EP0281580B1 - Fuel injection device for a diesel engine - Google Patents

Fuel injection device for a diesel engine Download PDF

Info

Publication number
EP0281580B1
EP0281580B1 EP87905420A EP87905420A EP0281580B1 EP 0281580 B1 EP0281580 B1 EP 0281580B1 EP 87905420 A EP87905420 A EP 87905420A EP 87905420 A EP87905420 A EP 87905420A EP 0281580 B1 EP0281580 B1 EP 0281580B1
Authority
EP
European Patent Office
Prior art keywords
piston
pump
fuel
control
line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP87905420A
Other languages
German (de)
French (fr)
Other versions
EP0281580A1 (en
Inventor
Peter Fuchs
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MAN B&W Diesel AS
Original Assignee
Nova Werke AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nova Werke AG filed Critical Nova Werke AG
Priority to AT87905420T priority Critical patent/ATE63614T1/en
Publication of EP0281580A1 publication Critical patent/EP0281580A1/en
Application granted granted Critical
Publication of EP0281580B1 publication Critical patent/EP0281580B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M59/00Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
    • F02M59/02Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps of reciprocating-piston or reciprocating-cylinder type
    • F02M59/10Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps of reciprocating-piston or reciprocating-cylinder type characterised by the piston-drive
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M59/00Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
    • F02M59/02Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps of reciprocating-piston or reciprocating-cylinder type
    • F02M59/10Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps of reciprocating-piston or reciprocating-cylinder type characterised by the piston-drive
    • F02M59/105Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps of reciprocating-piston or reciprocating-cylinder type characterised by the piston-drive hydraulic drive
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M59/00Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
    • F02M59/20Varying fuel delivery in quantity or timing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M59/00Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
    • F02M59/20Varying fuel delivery in quantity or timing
    • F02M59/36Varying fuel delivery in quantity or timing by variably-timed valves controlling fuel passages to pumping elements or overflow passages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B3/00Engines characterised by air compression and subsequent fuel addition
    • F02B3/06Engines characterised by air compression and subsequent fuel addition with compression ignition

