EP0286747B1 - Verfahren und Vorrichtung zum kapazitiven Druckfühlen - Google Patents

Verfahren und Vorrichtung zum kapazitiven Druckfühlen Download PDF

Info

Publication number
EP0286747B1
EP0286747B1 EP19870303298 EP87303298A EP0286747B1 EP 0286747 B1 EP0286747 B1 EP 0286747B1 EP 19870303298 EP19870303298 EP 19870303298 EP 87303298 A EP87303298 A EP 87303298A EP 0286747 B1 EP0286747 B1 EP 0286747B1
Authority
EP
European Patent Office
Prior art keywords
pressure
electrode means
electrode
sensor
projections
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP19870303298
Other languages
English (en)
French (fr)
Other versions
EP0286747A1 (de
Inventor
Donald A. Duncan
Jeffrey B. Tripp
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KEY CONCEPTS Inc
Original Assignee
KEY CONCEPTS Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KEY CONCEPTS Inc filed Critical KEY CONCEPTS Inc
Priority to DE19873750876 priority Critical patent/DE3750876T2/de
Priority to EP19870303298 priority patent/EP0286747B1/de
Priority to AU72648/87A priority patent/AU597059B2/en
Publication of EP0286747A1 publication Critical patent/EP0286747A1/de
Application granted granted Critical
Publication of EP0286747B1 publication Critical patent/EP0286747B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10HELECTROPHONIC MUSICAL INSTRUMENTS; INSTRUMENTS IN WHICH THE TONES ARE GENERATED BY ELECTROMECHANICAL MEANS OR ELECTRONIC GENERATORS, OR IN WHICH THE TONES ARE SYNTHESISED FROM A DATA STORE
    • G10H1/00Details of electrophonic musical instruments
    • G10H1/02Means for controlling the tone frequencies, e.g. attack or decay; Means for producing special musical effects, e.g. vibratos or glissandos
    • G10H1/04Means for controlling the tone frequencies, e.g. attack or decay; Means for producing special musical effects, e.g. vibratos or glissandos by additional modulation
    • G10H1/053Means for controlling the tone frequencies, e.g. attack or decay; Means for producing special musical effects, e.g. vibratos or glissandos by additional modulation during execution only
    • G10H1/055Means for controlling the tone frequencies, e.g. attack or decay; Means for producing special musical effects, e.g. vibratos or glissandos by additional modulation during execution only by switches with variable impedance elements
    • G10H1/0551Means for controlling the tone frequencies, e.g. attack or decay; Means for producing special musical effects, e.g. vibratos or glissandos by additional modulation during execution only by switches with variable impedance elements using variable capacitors

