sides of the conveyor belt (Hoss, KF .: " Stahl u. Eisen" 106 (1986) No. 7, pp. 313/16). In order to avoid or reduce the negative effect of this cooling of the fan-out windings in the fan air, the cooling in pressurized water should be able to be brought to a cooling temperature which is so low that it does not get into the martensite area so that cooling with fan air can be dispensed with. Where this is not possible due to quality, the cooling in pressure cooling units should be run as deeply as possible so that the shortage from cooling with blower air can be reduced. With the method described in EP-A 0 266 302 with a pressure cooling unit, it is possible to drive a cooling temperature which may already be closer to the quality-dependent martensite line in the ZTU diagram. The aforementioned extremely short times, which are available for the thermal processes in the pressure cooling unit, the unknown, unnamed imponderables when heat is removed within the three-part pressure chamber of the pressure cooling unit through which pressure water flows, lead to fears that the cooling will only be conducted via the one controlled inflow of the Pressure water in the convection pressure chamber, could not be sufficient.

Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren mit Druckkühlaggregat zu entwickeln mit dem der Wärmeentzug bei der Abkühlung geformten, heißen, durchlaufenden Produktionsguts aus Stahl und Metall in Druckwasser innerhalb eines Druckkühlaggregats, so geführt werden kann, daß damit der überwiegende Teil des Produktionsguts aus Stahl und Metall mit gesteigerter metallurgischer und temperaturmäßiger Treffsicherheit, größerer Gleichmäßigkeit über die Breite und Länge des abzukühlenden Produktionsguts und besserer Wirtschaftlichkeit abgekühlt werden kann.The invention has for its object to develop a method with a pressure cooling unit with which the heat removal during the cooling shaped, hot, continuous production goods made of steel and metal in pressurized water within a pressure cooling unit can be performed so that the majority of the production goods made of steel and metal can be cooled with increased metallurgical and temperature accuracy, greater uniformity across the width and length of the items to be cooled and better economy.

Die Aufgabe wird erfindungsgemäß zum einen dadurch gelöst, daß zum Abkühlen walzwarmen Walzguts, mit/ohne Direktpatentieren, bei dem Druckwasser innerhalb eines Druckraums zwischen Stauränder auf die walzwarme Walzgutoberfläche gedrückt wird, wobei das Kühlaggregat mit einer Menge Druckwasser beaufschlagt wird, die vorzugsweise mit der dem Walzgut zu entziehenden Menge Wärme im Gleichgewicht steht, um mit dem Wärmeentzug durch das Erwärmen des Druckwassers im Druckraum eines Konvektionskühlteils, und dem Wärmeentzug durch die an ein Druckwasser-Dampf-Gemisch abgegebene Verdampfungswärme im Druckraum eines Verdampfungskühlteils (2), vorzugsweise bis an den Siedepunkt des Druckwassers, die gewünschte Abkühltemperatur des Walzgutes erreicht wird und dabei die Abkühlung in Druckwasser und im Druckwasser-Dampf-Gemisch steuerbar ist. und wobei der Wärmeentzug, im Konvektionskühlteil und im Verdampfungskühlteil des Druckraums im Druckkühlaggregat, außer mit der vorgegebenen einströmenden Kühldruckwasser-Menge und der geregelt einströmenden Führungsdruckwasser-Menge in den Konvektionskühlteil, mit einer zusätzlichen, geregelt einströmenden Führungsdruckwasser-Menge in den Verdampfungskühlteil und weiter mit einer, im Bereich des hohen Dampf-Anteils in dem den Verdampfungskühlteil durchströmenden Heißwasser-Dampf-Gemisch, dosiert einströmenden Kondensationsdruckwasser-Menge, geführt wird.The object is achieved, on the one hand, in that for cooling hot rolled rolling stock, with / without direct patenting, in the pressurized water within a pressure space between accumulation edges is pressed onto the hot rolled rolling stock surface, the cooling unit being pressurized with a quantity of pressurized water, preferably with that The amount of heat to be removed from the rolling stock is in equilibrium with the heat removal by heating the pressurized water in the pressure chamber of a convection cooling part and the heat removal by the evaporation heat given off to a pressurized water / steam mixture in the pressure chamber of an evaporative cooling part (2), preferably to the boiling point of the pressurized water, the desired cooling temperature of the rolling stock is reached and the cooling in pressurized water and in the pressurized water-steam mixture can be controlled. and wherein the heat extraction, in the convection cooling part and in the evaporative cooling part of the pressure chamber in the pressure cooling unit, except with the predetermined inflowing amount of cooling pressure water and the regulated inflow of guide pressure water into the convection cooling section, with an additional, regulated inflow of guide pressure water into the evaporative cooling section and further with a, in the area of the high steam proportion in the hot water-steam mixture flowing through the evaporative cooling section, metered inflow of condensation pressure water , to be led.

Die Lösung der Rufgabe erfolgt auch durch ein Kühlaggregat zur Durchführung des Verfahrens nach Anspruch 1 zum Abkühlen walzwarmen Walzguts, mit/ohne Direktpatentieren, bei dem Druckwasser innerhalb eines Druckraums zwischen Stauränder auf die walzwarne Walzgutoberfläche gedrückt wird, wobei das Kühlaggregat aus dem Druckraum eines Konvektionskühlteils, dem Konvektions-Druckraum zwischen den Staurändern, besteht, in dem dem walzwarmen Walzgut, vornehmlich durch Konvektion, von einströmendem und auf die walzwarme Walzgutoberfläche gedrücktem Druckwasser Wärme, vorzugsweise bis an den Siedepunkt des Druckwassers, entzogen wird und aus dem Druckraum eines Verdampfungskühlteils, dem Verdampfungs-Druckraum (2) zwischen den Staurändern in dem dem Walzgut vornehmlich durch die Verdampfungswärme, vom durchströmenden und auf die Walzgutoberfläche gedrückten, im Konvektions-Druckraum erzeugten Druckwasser-Dampf-Gemisch, weiter Wärme entzogen wird, und wobei außer der Kühl- und Führungs-Druckwassereinströmung in den Konvektionskühlteil im Verdampfungskühlteil weitere Führungs-Druckwassereinströmungen und Kondensations-Druckwassereinsströmungen angeordnet sind.The call is also resolved by a cooling unit for carrying out the method according to claim 1 for cooling hot rolled rolling stock, with / without direct patenting, in which pressurized water within a pressure chamber is pressed between the accumulation edges onto the rolling roll surface, the cooling unit coming from the pressure chamber of a convection cooling part, the convection pressure space between the accumulation edges, in which heat is withdrawn from the hot rolled material, primarily by convection, from inflowing pressure water pressed into the rolled material surface, preferably up to the boiling point of the pressure water, and from the pressure space of an evaporative cooling part, the evaporation -Pressure space (2) between the accumulation edges in the rolling stock, primarily by the evaporation heat, from the flowing through and pressed onto the rolling stock surface, generated in the convection pressure chamber, heat-steam mixture, and besides the cooling- and guide pressurized water inflow into the convection cooling section in the evaporative cooling section, further guide pressurized water inflows and condensation pressurized water inflows are arranged.