Definitions

  • the invention relates to a fuel injection device for a diesel internal combustion engine, in each of which an injection nozzle is connected to a fuel pump via a pressure line, the fuel pump having a cylinder with at least one fuel line for the inflow and outflow of fuel and a pump chamber and a pump piston, and the Pump piston is connected to and driven by an axial piston unit acted on by a pressure medium, the pump piston has two control edges, one of which is formed by an annular space connected to the pump chamber and the pump piston is rotatable about its longitudinal axis, the axial piston unit via a hydraulic system on an independent of the fuel system Pressure source connected, and a control device with a control valve is arranged in this hydraulic system between the pressure source and the axial piston unit.
  • a large number of fuel injection devices for diesel internal combustion engines are known, and in most of these devices the pump piston is driven by a camshaft.
  • Swiss Patent No. 539 778 a fuel injection device is known in which the pump pistons are driven by means of an axial piston unit acted upon by a pressure medium.
  • This device comprises a feed pump for the fuel, which is part of a line system for supplying fuel to one or more Is fuel nozzles.
  • the feed pump is connected to a fuel accumulator and a pressure control valve, which regulates the feed pressure in the fuel line system.
  • the fuel is directed to an electromagnetically actuated hydraulic valve, then to a slide valve and then to a servo piston and the injection nozzle.
  • the solenoid valve is with a electrical control unit connected, which sends control signals for the start and end of the injection to the solenoid valve.
  • the slide valve connected to the solenoid valve has two control edges which control the inflow of fuel to the piston surface of the servo piston.
  • the slide of the slide valve is acted upon by fuel with the pressure of the feed pump on the one hand, and on the other hand loaded with a spring force which is less than the force generated by the feed pressure of the pump.
  • the servo piston is directly connected to the pump piston of the injection pump, the pump piston delivering fuel from a pump chamber to the injection nozzle. The amount of fuel flowing into the pump chamber is determined by the pressure prevailing at the feed pump and a throttle arranged in the line.
  • the solenoid valve is brought into a position by a control signal in which the slide valve is pressurized by the feed pump and thereby the slide of the slide valve opens a passage from the fuel line to the working surface of the servo piston.
  • the servo piston, and thus the pump piston is set in motion and the injection process started.
  • a second signal is fed to the solenoid valve via the electrical control device, as a result of which it assumes a different switching position and relieves the slide valve of the fuel pressure from the feed pump.
  • the slide of the slide valve is moved by the spring force and opens a passage that connects the working surface of the servo piston with a pressure-free return line of the fuel system.
  • the injection stroke is interrupted and the pump piston, and thus the servo piston, is pushed back by the delivery pressure in the fuel system.
  • the return path of the servo piston is determined by the amount of fuel flowing in, which in turn is determined by the throttle arranged in the inlet.
  • the servo piston remains suspended at the end of the filling cycle, ie its position is not fixed. In this inaccurate position of the servo piston, the fuel injector is ready for a new injection stroke.
  • Fuel injectors of the type described enable the use of relatively small solenoid valves by installing the slide valve.
  • They have the disadvantage that the exact metering of the injection quantity is difficult.
  • the electrical control and the entire fuel system must be coordinated very precisely in order to introduce the fuel in the right quantity and at the right time into the combustion chamber of the diesel internal combustion engine, especially in the case of fast-running diesel engines. This coordination is difficult and involves great technical effort.
  • the servo piston does not assume a stop in a large load range, the fuel metering is nevertheless very inaccurate.
  • the floating servo piston cannot be positioned precisely due to the leakage losses, and changes in the viscosity of the fuel result in a different degree of filling.
  • the electrical time control cannot detect and compensate for these deviations.
  • the known injection device also has no emergency running device, and the injection process cannot be carried out if the electrical control fails.
  • the hydraulic system has a different characteristic, and the functionality of the hydraulic elements may no longer be guaranteed.
  • a further fuel pump is known from document FR-A-2 496 170, in which the pump piston is driven by a drive piston which is pressurized with pressure medium.
  • a pressure medium for driving the drive piston proposed the use of a liquid or a gas.
  • the pressure medium of the drive piston forms a system that is separate from the fuel system.
  • the movements of the drive piston are controlled in a known manner via a multi-way valve in the pressure medium supply line.
  • a pressure medium reservoir is located upstream of the reusable valve.
  • An electrical control device processes measurement signals from the combustion chamber and from the crankshaft of the engine and generates control signals for the control valve in the pressure medium supply line.
  • the stroke of the pump piston is determined by the stroke of the drive piston, ie by means of the electrical control device.
  • the invention is based on the object of avoiding the disadvantages mentioned and of creating a fuel injection device with a pump piston driven by a pressure medium, which is both fast and slow running diesel engines and can be used for all types of fuels, in which the control of the axial piston drive unit takes place without delay, pump pistons and axial pistons do not perform any premature idle movements, energy is saved in the pressure medium system, and which has an emergency operation device even if the electrical part of the control fails.
  • control device has a main slide connected to a return piston and acted upon by pressure medium, this return piston is connected to the pump chamber via a connecting line and is acted upon by fuel, at least a second one in the fuel lines connected to the pump chamber Control device is arranged, and this second control device is formed from the control edges on the pump piston and a passage in the pump housing between the pump chamber and the connecting line.
  • the principle of the pump piston provided with control edges is connected to a drive unit which has a drive piston acted upon by a pressure medium.
  • the fuel system of the fuel pump and the pressure medium system of the axial piston unit are independent systems which are linked to one another via a control device.
  • the control device can be switched mechanically and / or electrically and also has a return piston which is connected to the pump chamber and is acted upon by fuel.
  • This connecting line from the pump chamber to the return piston of the control device, with the second control device formed by the control edges on the pump piston and the passage in the pump housing, has a direct, instantaneous influence on the pressure medium system by the fuel system.
  • the Control device is acted upon by fuel under high pressure at a desired point in time and the pressure medium system of the axial piston unit is controlled immediately.
  • This arrangement ensures the termination of the injection process and the movement of the drive piston as soon as the pump piston has traveled a desired distance, and thus a precisely determined volume of fuel has been expelled.
  • the main slide of the control device has control spaces and control edges for opening and closing the pressure medium lines to the axial piston, and this main slide interacts with a push rod at one end and with the return piston acted upon by fuel and connected to the pump chamber at the other end. At least part of the push rod forms the core of a magnet coil, and this magnet coil is connected to an electrical pulse generator. Furthermore, the push rod is part of a mechanical locking device, and this locking device fixes the push rod and the control edges of the main slide in a control position.
  • a preferred embodiment of the invention is characterized in that the control device in the hydraulic system is connected to a control camshaft and the cam disc acts on the push rod of the control device.
  • a low mass camshaft can be used because it only needs to move controls. This is in contrast to injection devices, in which the camshaft drives the pump pistons, and which require a heavy and complex construction.
  • the control camshaft acts directly on the push rod of the main spool and serves as an actuator for the main spool or as an emergency control if the solenoid fails.
  • the axial piston is double-acting and the pressure medium supply line to the working space with the fully loaded piston surface is over the control device to the pressure source and the pressure medium supply to the annular space with the annular surface of the piston led directly to the pressure source.
  • a further improvement of the fuel injection device can be achieved in that the second control device is formed in such a way that the upper end face of the pump piston forms a first control edge, in the direction of the longitudinal axis on the jacket of the pump piston a channel running obliquely to the longitudinal axis is arranged with a second control edge and above a channel is connected to the pump chamber, the passage extending from the pump cylinder via the fuel line into the connecting line to the control device of the hydraulic system, the passage being at the bottom dead center of the pump piston above the first control edge and at top dead center of the pump piston below the second control edge.
  • a further advantageous embodiment of the fuel injection device is characterized in that a third control device in the fuel line consists of an overflow / suction valve and a switching piston acting on the valve stem of the overflow / suction valve, the overflow / suction valve via a feed line to the upper end of the pump chamber and the piston chamber of the switching piston is connected via a line to the passage in the pump cylinder and thus to the second control device.
  • the passage in the pump cylinder can be dimensioned so that it is optimally matched to its control function.
  • the inflow and outflow of fuel into the pump chamber takes place via the feed line at the upper end of the pump chamber, the dimensions and dimensions of the overflow / suction valve also being optimally dimensioned for these inflow and outflow processes.
  • the pump piston When the fuel injection device according to the invention is operated, the pump piston is brought into a position dependent on the engine output by means of a control device known per se, in which the control edges effect the injection of the desired amount of fuel.
  • the start of the injection process is effected via the control device in the pressure medium system by means of an electrical pulse via the magnetic coil or by means of the control camshaft.
  • the control device releases the pressure medium flow to the axial piston unit and this moves the pump piston, the fuel in the pump chamber being pressurized.
  • the inflow valve to the injector opens and the fuel is introduced into the diesel engine.
  • the pump chamber is coupled to the control device via the connecting line, and the pressure surge causes the main slide to be reset via the reset piston, thereby blocking the supply of pressure medium to the fully loaded piston surface of the axial piston unit.
  • the ring surface remains pressurized and causes the axial piston to retract immediately and the pressure in the pump chamber to decrease immediately.
  • the connection of the bevel edge control on the pump piston with a drive unit pressurized with pressure medium results in a very high level of operational reliability and design independence.
  • the inventive device prevents unnecessary movements of the pump and drive piston, thereby kinetic energy and Energy is saved in the pressure medium system. Even with high-speed engines, the injection processes can be controlled precisely and without delays.
  • the heavy and complex drive camshafts are completely eliminated, which is particularly important for large and fast-running diesel engines. Nevertheless, the emergency control via the camshaft control with a light camshaft is guaranteed.
  • FIG. 1 shows a fuel injection device with an injection nozzle 1, a fuel pump 3, an axial piston unit 20 and a control device 31.
  • the fuel pump 3 consists of a pump cylinder 4 with a pump chamber 6, in which a pump piston 7 is guided.
  • the pump cylinder 4 is provided with a fuel line, which consists of a feed line 15, a fuel channel 5 and a discharge line 16. These fuel lines are part of a fuel system in which the fuel is conveyed by a feed pump at a relatively low pressure.
  • a check valve 17 is installed in the fuel feed line 15, which prevents fuel from flowing back into the feed line 15 and pressure surges occurring in the fuel channel 5 are transmitted to the fuel feed line 15.
  • a throttle 18 is installed in the fuel discharge line 16.
  • the pump piston 7 is connected at its lower end to the axial piston 22 of the axial piston unit 20.
  • the pump piston 7 is not only displaceable in the axial direction, but can also be rotated about the longitudinal axis 8 by means of an adjusting device 60.
  • the adjusting device 60 is a device known in fuel injection pumps with inclined edge controls.
  • the axial piston unit 20 consists of a cylinder 21, the axial piston 22, the working space 25 and the annular space 26.
  • the axial piston 22 is double-acting and has a piston surface 23 directed towards the working space 25, which is opposite an annular surface 24 assigned to the annular space 26.
  • the axial piston unit 20 is part of a pressure medium system in which any known pressure medium can be used. High pressure hydraulic oil is used in the present example.
  • the pressure medium is supplied to the axial piston unit 20 via the pressure medium lines 27, 28, which are fed by a pressure source 29.
  • a control device 31 is installed between the pressure source 29 and the pressure medium line 27.
  • the control device 31 comprises a main slide 32, a return piston 34, a magnetic coil 38 with an associated magnetic core 39, a mechanical locking device 41 and a camshaft control 61.
  • the hydraulic fluid system containing hydraulic oil is separated from the fuel system, and the working movements of the axial piston 22 are controlled by the main slide 32 .
  • This main slide 32 is shown in more detail in FIG. 3 and has two slide bodies 62, 63 with control edges 64, 65.
  • the slide body 62 is a Control room 66, and a control room 67 assigned to the slide body 63. In between there is a third control chamber 68.
  • Pressure relief chambers 69, 70 and sealing pistons 71, 72 are arranged behind each of the slide bodies 62 and 63, respectively, the pressure relief chambers 69, 70 being connected to a leak line 88.
  • the slide bodies 62, 63 and the sealing pistons 71, 72 are arranged at the correct distance from one another by means of a core 73 and are connected to one another.
  • At one end of the main slide 32 there is a push rod 37 which is connected to the slide body 63, part of the push rod 37 forming the core 39 of the solenoid 38.
  • the push rod 37 extends beyond the magnetic coil 38 and is enclosed by the mechanical locking device 41.
  • the camshaft control 61 is connected to this mechanical locking device 41.
  • the return piston 34 interacts with the slide body 62 via a pin 74.
  • a piston chamber 75 belonging to the return piston 34 is connected to the fuel system via a connecting line 33.
  • this connecting line 33 is introduced into a passage 14 in the pump cylinder 4, which leads into the pump chamber 6.
  • the passage 14 forms the second control device with the control edges 10 and 12 on the pump piston 7.
  • the pressure medium system is operated by means of the pressure source 29, a pressure control valve 30 being provided for controlling the pressure in this system.
  • a pressure line 35 leads from the pressure source 29 to the main slide 32 and a further pressure medium line 28 leads to the annular space 26 of the axial piston unit 20.
  • a return line 36 leads from the main slide 32 to a pressure medium container 76.
  • the slide body 62 releases the connection between the control chamber 66 and the control chamber 68, and on the other hand, the slide body 63 closes the connection between the control chamber 68 and the control chamber 67.
  • pressure medium flows under high pressure from the pressure line 35 to the pressure medium line 27 and thus into the working chamber 25 of the axial piston unit 20.
  • the axial piston 22 moves upward and pushes the pump piston 7 in the direction of the upper end of the pump chamber 6. This axial movement closes the passage 14 in the pump cylinder 4 and pressure is built up in the pump chamber 6.
  • the control valve 19 opens and fuel is injected into the combustion chamber of a diesel engine via the injection nozzle 1.
  • the pressure prevailing in the pump chamber 6 is supplied to a channel 11 with a control edge 12 via a channel 13 attached to the jacket of the pump piston 7.
  • a pressure surge develops in the fuel channel 5 and in the connecting line 33, which spreads at the speed of sound.
  • This pressure surge penetrates into the piston chamber 75 on the control device 31 and, via the return piston 34, causes the main slide 32 to be moved immediately in the direction of the solenoid 38.
  • the pressure line 35 and the control chamber 66 are blocked by the slide body 62, and the slide body 63 is also included the control edge 65 provides the connection between the control chamber 68 and the control chamber 67, and thus between the pressure medium line 27 and the return line 36 free.
  • the fuel injection device shown in FIG. 2 has a third control device 42 in addition to the second control device.
  • the pump piston 7, the axial piston unit 20 and the control device 31 are of the same design as in the example shown and described in FIG. 1.
  • a feed line 46 for fuel is arranged on the pump cylinder 4 and is introduced into the pump chamber 6 at the upper end thereof.
  • the third control device 42 comprises an overflow / suction valve 43 with an overflow space 53, a switching piston 44 and a compensating valve 54.
  • the overflow space 53 is connected on the one hand via the flow line 52 to the fuel channel 5 and on the other hand to the fuel discharge line 16.
  • a piston chamber 45 arranged below the switching piston 44 is connected to the passage 14 via the line 47.
  • the switching piston 44 rests on the valve stem 48, the overflow / suction valve 43 being held in the closed position by a spring 50.
  • a further spring 49 is arranged below the switching piston 44, which presses the switching piston 44 against the valve stem 48.
  • the compensating valve 54 is designed as a check valve and is connected to the piston chamber 45 via a bore 55. If there is a lower pressure in the piston chamber 45 than in the line 16, the valve 54 opens and releases the valve seat 56, whereby Fuel flows into the piston chamber 45 and the lines 47 and 33.
  • the control edge 10 closes the passage 14, and the valve 43 is pressed against the valve seat 51 by the pressure built up in the pump chamber 6.
  • the pressure surge spreads via the line 33 to the return piston 34 in the control device 31 and via the line 47 into the piston chamber 45, and thus onto the switching piston 44.
  • the movement of the axial piston is interrupted via the control device 31.
  • the pressure surge on the switching piston 44 causes the overflow / suction valve 43 to open immediately via the valve stem 48, as a result of which the pressure prevailing in the pump chamber 6 is relieved via the line 46 into the overflow chamber 53 and thus the fuel line 16.
  • This pressure drop in the pump chamber 6 has the result that the control valve 19 closes immediately and at a precisely determined point in time and prevents the fuel from flowing to the injection nozzle 1.
  • FIG. 3 shows the mechanical locking device 41 and the camshaft control 61.
  • the mechanical locking device 41 consists essentially of a locking body 78, pawls 79 and unlocking bolt 80.
  • the push rod 37 protrudes into the locking body 78 and has a shoulder 81 in its area. If the push rod 37 is moved to the left by means of the magnetic coil 38, the shoulder 81 takes the locking body 78 with it, and the spring-loaded pawls 79 snap into the cams 82. This can interrupt the power supply to the solenoid 38 and there is no risk of overloading or overheating.
  • the push rod 37 is reset at the end of the injection process by means of the return piston 34, which is acted upon by the injection pressure.
  • the push rod 37 acts against the force of the spring 83 pressed to the right, and the unlocking bolts 80 driven outwards. These unlocking bolts 80 raise the pawls 79 and thereby release the cams 82 on the locking body 78. The spring 77 now pushes the locking body 78 back into its starting position.
  • a camshaft control 61 is arranged in addition to the solenoid 38 of the injection control.
  • This consists of the cam disk 84 with the cam 85 and the run-off roller 86 attached to the blocking body 78.
  • the camshaft is driven by a drive, not shown, which is connected to the crank drive.
  • the cam 85 drives the blocking body 78 via the idler roller 86, and thus the push rod 37 to the left at the start of the injection process.
  • the movement of the locking body 78 and the push rod 37 requires only small forces, and the camshaft and its control 61 can therefore be built easily and without great kinematic effort.
  • the push rod 37 is reset at the end of the injection process in the same way as described above.
  • a second magnetic coil 87 is arranged in addition to the magnetic coil 38. Both receive electrical impulses from the electrical pulse generator 40 via the electrical line 89. By actuating this magnetic coil 87 with an electrical pulse, the push rod 37 can be shifted to the right, and the injection process can therefore be stopped prematurely. This enables an emergency stop of the injection device, since this action of the main slide 32 interrupts the action on the axial piston 22 of the axial piston unit 20 and the piston 22 is retracted.