Definitions

  • the present invention relates to pressure-sensing methods and apparatus, being more specifically concerned with novel two-dimensional capacitive sensors and techniques particularly, though by no means exclusively, applicable to musical and rhythmic instruments and other devices responsive to touch and variable forces applied over a two-dimensional surface.
  • a known capacitive pressure sensor is disclosed in US patent 4 213 267, having a plurality of touch sensitive keys which function as variable capacitors depending on the pressure applied to the keys.
  • configurations may be designed with multiple electrodes cooperating with a common elastomeric electrode, later described, for the reproducing of visual patterns, as for measuring hand, finger or foot prints and variations in movement thereof, again operating with two-dimensional continuous, dynamic sensing.
  • compliant conductive elastomer pads For use in tactile sensors to develop sensory feedback, compliant conductive elastomer pads have been developed with an array of tactiles which are voltage excited and operate by resistance changes in response to pressure and are scanned on a row-column sequence to provide a multi-bit digital signal output for such purposes.
  • Such sensors While two-dimensional, have problems in stability of conductivity over time, require complex electronics, and have practical limits on the size or area that can be monitored in view of the pad resistance involved.
  • An object of the present invention accordingly, is to provide a new and improved method of and apparatus for providing such two-dimensional pressure-sensing responses for such applications and others requiring similar responses.
  • a further object is to provide novel musical and rhythmic instruments of great flexibility, including drum-like instruments, resulting from the use of the novel pressure sensing of the invention.
  • a capacitive pressure-sensitive sensor comprising first electrode means formed of a thin resilient conductive plastic sheet with adjacent regions pressure-deformable by application of pressure at one surface of the sheet, and a second electrode means separated from the same by a thin dielectric layer therebetween characterised by said first electrode means having a plurality of closely spaced resilient conductive projections protruding from the opposite surface of the sheet facing said electrode means and by said second electrode means being coextensive with the projections.
  • tne pressure sensor in preferred form, comprises a thin plastic conductive rubber or other resilient elastomeric pad electrode 1, preferably provided with a protective cover layer C, as of Mylar (Registered Trade Mark) or the like as later more fully discussed, and having a planar surface from one side of which (shown as the bottom surface) curved or otherwise variable thickness or tapered projections (1′) of the same conductive resilient material protrude in a two-dimensional closely spaced preferably uniform array extending in close capacitive relationship with a coextensive two-dimensional conductor electrode surface 3, separated from the projections 1′ by a thin dielectric layer 2, preferably somewhat resiliently deformable, also.
  • a thin plastic conductive rubber or other resilient elastomeric pad electrode 1, preferably provided with a protective cover layer C, as of Mylar (Registered Trade Mark) or the like as later more fully discussed, and having a planar surface from one side of which (shown as the bottom surface) curved or otherwise variable thickness or tapered projections (1′)
  • the electrode surface 3 is shown fixedly disposed on a hard immovable board B, so that pressing of the electrode 1 into mechanical force contact with the immovable electrode 3 develops the desired capacitance changes to be measured, and with the electrode 3 limiting the downward depression of the upper elastomeric pad electrode.
  • various curved or tapered shapes for the projections 1′ are illustrated as substantially hemispherical, as truncated hemispheres with conical or tapered tips, a double conical tip, and a cone with a somewhat rounded tip, respectively.
  • the application and movement of the finger tip will generate capacitive variations that are readily processed into signals that may control the generation of audio tones or sounds, with audible effects proportional to the pressure and corresponding to the attack or impact of the finger tip and to surface area dynamic pressure pattern of the moving finger tip on the electrode pad surface 1.
  • the drum cover layer or head C placed over the silicone rubber or other elastomeric pad electrode 1, protection against abrasion or soiling of the pad and the static attraction of dirt is provided. Additionally, the layer C serves as an electrical insulator and isolator to prevent body capacitance from influencing the system and to prevent introduction of noise.
  • the layer further acts as a "spreader" cover, useful where there may be high local forces (such as the tip of a drumstick) both to limit the compression set of the pad and mechanically to amplify the signal by spreading the impact over a larger area of the capacitor.
  • Figs 2A-2C show experimentally obtained visual representations of output signals generated by the capacitive electrode configuaration for light, medium and hard drum stick impacts or strikes of the membrane, displayed on a print-out connected to the electrode, the signal generation being later described in connection with Fig 5.