Als Konvektionskühlteil ist der Teil des Druckraums im Druckkühlaggregat bezeichnet, in dem das Kühl-Druckwasser und das Führungs-Druckwasser einströmen und dem Produktionsgut Wärme entziehen.
Als Verdampfungskühlteil ist der Teil des Druckraums im Druckkühlaggregat bezeichnet, in dem das vom Konvektionskühlteil einströmende Druckwasser als Heißwasser-Dampf-Gemisch, geführt mit dem Kondensations-Druckwasser, dem Produktionsgut weiter Wärme entzieht.
The part of the pressure chamber in the pressure cooling unit in which the cooling pressurized water and the guide pressurized water flow in and extract heat from the production goods is referred to as the convection cooling part.
The evaporative cooling part is the part of the pressure chamber in the pressure cooling unit in which the pressurized water flowing in from the convection cooling part, as a hot water-steam mixture, conducted with the condensed pressurized water, further extracts heat from the product.

Kühl-Druckwasser ist vorgegebenes Druckwasser, daß als Grundlast des Wärmeentzugs dient.
Führungs-Druckwasser ist geregeltes Druckwasser, daß der Führung des Wärmeentzugs und des Wärmeentzugs bis zur Erwärmung des Druckwassers bis an die Siedetemperatur dient.
Kondensations-Druckwasser ist dosiertes Druckwasser, daß der Führung des Grads des Verdampfens (des Dampf-Anteils im Heißwasser-Dampf-Gemisch) dient.
Der Druckraumteil in den die Hauptmenge des Druckwassers einströmt, in der Regel der mittlere, wird als Konvektions-Druckraum bezeichnet, auch wenn das Druckkühlaggregat nur einen einzigen Druckraumteil aufweist. Alle übrigen Druckraumteile werden mit Verdampfungs-Druckraum bezeichnet, gleichgültig ob verfahrensmäßig der Wärmeentzug darin überwiegend durch Verdampfen oder durch Konvektion erfolgt Einlaufstaurand ist der Staurand eines Druckraums durch den das durchlaufende Produktionsgut in die einzelnen Druckräume einläuft.
Einströmstaurand ist der Staurand eines Druckraums durch den das Druckwasser/Heißwasser-Dampf-Gemisch in die einzelnen Druckräume einströmt.
Cooling pressurized water is specified pressurized water that serves as the base load for heat extraction.
Leading pressurized water is regulated pressurized water that is used to guide the removal of heat and the removal of heat until the pressurized water is heated to the boiling point.
Condensed pressurized water is metered pressurized water that serves to control the degree of evaporation (the proportion of steam in the hot water / steam mixture).
The part of the pressure chamber into which the main amount of the pressurized water flows, usually the middle part, is referred to as the convection pressure chamber, even if the pressure cooling unit has only a single part of the pressure chamber. All other parts of the pressure chamber are referred to as the evaporation pressure chamber, irrespective of whether the heat is extracted therein mainly by evaporation or by convection. The water accumulation edge is the accumulation edge of a pressure chamber through which the product to be produced flows into the individual pressure chambers.
The inflow dam edge is the storage edge of a pressure chamber through which the pressurized water / hot water / steam mixture flows into the individual pressure chambers.

Um den Druckwasserstrom für die Abkühlung mit dem erfindungsgemäßen Druckkühlaggregat verfahrensmäßig so führen zu können, daß der gewählte, produkt- und qualitätsbezogene Abkühlverlauf eintreten und das Druckkühlaggregat funktionsfähig gehalten werden kann, ist die anlagemäßige Ausbildung so,