Abstract

A fuel pump (3) comprises a piston (7) which is adjustable by rotation. The pump (3) is actuated by an axial piston system (20) on which acts a fluid pressure means, and the piston (7) of the pump can undergo rotation around the axes (8) imposed by an operating device (60). In the pressure fluid circuit, a regulating device (31) adjusts the admission and delivery of the pressure fluid for the twin-action axial piston (22) of the axial piston system (20). The pulse for the start of the piston injection travel is sent to the regulating device (31) by an electric pulse generator (40) or by a camshaft. A return piston (34) on the regulating device (31) is operated by the fuel and is linked by a pipeline (33) with the pump chamber. Towards the end of the injection travel, a control edge (12) leaves open a passageway (14), and a pressure surge acts by means of the pipeline (33) on the return piston (34).

Description

Die Erfindung betrifft eine Brennstoffeinspritzvorrichtung für eine Dieselbrennkraftmaschine, in der jeweils eine Einspritzdüse über eine Druckleitung an einer Brennstoffpumpe angeschlossen ist, wobei die Brennstoffpumpe einen Zylinder mit mindestens einer Brennstoffleitung für den Zu- und Abfluss von Brennstoff und einen Pumpenraum sowie einen Pumpenkolben aufweist, und der Pumpenkolben mit einer von einem Druckmittel beaufschlagten Axialkolbeneinheit verbunden und von dieser angetrieben ist, der Pumpenkolben zwei Steuerkanten aufweist, wovon eine von einem mit dem Pumpenraum verbundenen Ringraum gebildet und der Pumpenkolben um seine Längsachse verdrehbar ist, die Axialkolbeneinheit über ein Hydrauliksystem an einer vom Brennstoffsystem unabhängigen Druckquelle angeschlossen, und in diesem Hydrauliksystem zwischen Druckquelle und Axialkolbeneinheit eine Steuereinrichtung mit einem Steuerventil angeordnet ist.The invention relates to a fuel injection device for a diesel internal combustion engine, in each of which an injection nozzle is connected to a fuel pump via a pressure line, the fuel pump having a cylinder with at least one fuel line for the inflow and outflow of fuel and a pump chamber and a pump piston, and the Pump piston is connected to and driven by an axial piston unit acted on by a pressure medium, the pump piston has two control edges, one of which is formed by an annular space connected to the pump chamber and the pump piston is rotatable about its longitudinal axis, the axial piston unit via a hydraulic system on an independent of the fuel system Pressure source connected, and a control device with a control valve is arranged in this hydraulic system between the pressure source and the axial piston unit.

Es ist eine grosse Zahl von Brennstoffeinspritzvorrichtungen für Dieselbrennkraftmaschinen bekannt, wobei bei den meisten dieser Vorrichtungen der Pumpenkolben von einer Nockenwelle angetrieben wird. Aus der schweizerischen Patentschrift Nr. 539 778 ist eine Brennstoffeinspritzvorrichtung bekannt, bei welcher der Antrieb der Pumpenkolben mittels einer von einem Druckmittel beaufschlagten Axialkolbeneinheit erfolgt. Diese Vorrichtung umfasst eine Förderpumpe für den Brennstoff, welche Teil eines Leitungssystems für die Zuführung von Brennstoff zu einer oder mehreren Brennstoffdüsen ist. Die Förderpumpe steht in Verbindung mit einem Kraftstoffspeicher und einem Druckregelventil, welches den Förderdruck im Brennstoffleitungssystem regelt. Von der Förderpumpe wird der Brennstoff zu einem elektromagnetisch betätigten Hydraulikventil, dann zu einem Schieberventil und nachfolgend zu einem Servokolben und zur Einspritzdüse geleitet. Das Magnetventil ist mit einem elektrischen Steuergerät verbunden, welches Steuersignale für den Beginn und das Ende der Einspritzung an das Magnetventil abgibt. Das mit dem Magnetventil verbundene Schieberventil weist zwei Steuerkanten auf, welche den Zufluss von Brennstoff zur Kolbenfläche des Servokolbens steuern. Der Schieber des Schieberventils ist einerseits von Brennstoff mit dem Druck der Förderpumpe beaufschlagt, und anderseits mit einer Federkraft belastet, welche geringer ist als die vom Förderdruck der Pumpe erzeugte Kraft. Der Servokolben ist direkt mit dem Pumpenkolben der Einspritzpumpe verbunden, wobei der Pumpenkolben Brennstoff aus einem Pumpenraum zur Einspritzdüse fördert. Die in den Pumpenraum einfliessende Brennstoffmenge wird durch den an der Förderpumpe herrschenden Druck und eine in der Leitung angeordnete Drossel bestimmt.A large number of fuel injection devices for diesel internal combustion engines are known, and in most of these devices the pump piston is driven by a camshaft. From Swiss Patent No. 539 778 a fuel injection device is known in which the pump pistons are driven by means of an axial piston unit acted upon by a pressure medium. This device comprises a feed pump for the fuel, which is part of a line system for supplying fuel to one or more Is fuel nozzles. The feed pump is connected to a fuel accumulator and a pressure control valve, which regulates the feed pressure in the fuel line system. From the feed pump, the fuel is directed to an electromagnetically actuated hydraulic valve, then to a slide valve and then to a servo piston and the injection nozzle. The solenoid valve is with a electrical control unit connected, which sends control signals for the start and end of the injection to the solenoid valve. The slide valve connected to the solenoid valve has two control edges which control the inflow of fuel to the piston surface of the servo piston. The slide of the slide valve is acted upon by fuel with the pressure of the feed pump on the one hand, and on the other hand loaded with a spring force which is less than the force generated by the feed pressure of the pump. The servo piston is directly connected to the pump piston of the injection pump, the pump piston delivering fuel from a pump chamber to the injection nozzle. The amount of fuel flowing into the pump chamber is determined by the pressure prevailing at the feed pump and a throttle arranged in the line.