  • the electrode 1-1′ was of silicone carbon-loaded elastomeric plastic sheeting, about a millimetre (tenth of an inch) thick and of about 60 Durometer, carrying a two-dimensional array of closely spaced shaped projections 15 projections per square centimetre (100 projections per sq inch) protruding about 1.5 mm (0.06 inches) from a web 1 of about 0.08 mm (0.035 inches) thickness.
  • the other electrode 3 was of 0.025 mm (1 mil) aluminium foil with the dielectric layer 2 of "Kapton" (DuPont polyimide plastic), also about 1 mil thick.
  • the surface pressure pattern effect is shown in Figs 2D and 2E, the former showing the sensing surface output (arbitrary units) in response to area over which the force is applied, and the latter illustrating the output as a function of force applied to the sensing sectors.
  • an edge clamp 9 may hold the assembly together and with a dress plate 7 (Figs 4A and 4C), which may incorporate a ground plane.
  • the electronics for the signal processing may be mounted in the underside of the base board B at B′, Fig 4C, as later described.
  • Separate sectors or regions of the drum head C may be provided as at 6′, 6 ⁇ etc, Fig 4A, for different and independent effects at such regions or sectors, and with a formed metallic "spider" separator 10 between regions.
  • the spider separator is bonded to the drum head cover C with an adhesive layer 8 to provide a structure that prevents cross-talk between regions.
  • the basic system configuration then is a P.C. board, (1) for example (screened on a polyester film as of Mylar) which contains the sensing bottom electrode(s) 3, means to connect the drive signal to the elastmer upper electrode(s) 1-1′, and means to connect to the main electronics; (2) a sheet of dielectric 2 which may or may not be adhesive-bonded to or screened onto the P.C.
  • a P.C. board (1) for example (screened on a polyester film as of Mylar) which contains the sensing bottom electrode(s) 3, means to connect the drive signal to the elastmer upper electrode(s) 1-1′, and means to connect to the main electronics; (2) a sheet of dielectric 2 which may or may not be adhesive-bonded to or screened onto the P.C.
  • Total vertical deflection in the system as currently configured is approximately 0.15 cm (1/16 inch).
  • the force required to deflect an area is at least roughly proportional to the signal produced, ana it "gives back" force in a manner that makes it an effective pressure sensor.
  • the system as described can be modified mechanically and electronically to transduce a wider range of forces and to have a deeper actuation distance for applications for which that would be useful, if desired.
  • the planar nature of the system means that the smaller the ratio of activation area to total area of the sensing zone, the smaller the activation signal relative to the "base", or resting capacitance of the zone. Since large zones are employed, this base capacitance is large. Further, once the rubber projections 1′ are fully depressed, no signal increase results from additional force or pressure. Because of the limited vertical travel, high-velocity small-area strikes "top out” quickly. The use of the semi-rigid Mylar cover C for mechanical amplification brings additional area of the capacitor into play for both light and heavy strikes of small-area implements, producing a broader range of differentiable "attacks".
  • the ratio of the area of neighboring capacitor brought into play versus activating implement area is reduced as the activating implement area gets larger, until an implement as large as the zone shows no amplification effect.
  • the use of mechanical amplification allows for compressing a broader range of force-area products (pressure or impact) into the narrower range of effective transduction of the sensor/electronics combination.
  • This construction does reduce the degree of independence of local areas of the surface; but it is this which enables the obtaining of comparable signals from a high velocity small area strike (drumstick) and a large area low velocity strike (a finger).
  • the semi-rigid cover of head layer C performs a further dynamic function in the drum. The harder it is hit, the more instantaneously rigid it appears, and the broader the area of the capacitor which is affected (again, mechanical amplification).
  • the cover can vary from nonexistent to thin and elastomeric (protective only), to thin and semi-rigid (thin Mylar), to thicker semi-rigid, to rigid.
  • the multi-zone or sector electronic drum instrument application of the invention in its preferred practical configurations, Figs. 4A and 4B, embodies five independent strike zones 6′, 6 ⁇ , 6′′′, etc. on its top surface, and five CV (analog Control Voltage) outputs. It is powered by a 12 volt battery or other d.c. power supply and mounts on a standard tom post via a clamp on the bottom, as later explained.
  • the system is responsive to both steady and impulsive forces and with response speed in the tens of microseconds range and a frequency response well into the kilohertz range.
  • Output is an analog voltage which tracks the changes in capacitance due to striking or pressing the pad; these being scaled to drive most existing CV electronic drum "brains".
  • a preferred electronic circuit for operating with the sensors of Fig. 1, 4A and 4B is shown in Fig. 5, using a bottom section, Fig. 4C, common to both of the embodiments of Figs. 4A and 4B.
  • the body of the device is, for example, a 1 ⁇ -thick particle board disc B which has a cavity B′ routed in the back for the electronics.
  • a printed circuit sheet 11 as of a die-cut sheet of Mylar, on which is screened a conductive pattern to provide the five bottom electrode surfaces 3 for the five zones 6′, 6 ⁇ , 6′′′, etc.