  • daß wie in den Kühl- und Führungs-Druckwasser-Zuleitungen auch in den Kondensations-Druckwasser-Zuleitungen durchflußregelbare Ventile mit Stellglieder angeordnet sind,
  • daß in jedem Druckraum, in Produktdurchlaufrichtung gesehen vor dem Auslaufstaurand, eine gekoppelte Wasserschlag-Sicherung und Wasserabsaugeeinrichtung angeordnet ist, die beim Einlaufen mittleren und schweren Produktionsguts das Druckkühlaggregat- vor Zerstörung schützt und durch Absaugen des Kühlwasser-Rests in den Produktdurchlaufpausen das Ausbrechen leichten Produktionsguts verhindert,
  • daß in Druckräumen eine durchflußregelbare HeißwasserDampf-Gemisch-Entnahmeeinrichtung angeordnet ist, die die Verwendung des Heißwasser-Dampf-Gemisches außerhalb des Abkühlverfahrens ermöglicht,
  • daß der Querschnitt des Druckkühlaggregats in allen seinen Druckraumteilen und Staurändern der Querschnittsform des abzukühlenden Produktionsguts angepaßt ist.
  • daß in einem Druckkühlaggregat mit nur einem einzigen Konvektions-Druckraum, die Kühl- und Führungs-Druckwasser-Einströmungen mittig in den Druckraum und die Kondensations-Druckwasser-Einströmungen vor den Staurändern an den Druckraum-Enden angeordnet sind,
  • daß in ein Druckkühlaggregat mit nur einem einzigen Konvektions-Druckraumdie Kühl- und Führungs-Druckwasser-Einströmungen im Bereich des Staurands an den einen Druckraum-Ende und die Kondensations-Druckwasser-Einströmungen am anderen angeordnet sind,
  • daß die Kühl- und Führungs-Druckwasser-Einströmungen im Konvektions-Druckraum und die Kondensations-DruckwasserEinströmungen in einem oder mehreren Verdampfungs-Druckräumen angeordnet sind,
  • daß die Kühl- und Führungs-Druckwasser-Einströmungen im Konvektions-Druckraum, weitere Führungs-Druckwasser-Einströmungen in einem oder mehreren Verdampfungs-Druckräume und die Kondensations-Druckwasser-Einströmungen in einem oder mehreren Verdampfungs-Druckräumen angeordnet sind,
  • daß der Vordruck des Druckwassers, bei schwerem Produktionsgut gegenüber bei leichtem, dem Gewicht/m und dem Produktionsgut-Querschnitt entsprechend, verfahrensmäßig so angehoben wird und die Verengung in den Staurändern aggregatsmäßig so verlängert wird, daß die Stauränder auch da als wassergeschmierte Gleitlager wirken, um die Produktoberfläche zu schonen,
  • daß verfahrensmäßig der Wärmeentzug, innerhalb eines Druckkühlaggregats mit mehrteiligem Druckraum, durch die Wahl des Verhältnisses der Einström-Stellen und der Einstöm-Mengen des Druckwassers, sowohl mit einem qualitätsbezogen maximalen Wärmeübergangswert als auch mit einem druckkühlaggregatsbezogenen minimalen, innerhalb einer vergleichweise großen Länge des Druckkühlaggregats mit einer vergleichsweise engen Bandbreite in der Abkühltemperatur, gefahren werden kann.
In order to be able to process the pressure water flow for cooling with the pressure cooling unit according to the invention in such a way that the selected, product- and quality-related cooling process occurs and the pressure cooling unit can be kept functional, the systematic training is such that
  • that, as in the cooling and guide pressurized water supply lines, flow-regulating valves with actuators are also arranged in the condensation pressurized water supply lines,
  • that in each pressure chamber, as seen in the product flow direction, a coupled water hammer protection and water suction device is arranged, which protects the pressure cooling unit against destruction when medium and heavy production goods run in and prevents the break-out of light production goods by sucking off the cooling water residue in the product flow breaks ,
  • that a flow-controllable hot water / steam mixture extraction device is arranged in pressure rooms, which enables the use of the hot water / steam mixture outside of the cooling process,
  • that the cross section of the pressure cooling unit in all its pressure chamber parts and baffle edges is adapted to the cross-sectional shape of the product to be cooled.
  • that in a pressure cooling unit with only a single convection pressure chamber, the cooling and guide pressurized water inflows are arranged centrally in the pressure chamber and the condensation pressurized water inflows in front of the accumulation edges at the pressure chamber ends,
  • that in a pressure cooling unit with only a single convection pressure chamber, the cooling and guide pressurized water inflows in the area of the accumulation rim are arranged at one end of the pressurized chamber and the condensation pressurized water inflows are arranged at the other,
  • that the cooling and guiding pressurized water inflows in the convection pressure chamber and the condensing pressurized water inflows are arranged in one or more evaporation pressure rooms,
  • that the cooling and guide pressurized water inflows are arranged in the convection pressure chamber, further guide pressurized water inflows in one or more evaporation pressure rooms and the condensation pressurized water inflows in one or more evaporation pressure rooms,
  • that the pre-pressure of the pressurized water, in the case of heavy production goods compared to light ones, corresponding to the weight / m and the cross-section of the production goods, is procedurally raised and the constriction in the accumulation edges is lengthened so that the accumulation edges also act as water-lubricated plain bearings to protect the product surface,
  • that procedurally the heat removal, within a pressure cooling unit with a multi-part pressure chamber, through the choice of the ratio of the inflow points and the inflow quantities of the pressurized water, both with a quality-related maximum heat transfer value as well as with a pressure cooling unit-related minimum, within a comparatively long length of the pressure cooling unit with a comparatively narrow range in the cooling temperature.

Die mit der Erfindung erzielten Vorteile bestehen insbesondere darin, daßmit dem erfindungsgemäßen Verfahren mit Druckkühlaggregat ein Großteil der geformten, heißen, durchlaufenden Produktionsgüter überhaupt geführt abgekühlte werden können, daß damit die gewünschten Abkühlintensitätsfolgen produkt-, abmessungs-, qualitäts- und zeitfolgegerecht mit vergleichweise sehr geringer Temperatur-Bandbreite gefahren werden können, so daß sich im Fertigprodukt keine unerwünschten Gefügebestandteile bilden können und daß dafür nur eine vergleichsweise geringe Druckwassermenge erforderlich ist.The advantages achieved by the invention are, in particular, that with the method according to the invention with a pressure cooling unit, a large part of the shaped, hot, continuous production goods can be cooled at all in a guided manner, so that the desired consequences of cooling intensity in accordance with the product, dimensions, quality and timing are comparatively very low Temperature range can be driven so that no undesirable structural components can form in the finished product and that only a comparatively small amount of pressurized water is required for this.

Er ist derzeit keine Veröffentlichung zugänglich, die die Phänomene beim Entziehen der Wärme aus geformten, heißen, durchlaufenden Produktionsgut aus Stahl und Metall, in einem Druckraum durch Druckwasser, im einzelnen beschreibt; an Hand von Meßschrieben werden unterschiedliche Abläufe beim Entziehen der Wärme aus einem walzwarmen Walzgut in Druckwasser innerhalb verschieden langer Druckkühlaggregate mit nur einem einzigen Druckraum und Stauränder an den Druckraum-Enden beschrieben.There is currently no publication available that describes in detail the phenomena involved in extracting heat from shaped, hot, continuous production goods made of steel and metal, in a pressure chamber by pressurized water; On the basis of measuring records, different processes for extracting the heat from a hot rolled rolling stock in pressurized water within differently long pressure cooling units with only a single pressure chamber and accumulation edges at the ends of the pressure chamber are described.

Die Meßschriebe in Fig. 5 - 6 und Fig. 7-8 zeigen, daß die Abkühltemperatur in dein Maße stabil wird, wie die Menge des durchströmenden Druckwassers in Verhältnis zur Druckraum-Länge zunimmt.
Anders ausgedrückt, die Abkühltemperatur wird in dem Maße stabil, wie im Verhältnis zur Menge des durchströmenden Druckwassers, der Abstand zwischen den Staurändern abnimmt, der Druckraum kürzer wird. Die Meßschriebe in der Folge Fig. 7 - Fig. 6, mit den Druckraum-Längen 3 - 1, bei den Druckwasser-Mengen 10 11 (dürfen für diese Betrachtung als gleich gelten), bestätigen diese Schlußfolgerung. Die Zahlen zur Druckraum-Länge und Druckwasser-Menge sind Verhältniszahlen.
The measurement records in Fig. 5-6 and Fig. 7-8 show that the cooling temperature becomes stable to the extent that the amount of pressure water flowing through increases in relation to the length of the pressure chamber.
In other words, the cooling temperature becomes stable to the extent that, in relation to the amount of pressurized water flowing through, the distance between the damming edges decreases and the pressure chamber becomes shorter. The measurement records in the sequence Fig. 7 - Fig. 6, with the pressure chamber lengths 3 - 1, with the pressurized water quantities 10 11 (may be considered as apply equally) confirm this conclusion. The numbers for the length of the pressure chamber and the amount of pressure water are ratio numbers.