Bei Beginn des Einspritzzyklus' wird das Magnetventil durch ein Steuersignal in eine Lage gebracht, in welcher das Schieberventil von der Förderpumpe unter Druck gesetzt und dadurch der Schieber des Schieberventils einen Durchlass von der Brennstoffleitung zur Arbeitsfläche des Servokolbens freigibt. Der Servokolben, und damit der Pumpenkolben, wird in Bewegung gesetzt und der Einspritzvorgang gestartet. Zum gewünschten Zeitpunkt für das Ende der Einspritzung wird dem Magnetventil über die elektrische Steuereinrichtung ein zweites Signal zugeleitet, wodurch dieses eine andere Schaltstellung einnimmt und das Schieberventil vom Brennstoffdruck ab der Förderpumpe entlastet. Der Schieber des Schieberventils wird durch die Federkraft verschoben und gibt einen Durchlass frei, welcher die Arbeitsfläche des Servokolbens mit einer drucklosen Rücklaufleitung des Brennstoffsystems verbindet. Der Einspritzhub wird abgebrochen und der Pumpenkolben, und damit der Servokolben, durch den Förderdruck im Brennstoffsystem zurückgestossen. Der Rücklaufweg des Servokolbens ist durch die einfliessende Menge von Brennstoff bestimmt, welche wiederum von der im Zulauf angeordneten Drossel vorgegeben wird. Bei Teilleistungen bleibt der Servokolben am Ende des Fülltaktes schwebend stehen, d.h. seine Stellung ist nicht fixiert. In dieser ungenauen Stellung des Servokolbens ist die Brennstoffeinspritzvorrichtung bereit für einen neuen Einspritzhub.At the beginning of the injection cycle, the solenoid valve is brought into a position by a control signal in which the slide valve is pressurized by the feed pump and thereby the slide of the slide valve opens a passage from the fuel line to the working surface of the servo piston. The servo piston, and thus the pump piston, is set in motion and the injection process started. At the desired point in time for the end of injection, a second signal is fed to the solenoid valve via the electrical control device, as a result of which it assumes a different switching position and relieves the slide valve of the fuel pressure from the feed pump. The slide of the slide valve is moved by the spring force and opens a passage that connects the working surface of the servo piston with a pressure-free return line of the fuel system. The injection stroke is interrupted and the pump piston, and thus the servo piston, is pushed back by the delivery pressure in the fuel system. The return path of the servo piston is determined by the amount of fuel flowing in, which in turn is determined by the throttle arranged in the inlet. For partial services the servo piston remains suspended at the end of the filling cycle, ie its position is not fixed. In this inaccurate position of the servo piston, the fuel injector is ready for a new injection stroke.

Brennstoffeinspritzvorrichtungen der beschriebenen Art ermöglichen durch den Einbau des Schieberventiles die Verwendung von relativ kleinen Magnetventilen. Sie weisen jedoch den Nachteil auf, dass die genaue Dosierung der Einspritzmenge mit Schwierigkeiten verbunden ist. Die elektrische Steuerung und das ganze Brennstoffsystem müssen sehr genau aufeinander abgestimmt werden, um insbesondere bei schnell laufenden Dieselmotoren den Brennstoff in der richtigen Menge und zum richtigen Zeitpunkt in den Brennraum der Dieselbrennkraftmaschine einzubringen. Diese Abstimmung ist schwierig und mit grossem technischem Aufwand verbunden. Da der Servokolben in einem grossen Lastbereich nicht von einem Anschlag ausgeht ist die Brennstoffdosierung trotzdem sehr ungenau. Der schwebende Servokolben kann wegen der Leckverluste nicht genau positioniert werden, und Viskositätsänderungen des Brennstoffes bewirken einen unterschiedlichen Füllgrad. Die elektrische Zeitsteuerung kann diese Abweichungen nicht erfassen und ausgleichen. Als Folge treten bei mehreren Pumpen, bzw. Zylindern, unterschiedliche Füllungen auf. Die bekannte Einspritzvorrichtung weist zudem keine Notlaufeinrichtung auf, und der Einspritzvorgang kann bei einem Ausfall der elektrischen Steuerung nicht durchgeführt werden. Je nach Art des verwendeten Brennstoffes weist das Hydrauliksystem eine andere Charakteristik auf, und unter Umständen ist die Funktionsfähigkeit der Hydraulikelemente nicht mehr gewährleistet.Fuel injectors of the type described enable the use of relatively small solenoid valves by installing the slide valve. However, they have the disadvantage that the exact metering of the injection quantity is difficult. The electrical control and the entire fuel system must be coordinated very precisely in order to introduce the fuel in the right quantity and at the right time into the combustion chamber of the diesel internal combustion engine, especially in the case of fast-running diesel engines. This coordination is difficult and involves great technical effort. Since the servo piston does not assume a stop in a large load range, the fuel metering is nevertheless very inaccurate. The floating servo piston cannot be positioned precisely due to the leakage losses, and changes in the viscosity of the fuel result in a different degree of filling. The electrical time control cannot detect and compensate for these deviations. As a result, different fillings occur in several pumps or cylinders. The known injection device also has no emergency running device, and the injection process cannot be carried out if the electrical control fails. Depending on the type of fuel used, the hydraulic system has a different characteristic, and the functionality of the hydraulic elements may no longer be guaranteed.

Aus der Schrift FR-A-2 496 170 ist eine weitere Brennstoffpumpe bekannt, bei welcher der Pumpenkolben von einem mit Druckmittel beaufschlagten Antriebskolben angetrieben wird. Als Druckmittel für den Antrieb des Antriebskolbens wird die Verwendung einer Flüssigkeit oder eines Gases vorgeschlagen. Das Druckmittel des Antriebskolbens bildet ein, vom Brennstoffsystem getrenntes, System. Die Bewegungen des Antriebskolbens werden in bekannter Weise über ein Mehrwegventil in der Druckmittelzuleitung gesteuert. Dem Mehrwegventil ist ein Druckmittelspeicher vorgelagert. Eine elektrische Steuereinrichtung verarbeitet Messignale aus dem Verbrennungsraum und von der Kurbelwelle des Motors und erzeugt Steuersignale für das Steuerventil in der Druckmittelzuleitung. Der Hub des Pumpenkolbens wird durch den Hub des Antriebskolbens bestimmt, d.h. mittels der elektrischen Steuereinrichtung. Da diese Steuerung sehr ungenau ist, wird weiterhin vorgeschlagen, am Pumpenkolben zwei schräge Steuerkanten anzuordnen, und im Pumpenzylinder eine Einlassbohrung und eine Auslassbohrung für den Brennstoff vorzusehen. Diese beiden Bohrungen werden durch die beiden Steuerkanten am Pumpenkolben geöffnet und/oder geschlossen. Durch Verdrehen des Pumpenkolbens um die Längsachse kann in bekannter Weise die von der Pumpe zur Düse geförderte Brennstoffmenge pro Hub verändert werden. Diese Steuerung ist mit erheblichen Mängeln behaftet, da die Bewegungen des Antriebskolbens nicht mit der gewünschten Geschwindigkeit gesteuert werden können. Erfolgt beispielsweise der Abbruch des Einspritzvorganges mit Hilfe einer der Steuerkanten, so ist der Antriebskolben immer noch mit dem vollen Druck beaufschlagt und schiesst mit grosser Kraft nach oben weg. Da diese Vorgänge sehr schnell ablaufen, ist die Steuerung nicht in der Lage, die Steuerventile in der Druckmittelzuleitung rasch genug zu betätigen. Dies hat unnötige Kolbenbewegungen und Energieverluste zur Folge, da bei jedem Kolbenhub Druckmittel und Bewegungsenergie verloren gehen. Es besteht auch die Gefahr, dass der Pumpenkolben gegen die Zylinderdecke schiesst und die Pumpe beschädigt wird. Bei dieser Ausführung einer Pumpe ist die Position des Kolbens am Anfang und am Ende einer Einspritzphase mechanisch genau bestimmt. Die verzögerte und ungenaue Steuerung der Bewegungen des Antriebskolbens führt jedoch zu neuen Problemen, welche mechanische Nockenwellenantriebe nicht aufweisen. Das ganze System des Antriebskolbens und des Druckmittels wirkt zudem als Feder, was zu unerwünschten Verzögerungen oder Beschleunigungen im System, und damit zu Mängeln bei der Messwerterfassung führt. Es besteht auch die Gefahr, dass Druckstösse im Pumpenraum zu Schwingungen im Druckmittelsystem führen. Derartige Stösse und Schwingungen stören die Steuervorgänge und führen zu Defekten an den Steuerungen und Leitungen. Bei hohen Motorgeschwindigkeiten oder hohen Einspritzdrücken sind die Verzögerungen zwischen den Messungen am Motor und den Bewegungskorrekturen am Antriebskolben in der Pumpe viel zu gross, wodurch die Einspritzvorgänge ungenau werden. Dies führt zu Leistungsverlusten und erhöhten Schadstoffbelastungen. Bei Ausfall der elektrischen Steuerung fällt das ganze Pumpensystem aus, da der Arbeitskolben nur über die elektrische Steuerung ansteuerbar ist. Bei dieser Einrichtung sind keine Notlaufsteuerungen möglich.A further fuel pump is known from document FR-A-2 496 170, in which the pump piston is driven by a drive piston which is pressurized with pressure medium. As a pressure medium for driving the drive piston proposed the use of a liquid or a gas. The pressure medium of the drive piston forms a system that is separate from the fuel system. The movements of the drive piston are controlled in a known manner via a multi-way valve in the pressure medium supply line. A pressure medium reservoir is located upstream of the reusable valve. An electrical control device processes measurement signals from the combustion chamber and from the crankshaft of the engine and generates control signals for the control valve in the pressure medium supply line. The stroke of the pump piston is determined by the stroke of the drive piston, ie by means of the electrical control device. Since this control is very imprecise, it is also proposed to arrange two oblique control edges on the pump piston and to provide an inlet bore and an outlet bore for the fuel in the pump cylinder. These two holes are opened and / or closed by the two control edges on the pump piston. By rotating the pump piston around the longitudinal axis, the amount of fuel delivered by the pump to the nozzle per stroke can be changed in a known manner. This control system has considerable shortcomings, since the movements of the drive piston cannot be controlled at the desired speed. If, for example, the injection process is terminated with the help of one of the control edges, the drive piston is still subjected to the full pressure and shoots away with great force. Since these processes take place very quickly, the control system is unable to actuate the control valves in the pressure medium supply line quickly enough. This results in unnecessary piston movements and energy losses, since pressure medium and kinetic energy are lost with every piston stroke. There is also a risk that the pump piston will shoot against the cylinder ceiling and the pump will be damaged. In this version of a pump, the position of the piston at the beginning and at the end of an injection phase is determined mechanically precisely. However, the delayed and inaccurate control of the movements of the drive piston leads to new problems, which mechanical camshaft drives do not have. The entire system of the drive piston and the pressure medium also acts as a spring, which leads to undesired decelerations or accelerations in the system and thus to deficiencies in the measurement value acquisition. There is also the risk that pressure surges in the pump chamber lead to vibrations in the pressure medium system. Such shocks and vibrations disrupt the control processes and lead to defects in the controls and lines. At high engine speeds or high injection pressures, the delays between the measurements on the engine and the movement corrections on the drive piston in the pump are much too great, which makes the injection processes inaccurate. This leads to a loss of performance and increased pollution. If the electrical control fails, the entire pump system fails, since the working piston can only be controlled via the electrical control. Emergency running controls are not possible with this device.