  • the drive signal is connected to the elastomeric electrodes 1-1′, with conductors 4 and 5 for connection of these areas to the electronics E.
  • the traces travel along a membrane "tail" 11′, which wraps around the body to the electronics cavity B′.
  • Over the electrode areas 3 is subsequently screened a urethane-based material which serves as the dielectric layer 2. This layer is also preferably screened on the tail to provide insulation.
  • the spider separator is fastened through the printed circuit sheet into the body with several fasteners F, such as screws. This simultaneously positions the electrodes 1-1′ in position, and electrically connects the pattern 4 to the five electrodes subsequently to provide the drive signal.
  • a spacer ring 12 is placed around the periphery of the assembly, with a die-cut adhesive film 8 placed over the spider separator, and the head C is placed onto the assembly, followed by the dress ring 9, which is not yet swaged over on the bottom.
  • the assembly is inverted, the dress plate 7 is installed, and the dress ring is swaged to its final configuration.
  • On an access plate 13 are installed the five output jacks and the power jack J and the two potentiometers P, for all of which, terminals are later identified in the circuit of Fig. 5. These are connected to the electronics E mounted on the bottom B′ of the access plate.
  • the membrane tail is then connected to the electronics and the access plate is fastened to the body with the tom clamp 14 fastened in position to complete the assembly.
  • the die-cut elastomeric electrodes, the spider, and the adhesive film disappear and are replaced by a single molded pad on which are defined five zones of electrode 1-1′ separated by segments of solid conductive rubber 1 ⁇ . Fasteners are driven through these solid sections, through the printed circuit sheet, and into the body simultaneously to lock the assembly in position and connect the conductor 4 to the electrodes 1-1′.
  • the invention provides considerable novelty in that it can (1) produce similar signals from similar inputs at different points on the surface, (2) simultaneously transduce the resultant of area and pressure at all points on the surface, and (3) provide continuous output proportional to either static or dynamic pressure patterns on its surface. What it cannot distinguish is (1) the location on its surface of a pressure input, (2) the force being applied at any specified point on its surface, or (3) whether the area-pressure pattern is a large area/low force or a small area/large force. In order to develop this information, it is necessary to use multiple second electrodes, as later described.
  • Output is an analog voltage which tracks the changes in capacitance due to striking or pressing the pad; these being scaled to drive most existing CV electronic drum “brains.”
  • a preferred electronic circuit for operating with the sensors of Figs. 1, 4A and 4B is shown in Fig. 5, using a source of high frequency AC voltage and measuring the degree of AC current flow.
  • I 1.0mA
  • the preferred method is to apply an equal but 180 degrees out-of-phase voltage through a fixed capacitor equal to the base capacitance and connect the combination to the sensor output. At rest, the two capacitive currents cancel giving zero net current. When pressure increases the current through the sensor, the net current increases away from zero, giving a usable output.
  • a push-pull sine wave power oscillator consisting of two transistors T1, T2, network resistors R1-R5, a center-tapped choke coil CT and a parallel capacitor C′.
  • the combination of the coil CT inductance (250 microhenry) and the capacitance C′ (.01 microfarad) produces a resonant tank circuit with a resonant frequency of approximately 100KHz.
  • the base-to-collector resistors R3 and R5 (22K ohm) provide feedback necessary to start and sustain oscillation, while the base-to-emitter resistors R2 and R4 (4.7 Kohm) limit overdrive on the transistor bases.
  • the series resistor R1 (470 ohms) simulates a current source which improves the oscillator's nearly perfect (approximately 1% distortion) sine wave. Since the center tap of the coil CT is grounded, the ends of the coil provide precisely out-of-phase sine waves of equal amplitude to the remaining circuitry.
  • the oscillator output labelled "Drive Out” goes to the common plate of the sensors (the conductive rubber pad 1-1′ of Fig. 4B, for example) while the opposite oscillator output goes to the signal processing circuitry now to be explained.
  • the remaining circuitry consists of five similar circuits for the five sensor pads or sensor sectors, the circuit for sensor (pad) #1 (say sector 6′, for example,) being illustratively described.
  • the pressure sensor is connected externally between the terminals labelled “Drive Output” and "Pad 1 In". Capacitive current proportional to the sensor's capacitance thus flows into the "Pad 1 In” terminal. At the same time, capacitive current of opposite phase from the opposite side of the oscillator flows into "Pad 1 In” through a series resistance-capacitance network combination in which the resistor value is fixed and the capacitor (C ⁇ ) value can be varied over a limited range. In practice, the capacitor is adjusted so that its value equals the sensor's base capacitance, as before explained.