Würde der Druckraum nach Meßschrieb Fig. 6 als Konvektions-Druckraum zwischen zwei Verdampfungs-Druckräume angeordnet sein und der darin wirksame Wärmeübergangswert in den beiden anschließenden Verdampfungs-Druckräumen nur gleich hoch sein, würde das abgekühlte Produktionsgut größenordnungsmäßig eine Abkühltemperatur um 350 °C bekommen, würde das erfindungsgemäß einströmende Kondensations-Druckwasser die Abkühlintensität in den Verdampfungs-Druckräumen nicht auf z.B 550 °C begrenzen. In der Praxis würde man die einströmende Druckwassermenge verkleinern, um nicht die Wirkung des Wäremeentzugs durch die Verdampfungswärme durch eine höhere Kondensations-Druckwassermenge begrenzen zu müssen.If the pressure chamber according to measurement chart Fig. 6 were arranged as a convection pressure chamber between two evaporation pressure rooms and the effective heat transfer value in the two subsequent evaporation pressure rooms were only the same, the cooled product would have a cooling temperature of around 350 ° C in the order of magnitude the condensation water flowing in according to the invention does not limit the cooling intensity in the evaporation pressure spaces to, for example, 550 ° C. In practice, the inflowing amount of pressurized water would be reduced in order not to have to limit the effect of heat removal by the heat of evaporation by a higher amount of condensed pressurized water.

Für die Darstellung der Wärmeübergangszahlα wird das allgemein bekannte Diagramm, Fig. 9, der Abhängigkeiten beim Behältersieden, als Darstellungshilfe, herangezogen.
Die Meßschriebe in Fig. 6 zeigen einen Wärmeentzug bei einem α-Wert von 100400 kJ/m³.h.°C (Punkt X). Bei zunehmender Verdampfung des Heißwasser-Dampf-Gemisches strebt der α-Wert selbstfahrend seinem Maximum (Punkt Y) zu, um anschließend stark abzufallen auf den Wert des Punktes Z. Durch die Zugabe kalten Kondensations-Druckwasser im Verdampfungskühlteil des Druckkühlaggregats wird die Dichte des Heißwasser-Dampf-Gemisches erhöht, wodurch der α-Wert an seinem selbstfahrenden Ansteigen geführt angehalten, stabilisiert oder gesenkt wird. Durch ebenso dosiertes Verringern der Kondensations-Druckwassermenge wird der α-Wert wieder erhöht.
For the representation of the heat transfer coefficient α, the generally known diagram, FIG. 9, of the dependencies during container boiling, is used as a representation aid.
The measurement records in Fig. 6 show a heat removal at an α value of 100400 kJ / m³.h. ° C (point X). With increasing evaporation of the hot water-steam mixture, the α value self-propelled reaches its maximum (point Y) and then drops sharply to the value of point Z. The addition of cold condensed pressurized water in the evaporative cooling section of the pressurized cooling unit increases the density of the hot water -Vapor mixture increased, whereby the α value is stopped, stabilized or reduced in a guided manner on its self-propelled increase. The α value is increased again by reducing the amount of condensed water under pressure in the same way.

Mit dem erfindungsgemäßen Druckkühlaggregat wird der Wärmeentzug bis zum α-Wert X primär mit dem Führungs-Druckwasser geführt und mit dem Kondensations-Druckwasser an diesem Wert stabilisiert und bei Veränderung der Eingangswerte an diesen Wert führend gehalten, so daß es möglich ist jeden, physikalisch in Druckwasser möglichen, produkt-, abmessungs- und qualitätsbezogenen Abkühlvorgang, bei geformten, heißen, durchlaufenden Produktionsgut, mit vergleichweise geringer Abkühltemperatur-Bandbreite und geringer Druckwassermeng, geführt ablaufen lassen zu können.With the pressure cooling unit according to the invention, the heat removal up to the α value X is primarily carried out with the guide pressure water and stabilized at this value with the condensation pressure water and held at this value when the input values change, so that it is possible for everyone to physically in Pressure water, product, dimension and quality-related cooling process, with molded, hot, continuous production goods, with a comparatively small cooling temperature range and a small amount of pressurized water.

Drei Ausführungsbeispiele der Erfindung sind in der Zeichnung anlagen- und verfahrensschematisch dargestellt und werden im folgenden beschrieben. Es zeigen

Fig. 1
ein Druckkühlaggregat mit einem einzigen Druckraum,
Fig. 2
den Ablauf des Wärmeentzugs mit geführter Verdampfung, in vereinfachter, schematischen Darstellung,
Fig. 3
ein Druckkühlaggregat mit drei Druckräume und
Fig. 4
ein Druckkühlaggregat mit fünf Druckräume.
Three exemplary embodiments of the invention are shown schematically in the drawing in terms of the system and process and are described below. Show it
Fig. 1
a pressure cooling unit with a single pressure chamber,
Fig. 2
the process of heat extraction with guided evaporation, in a simplified, schematic representation,
Fig. 3
a pressure cooling unit with three pressure rooms and
Fig. 4
a pressure cooling unit with five pressure rooms.