Eine der Erfindung ähnliche Brennstoffpumpe, die jedoch eine Voreinspritzeinrichtung aufweist, ist in der Patentanmeldung WO88/02066 beschrieben. Diese Patentanmeldung hat das gleiche Prioritätsdatum wie die vorliegende Erfindung.A fuel pump similar to the invention, but which has a pre-injection device, is described in patent application WO88 / 02066. This patent application has the same priority date as the present invention.

Der Erfindung liegt die Aufgabe zu Grunde, die erwähnten Nachteile zu vermeiden, und eine Brennstoffeinspritzvorrichtung mit einem, von einem Druckmittel angetriebenen Pumpenkolben zu schaffen, welche sowohl bei schnell wie langsam laufenden Dieselmotoren und für alle Arten von Brennstoffen einsetzbar ist, bei welcher die Steuerung der Axialkolben-Antriebseinheit verzögerungsfrei erfolgt, Pumpenkolben und Axialkolben keine vorzeitigen Leerbewegungen ausführen, Energie im Druckmittelsystem eingespart wird, und welche auch bei Ausfall des elektrischen Teiles der Steuerung eine Notlaufeinrichtung aufweist.The invention is based on the object of avoiding the disadvantages mentioned and of creating a fuel injection device with a pump piston driven by a pressure medium, which is both fast and slow running diesel engines and can be used for all types of fuels, in which the control of the axial piston drive unit takes place without delay, pump pistons and axial pistons do not perform any premature idle movements, energy is saved in the pressure medium system, and which has an emergency operation device even if the electrical part of the control fails.

Diese Aufgabe wird erfindungsgemäss dadurch gelöst, dass die Steuereinrichtung einen, mit einem Rückstellkolben verbundenen, von Druckmittel beaufschlagten Hauptschieber aufweist, dieser Rückstellkolben über eine Verbindungsleitung mit dem Pumpenraum verbunden und von Brennstoff beaufschlagt ist, in den mit dem Pumpenraum in Verbindung stehenden Brennstoffleitungen mindestens eine zweite Steuereinrichtung angeordnet ist, und diese zweite Steuereinrichtung aus den Steuerkanten am Pumpenkolben und einem Durchlass im Pumpengehäuse zwischen dem Pumpenraum und der Verbindungsleitung gebildet ist.This object is achieved according to the invention in that the control device has a main slide connected to a return piston and acted upon by pressure medium, this return piston is connected to the pump chamber via a connecting line and is acted upon by fuel, at least a second one in the fuel lines connected to the pump chamber Control device is arranged, and this second control device is formed from the control edges on the pump piston and a passage in the pump housing between the pump chamber and the connecting line.

Bei der Erfindung wird das Prinzip des mit Steuerkanten versehenen Pumpenkolbens mit einer Antriebseinheit verbunden, welche einen von einem Druckmittel beaufschlagten Antriebskolben aufweist. Das Brennstoffsystem der Brennstoffpumpe und das Druckmittelsystem der Axialkolbeneinheit sind voneinander unabhängige Systeme, welche über eine Steuereinrichtung miteinander verknüpft sind. Die Steuereinrichtung ist mechanisch und/oder elektrisch schaltbar und weist zudem einen Rückstellkolben auf, welcher mit dem Pumpenraum verbunden ist und von Brennstoff beaufschlagt wird. Diese Verbindungsleitung vom Pumpenraum zum Rückstellkolben der Steuereinrichtung bewirkt mit der durch die Steuerkanten am Pumpenkolben und den Durchlass im Pumpengehäuse gebildeten zweiten Steuereinrichtung eine direkte verzögerungsfreie Beeinflussung des Druckmittelsystems durch das Brennstoffsystem. Je nach Stellung des Pumpenkolbens, bzw. der daran angeordneten Steuerkante, wird die Steuereinrichtung zu einem gewünschten Zeitpunkt von unter Hochdruck stehendem Brennstoff beaufschlagt und das Druckmittelsystem der Axialkolbeneinheit sofort gesteuert. Diese Anordnung gewährleistet den Abbruch des Einspritzvorganges und der Bewegung des Antriebskolbens sobald der Pumpenkolben einen gewünschten Weg zurückgelegt hat, und damit ein genau bestimmtes Volumen von Brennstoff ausgestossen wurde.In the invention, the principle of the pump piston provided with control edges is connected to a drive unit which has a drive piston acted upon by a pressure medium. The fuel system of the fuel pump and the pressure medium system of the axial piston unit are independent systems which are linked to one another via a control device. The control device can be switched mechanically and / or electrically and also has a return piston which is connected to the pump chamber and is acted upon by fuel. This connecting line from the pump chamber to the return piston of the control device, with the second control device formed by the control edges on the pump piston and the passage in the pump housing, has a direct, instantaneous influence on the pressure medium system by the fuel system. Depending on the position of the pump piston or the control edge arranged on it, the Control device is acted upon by fuel under high pressure at a desired point in time and the pressure medium system of the axial piston unit is controlled immediately. This arrangement ensures the termination of the injection process and the movement of the drive piston as soon as the pump piston has traveled a desired distance, and thus a precisely determined volume of fuel has been expelled.

In weiterer Ausgestaltung der Erfindung weist der Hauptschieber der Steuereinrichtung Steuerräume und Steuerkanten zum Oeffnen und Schliessen der Druckmittelleitungen zum Axialkolben auf, und dieser Hauptschieber wirkt am einen Ende mit einer Schubstange und am anderen Ende mit dem von Brennstoff beaufschlagten und mit dem Pumpenraum verbundenen Rückstellkolben zusammen. Mindestens ein Teil der Schubstange bildet den Kern einer Magnetspule, und diese Magnetspule ist mit einem elektrischen Impulsgeber verbunden. Im weiteren ist die Schubstange Teil einer mechanischen Sperreinrichtung, und diese Sperreinrichtung legt die Schubstange und die Steuerkanten des Hauptschiebers in einer Steuerstellung fest.In a further embodiment of the invention, the main slide of the control device has control spaces and control edges for opening and closing the pressure medium lines to the axial piston, and this main slide interacts with a push rod at one end and with the return piston acted upon by fuel and connected to the pump chamber at the other end. At least part of the push rod forms the core of a magnet coil, and this magnet coil is connected to an electrical pulse generator. Furthermore, the push rod is part of a mechanical locking device, and this locking device fixes the push rod and the control edges of the main slide in a control position.