  • the resistor effects more complete cancellation of the two currents by accounting for the finite resistance of the conductive rubber pad 1-1′. Perfect balance is achieved only when both C ⁇ and the resistance are matched. In practice, the resistance is only a small portion of the total impedance, so exact resistance match is not overly important (20% resistance mismatch has little effect).
  • the .010 ⁇ F capacitor tends to hold the value of pressure peaks momentarily.
  • the relatively small capacitor voltage (generally under a volt) is increased six-fold by an operational amplifier A (LM 358) and feedback network R f and R f ′ (100K and 22K ohms, respectively, for example).
  • the amplifier output voltage is finally applied to the "Pad 1 Out" terminal through a 1K ohm protective resistor R o .
  • This voltage (and those of the other 4 channels) is then routed to a synthesizer which responds in a desirable manner to changes in the voltage level, as is well known.
  • the oscillator signal (100KHz) is connected to all the conductive rubber electrodes through "Drive Out.”
  • the amplitude of that "drive” signal is controlled by potentiometer P1 connected to the three terminals “Sens. Hi, Low, and Wipe(r)”.
  • the second electrode(s) 3 for each of the five sensing zones is connected to one of five duplicate circuits through the inputs labelled “Pad 1" through “Pad 5.” These circuits "measure” the AC capacitive current across each sensor by converting it to an AC voltage across the 4.7K resistor. This AC voltage is converted to a DC voltage by the diode D, then is amplified and sent to the output jacks through the "Pad Out" terminals.
  • Each of these circuits receives the inverse drive signal; each variable capacitor is adjusted until the two drive signals cancel and the capacitive current (and thus the voltage output of each resting system) is as close to zero as possible. "The smallest signal which will produce a response may be controlled by adjusting the 'Threshhold' potentiometer.”
  • the primary target sound generators are CV electronic drum “brains", and these show different responses based on the characteristics of their input circuitry. If the inputs to the "brain” are AC coupled, for instance, then only sharp strikes (where the DC output simulates AC) will result in sound generation. If, however, the "brain” inputs are DC coupled, any signal which exceeds a particular voltage threshold will produce a sound. It is on these systems that the drum of the invention produces special effects, since, unlike conventional piezoelectric controllers, the systems of the invention sustains a voltage proportional to pressure. Maintaining pressure on a pad holds the output voltage above the threshold voltage of the "brain", and continuous sound or repetitive triggering of sounds may occur. If pitch is modified by the voltage amplitude of the input signal, then fluctuation of the pressure on a pad produces corresponding changes of the pitch of the sound.
  • the device of the invention when struck with a drumstick produces an output waveform resembling that produced by conventional electronic drum controllers which use a piezoelectric crystal as a transducer, unlike piezoelectric systems, the system of the invention continues to produce signals proportional to residual pressure, allowing continued control of the sound generating device after the initial strike. Further, it effectively transduces less abrupt dynamic forces which would be inadequate to produce a useful signal from a piezoelectric system.
  • the controller of the invention also works with synthesizers which produce other than rhythm sounds and are set up to use CV (Control Voltage) dnputs. With these, the range of potential effects multiplies, since the voltage of the input may be programmed to control a variety of musical parameters.
  • CV Control Voltage
  • MIDI Musical Instrument Digital Interface
  • a microprocessor or other digital signal processing circuitry monitors these digital representations and constructs corresponding digital control signals according to pre-programmed rules of logic. Additional control devices (switches, slide potentiometers, displays, etc.) and appropriate hardware and software may be incorporated to allow users to modify the aforementioned pre-programmed rules of logic.
  • Other protocols are possible for communications with computers and robots. Techniques for doing this are well known to those skilled in this art.
  • the "sandwich" electrode 1-1′-2-3 discussed above may be incorporated into a guitar pickguard with two or three small sensitive zones which may be struck or strummed to generate CV signals for control of drum machines or driving MIDI converters.
  • the electronics may be placed in a cavity under the pickguard.
  • this product allows the use of one or more "roving" pads 1-1′-2-3 which may be placed on the surface of the guitar in a selected location such as under the right arm or on the player's hand or other part of his body with an appropriate fastening mechanism and which uses the installed electronics to perform a function similar to that of the captive pads in the pickguard.
  • Electronics may be modified, furthermore, to produce either MIDI signals or otherwise digitally encoded information which may subsequently be used to control MIDI music devices, guitar effects, stage appliances, etc.
  • a rigid layer may be applied above the resilient pad electrode 1-1′.
  • the drum-like instrument moreover, may function as a keyboard with effects such as those described in said patent--holding the signal by holding the pressure on the head and controlling pitch or tone variation by wobbling the pressure, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Multimedia (AREA)
  • Electrophonic Musical Instruments (AREA)