Fig. 1 und 2: In das Druckkühlaggregat (1) mit einem einzigen Druckraum (2), den Staurändern (3) und (4), auch Einlauf- und Auslaufstaurand genannt, strömt durch die Einströmungen (5) und (6) das Kühl- und Führungs-Druckwasser über die Ventile mit Stellglied (13) und (14), aus den Druckwasserzuleitungen (10) und (11) in den Druckraum (2) ein.
Im Konvektionskühlteil (8) wird das Kühl- und Führungs-Druckwasser vorzugsweise auf seine Siedetemperatur erwärmt, das als Heißwasser-Dampf-Gemisch in den Verdampfungskühlteil (9) strömt, in dem mit dem durch die Einströmung (7), in den Druckraum (2), über das Ventil mit Stellglied (15), aus der Druckwasserzuleitung (12), einströmende Kondensations-Druckwasser die zunehmende, selbstfahrende Verdampfung (SV), durch das dosiert einströmende Kondensations-Druckwasser,in eine geführte Verdampfung (GV), an dem produkt-, abmessungs- und qualitätsbezogen führbaren Verdampfungs-Führungs-Punkt (VF), umgewandelt wird. Um zu vermeiden, daß Produktionsgut - leichtes ausgenommen - beim Einlaufen in das wassergefüllte Druckkühlaggregat dieses durch Wasserschlag beschädigt und daß das leichte Produktionsgut dabei ausbricht, ist lagebedingt in jedem Druckraum eine nützlicherweise mit einer Wasserabsaugeenricht gekoppelte Wasserschlagsicherung (19) angeordnet, die in den Durchlaufpausen und bis zu dem Zeitpunkt zu dem der Anfang des durchlaufenden Produktionsguts den Auslaufstaurand des betreffenden Druckraums erreicht hat, Wasser absaugt.
Beim Wärmeentzug bei mittleren und schwerem Produktionsgut entsteht eine größere Menge Heißwasser-Dampf-Gemisch, es kann daher nützlich sein in einzelnen Druckräumen eine Heißwasser-Dampf-Gemisch Entnahmeeinrichtung (20) anzuordnen.Soll bei zwei oder mehr hintereinander angeordneten Druckkühlaggregaten der Luftzutritt zu der abzukühlenden Produktoberfläche zwischen diesen unterbunden werden, so wird dieser Zwischenraum mit einer verschiebbaren Wasserstaumuffe (21) überdeckt.
1 and 2: In the pressure cooling unit (1) with a single pressure chamber (2), the accumulation edges (3) and (4), also called the inlet and outlet stowage edge, the cooling flows through the inflows (5) and (6) - And guide pressurized water via the valves with actuator (13) and (14), from the pressurized water supply lines (10) and (11) into the pressure chamber (2).
In the convection cooling part (8), the cooling and guiding pressurized water is preferably heated to its boiling temperature, which flows as a hot water-steam mixture in the evaporative cooling part (9), in which the pressure through the inflow (7) into the pressure chamber (2 ), via the valve with actuator (15), from the pressurized water supply line (12), inflowing condensed pressurized water the increasing, self-propelled evaporation (SV), through the metered inflowing condensed pressurized water, into a guided evaporation (GV) on the product -, dimension and quality-based evaporation guide point (VF) is converted. In order to prevent production goods - except for light items - from being damaged by water hammer when entering the water-filled pressure cooling unit and that the light production goods break out, a water hammer protection device (19), which is usefully coupled to a water suction device, is arranged in each pressure chamber, which is arranged during the breaks and sucks water up to the point in time at which the beginning of the production goods which have passed through has reached the outlet stowage edge of the pressure chamber in question.
When heat is removed from medium and heavy production goods, a large amount of hot water / steam mixture is created, so it may be useful to arrange a hot water / steam mixture extraction device (20) in individual pressure rooms. If two or more pressure cooling units are arranged one behind the other, the air should be admitted to the one to be cooled Product surface between these are prevented, so this space is covered with a sliding water dam (21).