Eine bevorzugte Ausführungsform der Erfindung ist dadurch gekennzeichnet, dass die Steuereinrichtung im Hydrauliksystem mit einer Steuernockenwelle in Verbindung steht, und die Nockenscheibe auf die Schubstange der Steuereinrichtung einwirkt. Bei dieser Anordnung kann eine Nockenwelle von geringer Masse eingesetzt werden, da sie nur Steuerelemente bewegen muss. Dies im Gegensatz zu Einspritzvorrichtungen, bei welchen die Nockenwelle die Pumpenkolben antreibt, und die einer schweren und aufwendigen Konstruktion bedürfen. Die Steuernockenwelle wirkt direkt auf die Schubstange des Hauptschiebers und dient als Betätigungsorgan des Hauptschiebers oder als Notsteuerung bei Ausfall der Magnetspule. In weiterer Ausgestaltung der Erfindung ist der Axialkolben doppeltwirkend und die Druckmittelzuleitung zum Arbeitsraum mit der voll beaufschlagten Kolbenfläche ist über die Steuereinrichtung zur Druckquelle und die Druckmittelzuleitung zum Ringraum mit der Ringfläche des Kolbens direkt zur Druckquelle geführt.A preferred embodiment of the invention is characterized in that the control device in the hydraulic system is connected to a control camshaft and the cam disc acts on the push rod of the control device. With this arrangement, a low mass camshaft can be used because it only needs to move controls. This is in contrast to injection devices, in which the camshaft drives the pump pistons, and which require a heavy and complex construction. The control camshaft acts directly on the push rod of the main spool and serves as an actuator for the main spool or as an emergency control if the solenoid fails. In a further embodiment of the invention, the axial piston is double-acting and the pressure medium supply line to the working space with the fully loaded piston surface is over the control device to the pressure source and the pressure medium supply to the annular space with the annular surface of the piston led directly to the pressure source.

Eine weitere Verbesserung der Brennstoffeinspritzvorrichtung lässt sich dadurch erreichen, dass die zweite Steuereinrichtung dadurch gebildet ist, dass die obere Endfläche des Pumpenkolbens eine erste Steuerkante bildet, in Richtung der Längsachse am Mantel des Pumpenkolbens eine schräg zur Längsachse verlaufende Rinne mit einer zweiten Steuerkante angeordnet und über einen Kanal mit dem Pumpenraum verbunden ist, der vom Pumpenzylinder ausgehende Durchlass über die Brennstoffleitung in die Verbindungsleitung zur Steuereinrichtung des Hydrauliksystems geführt ist, wobei der Durchlass im unteren Totpunkt des Pumpenkolbens oberhalb der ersten Steuerkante und im oberen Totpunkt des Pumpenkolbens unterhalb der zweiten Steuerkante liegt.A further improvement of the fuel injection device can be achieved in that the second control device is formed in such a way that the upper end face of the pump piston forms a first control edge, in the direction of the longitudinal axis on the jacket of the pump piston a channel running obliquely to the longitudinal axis is arranged with a second control edge and above a channel is connected to the pump chamber, the passage extending from the pump cylinder via the fuel line into the connecting line to the control device of the hydraulic system, the passage being at the bottom dead center of the pump piston above the first control edge and at top dead center of the pump piston below the second control edge.

Eine weitere vorteilhafte Ausführungsform der Brennstoffeinspritzvorrichtung ist dadurch gekennzeichnet, dass eine dritte Steuereinrichtung in der Brennstoffleitung aus einem Ueberström/Saugventil und einem auf den Ventilschaft des Ueberström/Saugventiles wirkenden Schaltkolben besteht, das Ueberström-/Saugventil über eine Speiseleitung mit dem oberen Ende des Pumpenraumes und der Kolbenraum des Schaltkolbens über eine Leitung mit dem Durchlass im Pumpenzylinder und damit mit der zweiten Steuereinrichtung verbunden ist. Durch diese Anordnung kann der Durchlass im Pumpenzylinder so dimensioniert werden, dass er optimal auf seine Steuerfunktion abgestimmt ist. Das Zu- und Abströmen von Brennstoff in den Pumpenraum erfolgt über die Speiseleitung am oberen Ende des Pumpenraunes, wobei deren Abmessungen und die Abmessungen des Ueberström-/Saugventiles ebenfalls optimal auf diese Zu- und Abflussvorgänge dimensioniert sind.A further advantageous embodiment of the fuel injection device is characterized in that a third control device in the fuel line consists of an overflow / suction valve and a switching piston acting on the valve stem of the overflow / suction valve, the overflow / suction valve via a feed line to the upper end of the pump chamber and the piston chamber of the switching piston is connected via a line to the passage in the pump cylinder and thus to the second control device. With this arrangement, the passage in the pump cylinder can be dimensioned so that it is optimally matched to its control function. The inflow and outflow of fuel into the pump chamber takes place via the feed line at the upper end of the pump chamber, the dimensions and dimensions of the overflow / suction valve also being optimally dimensioned for these inflow and outflow processes.

Beim Betrieb der erfindungsgemässen Brennstoffeinspritzvorrichtung wird der Pumpenkolben mittels einer an sich bekannten Steuereinrichtung von der Motorenleistung abhängig in eine Stellung gebracht, bei welcher die Steuerkanten die Einspritzung der gewünschten Brennstoffmenge bewirken. Der Start des Einspritzvorganges wird über die Steuereinrichtung im Druckmittelsystem mittels eines elektrischen Impulses über die Magnetspule oder mittels der Steuernockenwelle bewirkt. Die Steuereinrichtung gibt den Druckmittelzufluss zur Axialkolbeneinheit frei und diese bewegt den Pumpenkolben, wobei der Brennstoff im Pumpenraum unter Druck gesetzt wird. Bei einem bestimmten Druck öffnet das Zuströmventil zur Einspritzdüse, und der Brennstoff wird in die Dieselbrennkraftmaschine eingebracht. Sobald der Pumpenkolben den gewünschten Weg zurückgelegt hat wird der Pumpenraum über die Verbindungsleitung mit der Steuereinrichtung gekoppelt, und der Druckstoss bewirkt über den Rückstellkolben ein Rückstellen des Hauptschiebers und sperrt dadurch die Zufuhr von Druckmittel zur voll beaufschlagten Kolbenfläche der Axialkolbeneinheit. Die Ringfläche bleibt weiterhin beaufschlagt und bewirkt ein sofortiges Zurückfahren des Axialkolbens und einen sofortigen Druckabbau im Pumpenraum. Infolge der rein volumetrischen Bestimmung der eingespritzten Brennstoffmenge ist diese Brennstoffeinspritzvorrichtung ausserordentlich genau, da keine Zeitglieder notwendig sind. Der Start des Einspritzvorganges lässt sich durch bekannte und erprobte Mittel genau festlegen und an die Steuereinrichtung übertragen. Durch die Trennung des Brennstoffsystems vom Druckmittelsystem ist der Einsatz von speziellen Hydraulikölen oder anderen Druckmitteln möglich, welche die bei Brennstoffeinspritzvorrichtungen gewünschte hohe Lebensdauer gewährleisten. Die Verbindung der Schrägkantensteuerung am Pumpenkolben mit einer druckmittelbeaufschlagten Antriebseinheit ergibt eine sehr hohe Betriebssicherheit und konstruktive Unabhängigkeit. Die erfindungsgemässe Einrichtung verhindert unnötige Bewegungen des Pumpen- und Antriebskolbens, wodurch Bewegungsenergie und Energie im Druckmittelsystem eingespart wird. Auch bei schnellaufenden Motoren sind die Einspritzvorgänge genau und ohne Verzögerungen steuerbar. Die schweren und aufwendigen Antriebsnockenwellen entfallen vollständig, was insbesondere bei grossen und schnell laufenden Dieselmotoren wesentlich ist. Trotzdem ist die Notsteuerung über die Nockenwellen-Steuerung mit einer leichten Nockenwelle gewährleistet.When the fuel injection device according to the invention is operated, the pump piston is brought into a position dependent on the engine output by means of a control device known per se, in which the control edges effect the injection of the desired amount of fuel. The start of the injection process is effected via the control device in the pressure medium system by means of an electrical pulse via the magnetic coil or by means of the control camshaft. The control device releases the pressure medium flow to the axial piston unit and this moves the pump piston, the fuel in the pump chamber being pressurized. At a certain pressure, the inflow valve to the injector opens and the fuel is introduced into the diesel engine. As soon as the pump piston has covered the desired path, the pump chamber is coupled to the control device via the connecting line, and the pressure surge causes the main slide to be reset via the reset piston, thereby blocking the supply of pressure medium to the fully loaded piston surface of the axial piston unit. The ring surface remains pressurized and causes the axial piston to retract immediately and the pressure in the pump chamber to decrease immediately. As a result of the purely volumetric determination of the amount of fuel injected, this fuel injection device is extremely precise, since no timing elements are necessary. The start of the injection process can be precisely determined by known and proven means and transmitted to the control device. By separating the fuel system from the pressure medium system, the use of special hydraulic oils or other pressure media is possible, which ensure the long service life desired for fuel injection devices. The connection of the bevel edge control on the pump piston with a drive unit pressurized with pressure medium results in a very high level of operational reliability and design independence. The inventive device prevents unnecessary movements of the pump and drive piston, thereby kinetic energy and Energy is saved in the pressure medium system. Even with high-speed engines, the injection processes can be controlled precisely and without delays. The heavy and complex drive camshafts are completely eliminated, which is particularly important for large and fast-running diesel engines. Nevertheless, the emergency control via the camshaft control with a light camshaft is guaranteed.