Claims (24)

  1. Ein Druckempfindlicher oder auf Druck ansprechender kapazitiver Sensor, mit ersten Elektrodenmitteln (1), die von einem dünnen elastischen und leitenden Flachmaterial aus Kunststoff mit benachbarten Bereichen gebildet, die beim Aufbringen eines Drucks auf eine Seite des Flachmaterials druckverformbar sind, sowie mit zweiten Elektrodenmitteln (3), die von diesen durch eine dünne dazwischenliegende dielektrische Schicht (2) getrennt sind, dadurch gekennzeichnet, daß die erwähnten ersten Elektrodenmittel (1) eine Vielzahl von dicht beabstandeten elastischen und leitenden Vorsprüngen (1′) aufweisen, die von der anderen, den Elektrodenmitteln (3) zugewandten Seite des Flachmaterials wegstehen, und daß die erwähnten zweiten Elektrodenmittel (3) sich über den gleichen Bereich wie die Vorsprünge (1) erstrecken.
  2. Ein kapazitiver Sensor nach Anspruch 1, dadurch gekennzeichnet, daß die Vielzahl von Vorsprüngen (1) in einer zweidimensionalen Anordnung von dicht beabstandeten Vorsprüngen angeordnet sind.
  3. Ein kapazitiver Sensor nach Anspruch 2, dadurch gekennzeichnet, daß das Niederdrücken der Vorsprünge (1′) bei Deformation durch die Anwesenheit der zweiten Elektrodenmittel begrenzt ist, die nicht bewegbar vorgesehen sind.
  4. Ein kapazitiver Sensor nach Anspruch 3, dadurch gekennzeichnet, daß die erwähnten Vorsprünge (1′) im wesentlichen gleichförmig über den Bereich verteilt sind und gekrümmte Oberflächen aufweisen, die deformierbar sind, wenn sie gegen die erwähnten zweiten Elektrodenmittel (3) mit der dazwischenliegenden dielektrischen Schicht (2) gedrückt werden.
  5. Vorrichtung nach Anspruch 4, dadurch gekennzeichnet, daß die Elektrodenmittel (3) des erwähnten Sensors mit einer Elektronik für das Erfassen der Kapazitätsänderungen verbunden sind, die durch Druckdeformation der ersten Elektrodenmittel (1) erzeugt werden sowie für die Erzeugung von diesen entsprechenden Signalen.
  6. Vorrichtung nach Anspruch 5, dadurch gekennzeichnet, daß die Elektronik Signale in Abhängigkeit von Kapazitätsänderungen des Sensors erzeugt, die durch Einwirkungen auf die erwähnte Fläche oder Seite der ersten Elektrodenmittel (1) erzeugt werden.
  7. Vorrichtung nach Anspruch 5, dadurch gekennzeichnet, daß die erwähnte Elektronik Signale in Abhängigkeit von Kapazitätsänderungen erzeugt, die durch Druck-Flächen-Muster erzeugt werden, die auf die erwähnte Seite der ersten Elektrodenmittel (1) aufgebracht werden.
  8. Vorrichtung nach Anspruch 5, dadurch gekennzeichnet, daß Mittel vorgesehen sind, um die erzeugten Signale in akustische Wiedergaben oder Darstellungen der Druckdeformationen umzuwandeln.
  9. Vorrichtung nach Anspruch 8, dadurch gekennzeichnet, daß die akustischen Wiedergaben Töne oder Klänge sind, die durch ein trommelartiges Einwirken und Überstreichen der erwähnten gegenüberliegenden Seite der ersten Elektrodenmittel erzeugt werden.
  10. Vorrichtung nach Anspruch 9, dadurch gekennzeichnet, daß der Druck auf die erwähnte gegenüberliegende Seite über ein darüber montiertes Trommelfell (C) aufgebracht wird.
  11. Vorrichtung nach Anspruch 9, dadurch gekennzeichnet, daß weitere ähnliche Sensorbereiche benachbart dem erstgenannten Sensor vorgesehen sind, um in mehrere Zonen unabhängige trommelartige Effektive zu erzeugen.
  12. Vorrichtung nach Anspruch 5, dadurch gekennzeichnet, daß Mittel vorgesehen sind, um die erzeugten Signale in visuelle Darstellungen oder Wiedergaben der Druckdeformationen umzuwandeln.
  13. Vorrichtung nach Anspruch 2, dadurch gekennzeichnet, daß die Vorsprünge (1′) gewölbt sind oder auf andere Weise eine variable Dicke besitzen oder abgeschrägt sind.