Fig. 3: In das Druckkühlaggregat (1) strömt in den Konvektions-Druckraum (8.1), mit den Staurändern (3) und (4), durch die Einströmung (16), das Kühl- und Führungs-Druckwasser gemeinsam über das Ventil mit Stellglid (18), aus der Druckwasserzuleitung (17) ein, wird dort vorzugsweise auf seinen Siedepunkt erwärmt und strömt als Heißwasser-Dampf-Gemisch über die Stauränder (3) und (4) in die Verdampfungs-Druckräume (9.1) und (9.2) und strömt von dort, dem Produktionsgut durch die Verdampfungswärme Wärme entziehend, durch die Stauränder (3.1) und (4.1) aus dem Druckkühlaggregat.
Das Verfahren des Abkühlens mittleren Produktionsguts, ab dem zweiten Abkühlvorgang: Im Moment des Auslaufes des vorher durchgelaufenen Produktionsguts wird der Zustrom des Kühl- und Führungs-Druckwassers durch die Einströmungen (5) und (6) bzw. (16) sowie durch (6.1) und (6.2) auf einen Mindestwert zurückgefahren und die Wasserabsaugeeinrichtung der kombinierten Wasserschlagsicherung mit Wasserabsaugeeinrichtung (19), (19.1) und (19.2) impulsgesteuert eingeschaltet, so daß das Wasser in den Druckräumen drucklos und abgesaugt wird.
Das Produktionsgut läuft in das Druckkühlaggregat ein, übersteigt der momentan dabei entstehende Wasserdruck in einem Druckraum ein bestimmtes Maß, sprechen die Wasserschlagsicherungen (19.1), (19) und (19.2) an, sobald der Anfang des Produktionsguts den jeweiligen Auslaufstaurand (3), (4) und (4.1) der Druckräume (9.1), (8.1) und (9.2) erreicht hat, schaltet die jeweilige Wasserschlagsicherung und Wasserabsaugeeinrichtung (19.1), (19) und (19.2) ab, gleichzeitig werden die Einströmungen (7.1), (6.1), (5), (4) bzw. (16), (6.2) und (7.2) mit der zuständigen Soll-Druckwassermenge, produkt-, abmessungs- und qualitätsbezogen, beaufschlagt. Die im Rezept angegebene Soll-Druckwassermenge steht im Sekundenbruchteil an der geformten, heißen, durchlaufenden Produktionsgut-Oberfläche an und entzieht ihr Wärme. Liegt die nach dem Druckkühlaggregat gemessene Abkühltemperatur dabei zu hoch, werden der Reihe nach vorzugsweise die Einströmungen (5) bzw. (16), (6.1) und (6.2) höher gefahren bis die Soll-Abkühltemperatur erreicht ist.
   In diesem Augenblick begrenzt das durch die Einströmungen (7.1) und (7.2) einströmende Kondensations-Druckwasser bereits schon führend den Grad der Verdampfung des Heißwasser-Dampf-Gemisches an dem Verdampfungs-Führungspunkt VF, die sonst bis zu den Ausströmstaurändern (3.1) und (4.1) selbstfahrend bis zum willkürlichen Punkt SV ansteigen würde, so daß die gewünschte Soll-Abkübltemperatur am Schreiber anliegt.
   Weichen während des Durchlaufs des Produktionsguts physikalische Eingangsdaten von diesen augenblicklich anliegenden Daten ab, durch Schwanken der Einlauftemperatur, durch Verändern der Durchlaufgeschwindigkeit, durch Wechsel der Zunderbeschaffenheit u.a.m., wird durch dosierte Veränderung der Zuströmmenge des Kondensations-Druckwassers,der Verdampfungs-Führungspunkt VF vor oder zurück geschoben und so der Grad der Verdampfung geführt.
Erreicht die beim Wärmeentzug entstehende Heißwasser-Dampf-Gemisch-Menge eine festgelegte Menge, so wird vorzugsweise eine festgelegte Teilmenge über die Heißwasser-Dampf-Gemisch-Entnahmeeinrichtung (20.1) und (20.2), für eine Verwendung außerhalb dieses Abkühlverfahrens, dem Druckkühlaggregat (1) entnommen. Um den Verschleiß der Stauränder gering zu halten, ist es nützlich den Vordruck des Druckwassers bei der Abkühlung schwerer werdenden Produktionsguts anzuheben und die Verengungen in den Staurändern so zu verlängern, daß die Stauränder (3.1), (3), (4) und (4.1) auch als wassergeschmierte Gleitlager wirken.
Fig. 3: In the pressure cooling unit (1) flows into the convection pressure chamber (8.1), with the accumulation edges (3) and (4), through the inflow (16), the cooling and guiding pressure water together with the valve Stellglid (18), from the pressurized water supply line (17), is preferably heated there to its boiling point and flows as a hot water / steam mixture over the accumulation edges (3) and (4) into the evaporation pressure chambers (9.1) and (9.2) and flows from there, extracting heat from the production goods through the heat of vaporization, through the accumulation edges (3.1) and (4.1) from the pressure cooling unit.
The process of cooling medium-sized production goods, starting with the second cooling process: at the moment of the discharge of the previously passed production goods, the inflow of the cooling and guide pressurized water is caused by the inflows (5) and (6) or (16) and by (6.1) and (6.2) reduced to a minimum value and the water suction device of the combined water hammer protection with water suction device (19), (19.1) and (19.2) switched on in a pulse-controlled manner, so that the water in the pressure chambers is depressurized and suctioned off.
The production goods run into the pressure cooling unit.If the water pressure currently occurring in a pressure room exceeds a certain level, the water hammer protection devices (19.1), (19) and (19.2) respond as soon as the beginning of the production goods reaches the respective outlet storage rim (3), ( 4) and (4.1) of the pressure chambers (9.1), (8.1) and (9.2), the respective water hammer protection and water suction device (19.1), (19) and (19.2) switches off, at the same time the inflows (7.1), ( 6.1), (5), (4) or (16), (6.2) and (7.2) with the relevant target pressure water quantity, product, dimension and quality related. The target pressure water quantity specified in the recipe is applied to the shaped, hot, continuous surface of the production goods in a split second and extracts heat from it. If the cooling temperature measured after the pressure cooling unit is too high, the inflows (5) or (16), (6.1) and (6.2) are preferably increased in sequence until the target cooling temperature is reached.
At this moment, the condensed pressure water flowing in through the inflows (7.1) and (7.2) is already leading the degree of evaporation of the hot water-steam mixture at the evaporation guide point VF, which would otherwise reach the outflow dam edges (3.1) and ( 4.1) would drive self-driving to the arbitrary point SV, so that the desired target cooling temperature is applied to the recorder.
If physical input data deviate from the data currently present during the passage of the production goods, by fluctuations in the inlet temperature, by changing the throughput speed, by changing the nature of the scale, etc., this is done by metered changes the amount of inflow of the condensation water, the evaporation guide point VF pushed back or forth and thus the degree of evaporation.
If the amount of hot water-steam mixture generated during heat extraction reaches a specified amount, then a specified partial amount is preferably used via the hot water-steam mixture removal device (20.1) and (20.2) for use outside of this cooling process, the pressure cooling unit (1 ). In order to keep the wear of the baffle edges low, it is useful to increase the pressure of the pressurized water when the production goods that are getting heavier cool and to lengthen the constrictions in the baffle edges so that the baffle edges (3.1), (3), (4) and (4.1 ) also act as a water-lubricated plain bearing.

Fig. 4: Das in Fig. 4 funktionell dargestellte Druckkühlaggregat (1),mit dem Konvektions-Druckraum (8.1) und vier Verdampfungs-Druckräume (9.1 - 9.4), ist sowohl für eine Abkühlung mit maximal in einem solchen Druckkühlaggregat erreichbaren Wärmeentzug als auch für eine Abkühlung mit minimal haltbaren Wärmeentzug geeignet. Die Verfahrensweise unterscheidet sich nur darin, daß bei dem einen Ablauf des Wärmeentzugs der Wärmeübergangswertα an dem qualitätsbezogen maximalen Wert und bei dem anderen Ablauf an seinem druckkühlaggregatsbezogen minimalen Wert gefahren wird.
Die Länge des Druckkühlaggregat liegt größenordnungsmäßig bei 1 m bis 20 m und darüber, wird das Druckkühlaggregat nach der Formgebung eingesetzt, wird es innerhalb des Verformungsablaufes eingesetzt, müssen sich die Längen den Verformungsgegebenheiten anpassen und dabei auf einen Bruchteil eines Meters verkürzt angeordnet sein. Bestehende kurze Druckkühlaggregate können mit Hilfe der Wasserstaumuffe (21) funktionell auch zu längeren gekoppelt werden.
Fig. 4: The pressure cooling unit (1) functionally shown in Fig. 4, with the convection pressure chamber (8.1) and four evaporation pressure chambers (9.1 - 9.4), is both for cooling with a maximum of heat extraction achievable in such a pressure cooling unit as well suitable for cooling with minimally durable heat removal. The procedure differs only in that the heat transfer value .alpha. Is driven at the quality-related maximum value in one process of heat extraction and at its minimum value in the other process at its pressure cooling unit.
The length of the pressure cooling unit is of the order of 1 m to 20 m and more. If the pressure cooling unit is used after shaping, if it is used within the deformation process, the lengths must adapt to the deformation conditions and be shortened to a fraction of a meter. Existing short pressure cooling units can also be functionally coupled to longer ones with the help of the water retention socket (21).