Im folgenden wird die Erfindung anhand von Ausführungsbeispielen unter Bezugnahme auf die beiliegenden Zeichnungen näher erläutert. Es zeigen:

  • Fig. 1 einen Schnitt in schematischer Darstellung durch eine Brennstoffpumpe mit Antriebseinheit, Hauptschieber und Druckmittelsystem
  • Fig. 2 einen Schnitt in schematischer Darstellung durch die Brennstoffpumpe mit zwei weiteren Steuereinrichtungen im Brennstoffsystem
  • Fig. 3 die Steuereinrichtung des Druckmittelsystems im Längsschnitt mit Hauptschieber-Sperreinrichtung und Nockenwellen-Steuerung
The invention is explained in more detail below on the basis of exemplary embodiments with reference to the accompanying drawings. Show it:
  • Fig. 1 shows a section in a schematic representation through a fuel pump with drive unit, main slide and pressure medium system
  • Fig. 2 shows a section in a schematic representation through the fuel pump with two further control devices in the fuel system
  • Fig. 3 shows the control device of the pressure medium system in longitudinal section with the main slide locking device and camshaft control

Figur 1 zeigt eine Brennstoffeinspritzvorrichtung mit einer Einspritzdüse 1, einer Brennstoffpumpe 3, einer Axialkolbeneinheit 20 und einer Steuereinrichtung 31. Die Brennstoffpumpe 3 besteht aus einem Pumpenzylinder 4 mit einem Pumpenraum 6, in welchem ein Pumpenkolben 7 geführt ist. Der Pumpenzylinder 4 ist mit einer Brennstoffleitung versehen, welche aus einer Zuleitung 15, einem Brennstoffkanal 5 und einer Ableitung 16 besteht. Diese Brennstoffleitungen sind Teil eines Brennstoffsystems in welchem der Brennstoff durch eine Förderpumpe unter relativ niedrigem Druck gefördert wird. In der Brennstoffzuleitung 15 ist ein Rückschlagventil 17 eingebaut, welches verhindert, dass Brennstoff in die Zuleitung 15 zurückströmt und im Brennstoffkanal 5 auftretende Druckstösse auf die Brennstoffzuleitung 15 übertragen werden. Zur Reduktion von Druckstössen ist in der Brennstoffableitung 16 eine Drossel 18 eingebaut. Vom pumpenraum 6 führt eine Druckleitung 2 zur Einspritzdüse 1. In diese Druckleitung 2 ist ein Steuerventil 19 eingeschaltet, welches bei Erreichen eines bestimmten Druckes im Pumpenraum 6 den Durchfluss zur Einspritzdüse 1 freigibt und beim Absinken des Druckes die Druckleitung 2 wieder verschliesst.FIG. 1 shows a fuel injection device with an injection nozzle 1, a fuel pump 3, an axial piston unit 20 and a control device 31. The fuel pump 3 consists of a pump cylinder 4 with a pump chamber 6, in which a pump piston 7 is guided. The pump cylinder 4 is provided with a fuel line, which consists of a feed line 15, a fuel channel 5 and a discharge line 16. These fuel lines are part of a fuel system in which the fuel is conveyed by a feed pump at a relatively low pressure. A check valve 17 is installed in the fuel feed line 15, which prevents fuel from flowing back into the feed line 15 and pressure surges occurring in the fuel channel 5 are transmitted to the fuel feed line 15. To reduce pressure surges is in a throttle 18 is installed in the fuel discharge line 16. From Pump chamber 6 leads a pressure line 2 to the injection nozzle 1. In this pressure line 2, a control valve 19 is switched on, which releases the flow to the injection nozzle 1 when a certain pressure in the pump chamber 6 is reached and closes the pressure line 2 again when the pressure drops.

Der Pumpenkolben 7 ist an seinem unteren Ende mit dem Axialkolben 22 der Axialkolbeneinheit 20 verbunden. Der pumpenkolben 7 ist nicht nur in axialer Richtung verschiebbar, sondern kann mittels einer Verstelleinrichtung 60 um die Längsachse 8 verdreht werden. Bei der Verstelleinrichtung 60 handelt es sich um eine bei Brennstoffeinspritzpumpen mit Schrägkantensteuerungen bekannte Einrichtung. Die Axialkolbeneinheit 20 besteht aus einem Zylinder 21, dem Axialkolben 22, dem Arbeitsraum 25 und dem Ringraum 26. Der Axialkolben 22 ist doppeltwirkend und weist eine gegen den Arbeitsraum 25 gerichtete Kolbenfläche 23 auf, welcher eine dem Ringraum 26 zugeordnete Ringfläche 24 gegenüberliegt. Die Axialkolbeneinheit 20 ist Bestandteil eines Druckmittelsystems, in welchem beliebige bekannte Druckmittel einsetzbar sind. Im vorliegenden Beispiel wird Hochdruckhydrauliköl verwendet. Das Druckmittel wird der Axialkolbeneinheit 20 über die Druckmittelleitungen 27, 28 zugeführt, welche von einer Druckquelle 29 gespiesen werden.The pump piston 7 is connected at its lower end to the axial piston 22 of the axial piston unit 20. The pump piston 7 is not only displaceable in the axial direction, but can also be rotated about the longitudinal axis 8 by means of an adjusting device 60. The adjusting device 60 is a device known in fuel injection pumps with inclined edge controls. The axial piston unit 20 consists of a cylinder 21, the axial piston 22, the working space 25 and the annular space 26. The axial piston 22 is double-acting and has a piston surface 23 directed towards the working space 25, which is opposite an annular surface 24 assigned to the annular space 26. The axial piston unit 20 is part of a pressure medium system in which any known pressure medium can be used. High pressure hydraulic oil is used in the present example. The pressure medium is supplied to the axial piston unit 20 via the pressure medium lines 27, 28, which are fed by a pressure source 29.

Zwischen Druckquelle 29 und Druckmittelleitung 27 ist eine Steuereinrichtung 31 eingebaut. Die Steuereinrichtung 31 umfasst einen Hauptschieber 32, einen Rückstellkolben 34, eine Magnetspule 38 mit zugehörigem Magnetkern 39, eine mechanische Sperreinrichtung 41 und eine Nockenwellensteuerung 61. Das Hydrauliköl enthaltende Druckmittelsystem ist vom Brennstoffsystem getrennt, und die Arbeitsbewegungen des Axialkolbens 22 werden durch den Hauptschieber 32 gesteuert. Dieser Hauptschieber 32 ist in Figur 3 genauer dargestellt und weist zwei Schieberkörper 62, 63 mit Steuerkanten 64, 65 auf. Dem Schieberkörper 62 ist ein Steuerraum 66, und dem Schieberkörper 63 ein Steuerraum 67 zugeordnet. Dazwischen befindet sich ein dritter Steuerraum 68. Hinter jedem der Schieberkörper 62, bzw. 63, sind Druckentlastungsräume 69, 70 und Dichtkolben 71, 72 angeordnet, wobei die Druckentlastungsräume 69, 70 mit einer Leckleitung 88 verbunden sind. Die Schieberkörper 62, 63 und die Dichtkolben 71, 72 sind mittels eines Kernes 73 im richtigen Abstand zueinander angeordnet und miteinander verbunden. An einem Ende des Hauptschiebers 32 ist eine Schubstange 37 angeordnet, welche mit dem Schieberkörper 63 verbunden ist, wobei ein Teil der Schubstange 37 den Kern 39 der Magnetspule 38 bildet. Die Schubstange 37 erstreckt sich über die Magnetspule 38 hinaus und wird von der mechanischen Sperreinrichtung 41 umschlossen. An diese mechanische Sperreinrichtung 41 schliesst sich die Nockenwellensteuerung 61 an.A control device 31 is installed between the pressure source 29 and the pressure medium line 27. The control device 31 comprises a main slide 32, a return piston 34, a magnetic coil 38 with an associated magnetic core 39, a mechanical locking device 41 and a camshaft control 61. The hydraulic fluid system containing hydraulic oil is separated from the fuel system, and the working movements of the axial piston 22 are controlled by the main slide 32 . This main slide 32 is shown in more detail in FIG. 3 and has two slide bodies 62, 63 with control edges 64, 65. The slide body 62 is a Control room 66, and a control room 67 assigned to the slide body 63. In between there is a third control chamber 68. Pressure relief chambers 69, 70 and sealing pistons 71, 72 are arranged behind each of the slide bodies 62 and 63, respectively, the pressure relief chambers 69, 70 being connected to a leak line 88. The slide bodies 62, 63 and the sealing pistons 71, 72 are arranged at the correct distance from one another by means of a core 73 and are connected to one another. At one end of the main slide 32 there is a push rod 37 which is connected to the slide body 63, part of the push rod 37 forming the core 39 of the solenoid 38. The push rod 37 extends beyond the magnetic coil 38 and is enclosed by the mechanical locking device 41. The camshaft control 61 is connected to this mechanical locking device 41.