  14. Vorrichtung nach Anspruch 13, dadurch gekennzeichnet, daß die Dicke des Flachmaterials in der Größenordnung von Millimetern (Zehntel eines Zoll) sind, die Vorsprünge (1′) in der Größenordnung von 15 pro Quadratzentimeter (100 pro Quadratzoll) verteilt sind und in der Größenordnung von einem Zehntel eines Millimeters (1/100 eines Zoll) sind, und daß die zweiten Elektrodenmittel (3) und die dielektrische Schicht (2) jeweils in der Größenordnung von 1/100 eines Millimeters gewählt sind.
  15. Ein kapazitiver Sensor nach Anspruch 1, dadurch gekennzeichnet, daß die zweiten Elektrodenmittel (3) eine Vielzahl von benachbarten Sektorelektroden aufweisen, die mit einer einzigen gemeinsamen ersten elastischen Elektrodeneinrichtung zusammenwirken.
  16. Ein kapazitiver Sensor nach Anspruch 1, dadurch gekennzeichnet, daß die ersten elastischen Elektrodenmittel (1) eine Vielzahl von getrennte Sektoren bildende elastische Elektroden (6′, 6˝, ...) aufweisen.
  17. Ein kapazitiver Sensor nach Anspruch 16, dadurch gekennzeichnet, daß Trennmittel (10) zwischen den elastischen Sektorelektroden vorgesehen sind.
  18. Ein kapazitiver Sensor nach Anspruch 16, dadurch gekennzeichnet, daß eine halbfeste Abdeckschicht (C) über den genannten ersten elastischen Elektrodenmitteln angeordnet ist.
  19. Ein kapazitiver Sensor nach Anspruch 15, dadurch gekennzeichnet, daß ein halbfeste Abdeckschicht (C) über den genannten ersten elastischen Elektrodenmitteln angeordnet ist.
  20. Ein kapazitiver Sensor nach Anspruch 19, dadurch gekennzeichnet, daß die erwähnte einzigen elastische Elektrodeneinrichtung aus einem leitenden elastomeren gummiartigen Material besteht, welches in Sektoren eingeteilt ist, die durch Segmente aus einem festen leitenden Gummi voneinander getrennt sind.
  21. Ein kapazitiver Sensor nach Anspruch 17, dadurch gekennzeichnet, daß die erwähnten elastischen Elektrodenmittel von einem leitenden elastischen gummiartigen Material gebildet sind.
  22. Ein Verfahren zum kapazitiven Druckfühlen, bei welchem eine durch Druck verformbare, dünne, elastische, leitende und von einem Kunststoff-Flachmaterial gebildete Elektrode (1) vorgesehen wird, die durch ein dünnes dielektrisches Medium von einer zweiten Elektrode (3) beabstandet ist, dadurch gekennzeichnet, daß benachbarte Bereiche einer zweidimensionalen Anordnung, die von dicht beabstandeten Vorsprünge (1′) eines leitenden, elastischen Kunststoffmaterials an der Elektrode gebildet ist, dynamisch verformt werden, und zwar in einer vorgegebenen Richtung und in einer vorgegebenen Druckkontur, die einem vorgegebenen Druckmuster, welches sich über eine oder mehrere Bereiche der Anordnung erstreckt, entspricht, wobei jeder Vorsprung (1′) durch den ausgeübten Druck verformt wird, daß die Verformung der Vorsprünge (1′) an einer an einer festen Position vorgesehenen, sich über den gleichen Bereich erstreckenden und als kapazitive Elektrode wirkende Fläche der erwähnten zweiten Elektrode begrenzt wird, und daß die dynamischen Kapazitätsänderungen, die durch die unter der Druckmuster stehenden Vorsprüngen (1′) bewirkt werden, erfaßt werden, um entsprechende elektrische Signale zu erzeugen.
  23. Ein Verfahren nach Anspruch 22, dadurch gekennzeichnet, daß die Signale während der Deformation in akustische Töne oder Klänge umgewandelt werden.
  24. Ein Verfahren nach Anspruch 22, dadurch gekennzeichnet, daß die Signale während der Deformation in visuelle Wiedergaben umgewandelt werden.
EP19870303298 1987-04-15 1987-04-15 Verfahren und Vorrichtung zum kapazitiven Druckfühlen Expired - Lifetime EP0286747B1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE19873750876 DE3750876T2 (de) 1987-04-15 1987-04-15 Verfahren und Vorrichtung zum kapazitiven Druckfühlen.
EP19870303298 EP0286747B1 (de) 1987-04-15 1987-04-15 Verfahren und Vorrichtung zum kapazitiven Druckfühlen
AU72648/87A AU597059B2 (en) 1987-04-15 1987-05-08 Capacitive pressure-sensing method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP19870303298 EP0286747B1 (de) 1987-04-15 1987-04-15 Verfahren und Vorrichtung zum kapazitiven Druckfühlen