Claims (10)

  1. Method for cooling of hot-rolled rolling stock, with/without direct patenting, at which presswater within a pressure chamber (8.1) between the constrictions (3 and 4) is pressed upon the hot-rolled surface of the rolled product, while the cooling-apparatus (1) is admitted with a quantity of presswater, which is preferably in balance with the heat to be abstracted, in order to achieve the desired cooling temperature of the rolled product through the heat abstraction by heating of the presswater in the pressure-chamber (8.1) of a convection-cooling-part (8) and the heat abstraction through the evaporation heat released to a presswater-steam-mixture in the pressure-chamber (9.1; 9.2) of an evaporation-cooling-part (9), preferably up to the boiling point of the presswater, and during this process the cooling in presswater and presswater-steam-mixture is controllable,
    and while doing so
    the heat abstraction is controlled in the convection-cooling-part (2, 8.1) and in the evaporation-cooling-part (9, 9.1, 9.2) of the pressure-chamber of the cooling-apparatus (1) by the given inflowing quantity of cooling-presswater and by the controlled inflowing quantity of control-cooling-presswater into the convection-cooling-part, with an additional, controlled inflowing quantity of control-cooling-presswater into the condensation-cooling-part and further controlled by an administered inflowing quantity of condensation-presswater, flowing into the high steam portion of the presswater-steam-mixture, streaming through the evaporation-cooling-part.
  2. Method according to claim No. 1
    characterized in
    that according to the method the heat abstraction, within a pressure cooling apparatus with a multisectional pressure-chamber (8.1, 9.1- 9.f), by the selection of the proportion of the presswater's flow-in-points and the proportion of the presswater's flow-in-quantity, can be administered not only with a quality-related maximum heat transmission coefficient but as well with a pressure-cooling-apparatus-related minimum heat transmission coefficient, within a comparatively big length of the pressure-cooling-apparatus with a comparatively small range in the cooling temperature.
  3. Cooling-apparatus for the performance of the method according to claim 1 for the cooling of hot-rolled rolling stock, with/without direct patenting, at which presswater is pressed within a pressure-chamber (8.1) between the constrictions (3 and 4) to the hot-rolled surface of the rolling stock, whereby the cooling-apparatus (1) consists of
    the pressure-chamber of a convection-cooling-part, the convection-pressure-chamber (8.1) between the constrictions (3 and 4), in which from the hot-rolled rolling stock, in particular by convection, heat is abstracted by the inflowing presswater, which is pressed down on to the hot-rolled surface of the rolling stock, and of the pressure-chamber of an evaporation-cooling part, the evaporation-pressure-chamber (9.1, 9.2) between the constrictions (3, 3.1 and 4, 4.1), in which further heat from the hot-rolled rolling stock in particular by the evaporation heat is abstracted by the inflowing mixture of water and steam, which is pressed on to the surface of the rolling stock and which is produced in the convection-pressure-chamber (8.1),
    and where
    apart from the cooling-water-inflow (5) and control-presswater-inflow (6) into the convection-cooling-part (8)(8.1), there are further control-presswater-inflows (6.1-6.f) and condensation-presswater-inflows ((7)(7.1-7.f) arranged into the evaporation-cooling-part (9)(9.1-9.f).
  4. Pressure cooling apparatus according to claim 3,
    characterized in
    that as in the feeding pipes of the cooling-presswater-inflows and of the control-presswater-inflows (13, 14) also in the feeding pipes of the condensation-presswater-inflows (12) there are arranged flow-through-controllable valves with servo components (15).
  5. Pressure cooling apparatus according to claim 3 or 4
    characterized in
    that in each pressure-chamber, before the outlet constriction in the direction of the moving rolling stock, a coupled safety device against water stroke and water-draw-off-device (19) is provided, which at entering of medium and heavy rolling stock protects the pressure-cooling-apparatus from destruction and by drawing-off of the rest of cooling water prevents the swinging of light rolling stock during intermissions of running through of rolling stock.
  6. Pressure-cooling-apparatus according to claim 3 through 5
    characterized in
    that in pressure-chambers a flow-through-controllable withdrawal-device (20) for presswater-steam-mixture is provided, which enables the use of the presswater-steam-mixture outside the cooling method.
  7. Pressure-cooling-apparatus according to claim 3 through 6
    characterized in
    that the cross-section of the pressure-cooling-apparatus (1) in all its parts of pressure-chambers and constrictions is adapted to the cross-section of the rolling stock to be cooled.
  8. Pressure-cooling-apparatus according to claim 3 through 7
    characterized in
    that in a pressure-cooling-apparatus (1) with only one single convection-pressure-chamber (2) the cooling-presswater-inflows and control-presswater-inflows (5 and 6) are arranged centrically into the pressure-chamber and that the condensation-presswater-inflows (7) are arranged before the constrictions at the ends of the pressure-chambers (3 and 4).
  9. Pressure-cooling-apparatus according to claim 3 through 8
    characterized in
    that in a pressure-cooling-apparatus (1) with only one single convection-pressure-chamber (2) the cooling-presswater-inflows and the
    control-presswater-inflows (5 and 6) are arranged in the area of the constrictions at one end of a pressure-chamber and the condensation-presswater-inflows (7) are arranged at the other end.
  10. Pressure-cooling-apparatus according to claim 3 through 9
    characterized in
    that the hydraulic pre-pressure [pressure of the water supply system] of the presswater, with heavy rolling stock in comparison to light rolling stock, corresponding to the weight/m und the cross-section of the rolling stock, is increased according to the method in such a way and the narrowing in the constrictions apparatus-related is lengthened in such a way so that the constrictions act as well as water-lubricated slide bearings.
EP88730063A 1987-03-13 1988-03-14 Method of and pressure cooling apparatus for cooling a continuous product Expired - Lifetime EP0287503B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3708128 1987-03-13
DE19873708128 DE3708128A1 (en) 1987-03-13 1987-03-13 PROCESS AND PRESSURE COOLING UNIT FOR LEADED COOLING SHAPED, HEAVY TO LIGHT, HOT, CONTINUOUS PRODUCTS OF STEEL AND METAL IN PRESSURE WATER

Publications (3)

Publication Number Publication Date
EP0287503A2 EP0287503A2 (en) 1988-10-19
EP0287503A3 EP0287503A3 (en) 1989-02-08
EP0287503B1 true EP0287503B1 (en) 1993-07-28

Family

ID=6322959

Family Applications (1)

Application Number Title Priority Date Filing Date
EP88730063A Expired - Lifetime EP0287503B1 (en) 1987-03-13 1988-03-14 Method of and pressure cooling apparatus for cooling a continuous product