Publications (2)

Publication Number Publication Date
EP0286747A1 EP0286747A1 (de) 1988-10-19
EP0286747B1 true EP0286747B1 (de) 1994-12-14

Family

ID=8197863

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19870303298 Expired - Lifetime EP0286747B1 (de) 1987-04-15 1987-04-15 Verfahren und Vorrichtung zum kapazitiven Druckfühlen

Country Status (3)

Country Link
EP (1) EP0286747B1 (de)
AU (1) AU597059B2 (de)
DE (1) DE3750876T2 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10314591B4 (de) * 2003-03-31 2014-10-02 BSH Bosch und Siemens Hausgeräte GmbH Berührungsschalter
CN105105898A (zh) * 2015-07-28 2015-12-02 安徽机电职业技术学院 基于三维压力检测的喉头送话器装置及其使用方法

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4933807A (en) * 1989-08-23 1990-06-12 Key Concepts, Inc. Method of and apparatus for improved capacitive displacement and pressure sensing including for electronic musical instruments
JPH03184095A (ja) * 1989-12-14 1991-08-12 Yamaha Corp 電子楽器
AUPM348594A0 (en) * 1994-01-21 1994-02-17 University Of Melbourne, The Improvements in syringe pumps
EP0859467B1 (de) * 1997-02-17 2002-04-17 E.G.O. ELEKTRO-GERÄTEBAU GmbH Berührungsschalter mit Sensortaste
FR2871904B1 (fr) * 2004-06-22 2006-09-22 Airbus Groupement D Interet Ec Dispostif de commande de fermeture d'un coffre a bagages
EP2467845A1 (de) * 2009-08-20 2012-06-27 Massimiliano Ciccone Fusssteuerung
DE102012107581B4 (de) * 2012-08-17 2023-03-30 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Volumenkompressible flexible kapazitive Sensormatte aus einem Elastomerkomposit zur Detektion von Druck und Deformation
US9453774B2 (en) * 2013-12-17 2016-09-27 The Board Of Trustees Of The Leland Stanford Junior University Surface area-based pressure sensing
JP2019219534A (ja) * 2018-06-20 2019-12-26 ローランド株式会社 電子打楽器およびそれを用いた検出方法
GB2584088A (en) * 2019-05-17 2020-11-25 Roli Ltd Force sensor
US20220034692A1 (en) * 2020-07-29 2022-02-03 Bend Labs, Inc. Electrode and shielding systems and methods for compliant sensors
CN114235225A (zh) * 2021-12-14 2022-03-25 西安电子科技大学 一种离电式柔性三轴力触觉传感器、制备及应用
CN114279599A (zh) * 2021-12-27 2022-04-05 北京京东方技术开发有限公司 柔性压力传感器、柔性压力应变传感组件及压力检测方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3960044A (en) * 1973-10-18 1976-06-01 Nippon Gakki Seizo Kabushiki Kaisha Keyboard arrangement having after-control signal detecting sensor in electronic musical instrument
US4027569A (en) * 1975-06-19 1977-06-07 Norlin Music, Inc. Keyboard for an electronic musical instrument employing variable capacitors
US4213367A (en) * 1978-02-28 1980-07-22 Norlin Music, Inc. Monophonic touch sensitive keyboard
US4279188A (en) * 1979-09-21 1981-07-21 Scott Robert D Acoustic coupling free electric drum
US4426884A (en) * 1982-02-01 1984-01-24 The Langer Biomechanics Group, Inc. Flexible force sensor
US4503705A (en) * 1982-02-24 1985-03-12 The Langer Biomechanics Group, Inc. Flexible force sensor
IL72736A0 (en) * 1984-08-21 1984-11-30 Cybertronics Ltd Surface-area pressure transducers
JPS61239299A (ja) * 1985-04-16 1986-10-24 ヤマハ株式会社 電子打楽器

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10314591B4 (de) * 2003-03-31 2014-10-02 BSH Bosch und Siemens Hausgeräte GmbH Berührungsschalter
CN105105898A (zh) * 2015-07-28 2015-12-02 安徽机电职业技术学院 基于三维压力检测的喉头送话器装置及其使用方法

Also Published As

Publication number Publication date
EP0286747A1 (de) 1988-10-19
AU597059B2 (en) 1990-05-24
DE3750876D1 (de) 1995-01-26
DE3750876T2 (de) 1995-07-27
AU7264887A (en) 1988-11-10

Similar Documents

Publication Publication Date Title
US4852443A (en) Capacitive pressure-sensing method and apparatus
EP0286747B1 (de) Verfahren und Vorrichtung zum kapazitiven Druckfühlen
JPH03171000A (ja) 電子楽器等に用いる改良型容量性変位及び圧力検知方法及び装置
US10705608B2 (en) Touch sensitive device
US6815602B2 (en) Electronic percussion instrument with impact position-dependent variable resistive switch
JP2579638B2 (ja) 容量性圧力検出方法及び装置
US4257305A (en) Pressure sensitive controller for electronic musical instruments
US9336761B1 (en) Impact responsive portable electronic drumhead
US6815604B2 (en) Electronic percussion instrument
US4044642A (en) Touch sensitive polyphonic musical instrument
JP2010541005A (ja) 弦楽器用電子指板
JP3059105B2 (ja) 電子打楽器のペダル装置
WO1993014491A1 (en) Method and apparatus for measuring velocity of key motion in a keyboard operated musical instrument
US3711617A (en) Electronic piano with thump-generating means
US4628786A (en) Velocity responsive musical instrument keyboard
US4273017A (en) Piano action keyboard with roller and elastic diaphragm transducer
CN1017383B (zh) 电容性压敏方法及设备
Bongers Tactual display of sound properties in electronic musical instruments
US4244261A (en) Electronic keyboard musical instrument
CA1277518C (en) Capacitive pressure-sensing method and apparatus
JP5056338B2 (ja) 鍵盤装置
JP7052234B2 (ja) 圧力検出装置および電子打楽器
RU2750579C1 (ru) МИДИ-контроллер ударного музыкального инструмента
US5696345A (en) Method and device for varying pitch of electronically generated tones
JPH10240255A (ja) 電子楽器用入力装置および電子楽器

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE ES FR GB GR IT LI LU NL SE

RBV Designated contracting states (corrected)

Designated state(s): DE FR GB IT SE

17P Request for examination filed

Effective date: 19890409

17Q First examination report despatched

Effective date: 19910311

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRE;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.SCRIBED TIME-LIMIT

Effective date: 19941214

Ref country code: FR

Effective date: 19941214

REF Corresponds to:

Ref document number: 3750876

Country of ref document: DE

Date of ref document: 19950126

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19950314

EN Fr: translation not filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19960510

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19960513

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19970415

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19970415

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980101