Country Status (4)

Country Link
EP (1) EP0287503B1 (en)
AT (1) AT391880B (en)
DE (2) DE3708128A1 (en)
ES (1) ES2043880T3 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19718530A1 (en) * 1997-05-02 1998-11-12 Schloemann Siemag Ag Process and cooling unit for cooling hot rolled rolling stock, in particular hot wide strip

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4009228A1 (en) * 1990-03-22 1991-09-26 Krenn Walter Differential cooling system for profiled metal prods. e.g. rails - has controlled flows of pressurised water, some mixed with air, directed at different parts of prod.
DE4429203C2 (en) * 1994-08-18 1997-05-28 Krenn Walter Process and pressure cooling unit for cooling a continuous production item made of steel or other

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3043117A1 (en) * 1968-03-12 1982-07-01 Walter 4330 Mülheim Krenn Rolled prod. cooling line - comprising cooling pipes of cross=section similar to prod. cross=section
DE1608327C3 (en) * 1968-03-12 1973-10-31 Walter 4330 Muelheim Krenn Cooling section for wire rod or rod material
DE1925416C3 (en) * 1968-03-12 1979-08-02 Walter 4330 Muelheim Krenn Cooling section for wire rod or rod material
DD110774A1 (en) * 1974-04-10 1975-01-12
DD147506A1 (en) * 1979-11-29 1981-04-08 Bernhard Hoericke COOLING TUBE FOR THE DIRECT COOLING OF WARM, PREFERABLY ROLLING MATERIAL
DE3266328D1 (en) * 1981-05-13 1985-10-24 Florin Stahl Walzwerk Pressurised cooling pipe for the direct intensive cooling of rolling mill products
AU559731B2 (en) * 1981-11-19 1987-03-19 Kawasaki Steel Corp. Continuously quenching steel plates
DE3626741A1 (en) * 1986-08-07 1988-02-18 Krenn Walter COOLING UNIT AND METHOD FOR COOLING WARM ROLLING, WITH / WITHOUT DIRECT PATENTING, IN PRESSURE COOLING WATER

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19718530A1 (en) * 1997-05-02 1998-11-12 Schloemann Siemag Ag Process and cooling unit for cooling hot rolled rolling stock, in particular hot wide strip
DE19718530B4 (en) * 1997-05-02 2005-02-03 Sms Demag Ag Process for cooling of rolling-cold rolling stock and apparatus for carrying out the method and use of the apparatus

Also Published As

Publication number Publication date
DE3882569D1 (en) 1993-09-02
ATA60088A (en) 1990-06-15
EP0287503A3 (en) 1989-02-08
EP0287503A2 (en) 1988-10-19
DE3708128A1 (en) 1988-09-22
ES2043880T3 (en) 1994-01-01
AT391880B (en) 1990-12-10

Similar Documents

Publication Publication Date Title
DE69710159T2 (en) METHOD AND DEVICE FOR PRODUCING SEAMLESS STEEL TUBES
DE1752549A1 (en) Method and device for cooling rolled metal strips
EP1232808A2 (en) Method for cold rolling seamless copper pipes
EP0287503B1 (en) Method of and pressure cooling apparatus for cooling a continuous product
DE2733977C2 (en)
DE4308449A1 (en) Rolling block for rolling metallic rods or wire
EP0987064A2 (en) Continuous rolling mill for small sections or wire
DE3518925A1 (en) METHOD FOR THE CONTROLLED ROD AND WIRE ROLLING OF ALLOY STEELS
DE102013212951A1 (en) Casting rolling mill and method for producing metallic rolling stock
EP1463591B1 (en) Method and rolling stand for producing rods, bar stock or seamless tubes
DE2522070A1 (en) ROLLED GOODS GUIDE FOR A ROLLING STAND
DE1427875A1 (en) Rolling mill for rolling and method for producing profiles, such as double T-beams or the like. with thin wall thickness
EP0998993A2 (en) Method and device for cooling rolling stock at rolling-temperature, in particular hot wide strip
DE10261632B4 (en) Process and rolling plant for the production of wire, bars or seamless tubes
AT390273B (en) COOLING UNIT AND METHOD FOR COOLING WARM ROLLING GOODS
DE2440415A1 (en) METHOD AND DEVICE FOR THE CONTROLLED COOLING OF ROLLED MATERIAL, IN PARTICULAR OF BAR MATERIAL
DE102009048567B4 (en) Method and arrangement for cooling a cast strand in a continuous casting plant
EP3941655B1 (en) System and method for producing metal hot-rolled strip
DE2545935A1 (en) PROCESS AND ROLLING MILL FOR ROLLING OUT A SLAB, PREFERABLY A CONTINUOUSLY CAST SLAB, TO A BILLET WITH A SQUARE OR APPROXIMATELY SQUARE SECTION
AT409463B (en) ROLLING PLANT
EP1038600B1 (en) Arrangement of the multiple-stand finishing block and the following multiple-stand block in single strand wire rolling mills
DE2528850C3 (en) Pilgrim step mill for pipe cold rolling
EP0845310A1 (en) Wire cooling
DD286706A7 (en) COOLING TUBE FOR WALZADERN
EP0743109A1 (en) Method and device for the flush braking of the residual end of a rolled length during transport to a cooling bed

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH DE ES FR GB IT LI LU SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH DE ES FR GB IT LI LU SE

17P Request for examination filed

Effective date: 19890807

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: KRENN, WALTER, DIPL.-ING.

RIN1 Information on inventor provided before grant (corrected)

Inventor name: KRENN, WALTER, DIPL.-ING.

17Q First examination report despatched

Effective date: 19901016

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE CH DE ES FR GB IT LI LU SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19930728

REF Corresponds to:

Ref document number: 3882569

Country of ref document: DE

Date of ref document: 19930902

ITF It: translation for a ep patent filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19931029

ET Fr: translation filed
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2043880

Country of ref document: ES

Kind code of ref document: T3

ITTA It: last paid annual fee
EPTA Lu: last paid annual fee
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19970320

Year of fee payment: 10

Ref country code: ES

Payment date: 19970320

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19980304

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19980310

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 19980311

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19980312

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980314

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 19980316

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19980326

Year of fee payment: 11

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19980314

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990314

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990331

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990331

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990331

BERE Be: lapsed

Owner name: KRENN WALTER

Effective date: 19990331

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19991130

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000101

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20000601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050314