An der gegenüberliegenden Seite des Hauptschiebers 32 wirkt der Rückstellkolben 34 über einen Zapfen 74 mit dem Schieberkörper 62 zusammen. Ein zum Rückstellkolben 34 gehörender Kolbenraum 75 steht über eine Verbindungsleitung 33 mit dem Brennstoffsystem in Verbindung. Diese Verbindungsleitung 33 ist wie aus Figur 1 und 2 ersichtlich in einen Durchlass 14 im Pumpenzylinder 4 eingeführt, welcher in den Pumpenraum 6 führt. Der Durchlass 14 bildet mit den Steuerkanten 10 und 12 am Pumpenkolben 7 die zweite Steuereinrichtung.On the opposite side of the main slide 32, the return piston 34 interacts with the slide body 62 via a pin 74. A piston chamber 75 belonging to the return piston 34 is connected to the fuel system via a connecting line 33. As can be seen from FIGS. 1 and 2, this connecting line 33 is introduced into a passage 14 in the pump cylinder 4, which leads into the pump chamber 6. The passage 14 forms the second control device with the control edges 10 and 12 on the pump piston 7.

Das Druckmittelsystem wird mittels der Druckquelle 29 betrieben, wobei zur Steuerung des Druckes in diesem System ein Druckregelventil 30 vorgesehen ist. Von der Druckquelle 29 führt eine Druckleitung 35 zum Hauptschieber 32 und eine weitere Druckmittelleitung 28 zum Ringraum 26 der Axialkolbeneinheit 20. Eine Rücklaufleitung 36 führt vom Hauptschieber 32 zu einem Druckmittelbehälter 76.The pressure medium system is operated by means of the pressure source 29, a pressure control valve 30 being provided for controlling the pressure in this system. A pressure line 35 leads from the pressure source 29 to the main slide 32 and a further pressure medium line 28 leads to the annular space 26 of the axial piston unit 20. A return line 36 leads from the main slide 32 to a pressure medium container 76.

In der in Figur 1 dargestellten Ausgangslage strömt Brennstoff von der Brennstoffzuleitung 15 über den Brennstoffkanal 5 und den Durchlass 14 in den Pumpenraum 6. Dabei befindet sich der Pumpenkolben 7 in seiner untersten Lage und auch der mit dem Pumpenkolben 7 verbundene Axialkolben 22 ist im unteren Totpunkt. Der Hauptschieber 32 wird von einer Feder 77 in seiner Ausgangslage gehalten, und der Schieberkörper 62 verschliesst die Verbindung der Druckleitung 35 zur Druckmittelleitung 27. Bei Beginn eines Einspritzvorganges wird von einem elektrischen Impulsgeber 40 die Magnetspule 38 angeregt, und über die Schubstange 37 der Hauptschieber 32 in Richtung des Rückstellkolbens 34 verschoben. Dadurch gibt der Schieberkörper 62 die Verbindung zwischen dem Steuerraum 66 und dem Steuerraum 68 frei, und anderseits verschliesst der Schieberkörper 63 die Verbindung zwischen dem Steuerraum 68 und dem Steuerraum 67. Dadurch strömt Druckmittel unter hohem Druck von der Druckleitung 35 zur Druckmittelleitung 27 und damit in den Arbeitsraum 25 der Axialkolbeneinheit 20. Der Axialkolben 22 verschiebt sich nach oben und stösst den Pumpenkolben 7 in Richtung des oberen Endes des Pumpenraumes 6. Durch diese Axialbewegung wird der Durchlass 14 im Pumpenzylinder 4 geschlossen, und im Pumpenraum 6 wird Druck aufgebaut. Bei Erreichen eines bestimmten Druckes öffnet das Steuerventil 19, und über die Einspritzdüse 1 wird Brennstoff in den Verbrennungsraum einer Dieselbrennkraftmaschine eingespritzt. Der im Pumpenraum 6 herrschende Druck wird über einen am Mantel des Pumpenkolbens 7 angebrachten Kanal 13 einer Rinne 11 mit einer Steuerkante 12 zugeführt. Sobald diese Steuerkante 12 den Durchlass 14 erreicht entwickelt sich im Brennstoffkanal 5 und in der Verbindungsleitung 33 ein Druckstoss, welcher sich mit Schallgeschwindigkeit ausbreitet. Dieser Druckstoss dringt in den Kolbenraum 75 an der Steuereinrichtung 31 ein und bewirkt über den Rückstellkolben 34 ein sofortiges Verschieben des Hauptschiebers 32 in Richtung der Magnetspule 38. Dadurch wird die Druckleitung 35 und der Steuerraum 66 durch den Schieberkörper 62 gesperrt, und der Schieberkörper 63 mit der Steuerkante 65 gibt die Verbindung zwischen dem Steuerraum 68 und dem Steuerraum 67, und damit zwischen der Druckmittelleitung 27 und der Rücklaufleitung 36 frei. Im Arbeitsraum 25 der Axialkolbeneinheit 20 sinkt der Druck sofort ab, und der Druck im Ringraum 26 bewirkt das Stoppen des Axialkolbens 22 und den Beginn der Rückwärtsbewegung. Im Pumpenraum 6 wird der Druck abgebaut, und das Steuerventil 19 schliesst die Druckleitung 2 bei einem bestimmten Wert. Sobald die durch die obere Endfläche 9 des Pumpenkolbens 7 gebildete Steuerkante 10 den Durchlass 14 erreicht, wird der Pumpenraum 6 wieder mit Brennstoff gefüllt und die Pumpenkolben-/Axialkolbeneinheit verbleibt im unteren Totpunkt in Wartestellung bis ein neuer Einspritzzyklus beginnt.In the starting position shown in FIG. 1, fuel flows from the fuel feed line 15 via the fuel channel 5 and the passage 14 into the pump chamber 6 the pump piston 7 is in its lowermost position and the axial piston 22 connected to the pump piston 7 is also at bottom dead center. The main slide 32 is held in its initial position by a spring 77, and the slide body 62 closes the connection of the pressure line 35 to the pressure medium line 27. At the beginning of an injection process, the magnetic coil 38 is excited by an electrical pulse generator 40, and the main slide 32 via the push rod 37 moved in the direction of the reset piston 34. As a result, the slide body 62 releases the connection between the control chamber 66 and the control chamber 68, and on the other hand, the slide body 63 closes the connection between the control chamber 68 and the control chamber 67. As a result, pressure medium flows under high pressure from the pressure line 35 to the pressure medium line 27 and thus into the working chamber 25 of the axial piston unit 20. The axial piston 22 moves upward and pushes the pump piston 7 in the direction of the upper end of the pump chamber 6. This axial movement closes the passage 14 in the pump cylinder 4 and pressure is built up in the pump chamber 6. When a certain pressure is reached, the control valve 19 opens and fuel is injected into the combustion chamber of a diesel engine via the injection nozzle 1. The pressure prevailing in the pump chamber 6 is supplied to a channel 11 with a control edge 12 via a channel 13 attached to the jacket of the pump piston 7. As soon as this control edge 12 reaches the passage 14, a pressure surge develops in the fuel channel 5 and in the connecting line 33, which spreads at the speed of sound. This pressure surge penetrates into the piston chamber 75 on the control device 31 and, via the return piston 34, causes the main slide 32 to be moved immediately in the direction of the solenoid 38. The pressure line 35 and the control chamber 66 are blocked by the slide body 62, and the slide body 63 is also included the control edge 65 provides the connection between the control chamber 68 and the control chamber 67, and thus between the pressure medium line 27 and the return line 36 free. In the working space 25 of the axial piston unit 20, the pressure drops immediately, and the pressure in the annular space 26 causes the axial piston 22 to stop and the backward movement to begin. The pressure in the pump chamber 6 is reduced and the control valve 19 closes the pressure line 2 at a certain value. As soon as the control edge 10 formed by the upper end face 9 of the pump piston 7 reaches the passage 14, the pump chamber 6 is filled with fuel again and the pump piston / axial piston unit remains in the waiting position until a new injection cycle begins.

Die in Figur 2 dargestellte Brennstoffeinspritzvorrichtung weist zusätzlich zur zweiten Steuereinrichtung eine dritte Steuereinrichtung 42 auf. Der Pumpenkolben 7, die Axialkolbeneinheit 20 und die Steuereinrichtung 31 sind gleich ausgebildet wie bei dem in Figur 1 gezeigten und beschriebenen Beispiel. Am Pumpenzylinder 4 ist zusätzlich zum Durchlass 14 eine Speiseleitung 46 für Brennstoff angeordnet, welche am oberen Ende des Pumpenraumes 6 in diesen eingeführt ist. Die dritte Steuereinrichtung 42 umfasst ein Ueberström-/Saugventil 43 mit einem Ueberströmraum 53, einen Schaltkolben 44 und ein Ausgleichsventil 54. Der Ueberströmraum 53 ist einerseits über die Durchströmleitung 52 mit dem Brennstoffkanal 5 und anderseits mit der Brennstoffableitung 16 verbunden. Ein unterhalb des Schaltkolbens 44 angeordneter Kolbenraum 45 steht über die Leitung 47 mit dem Durchlass 14 in Verbindung. Der Schaltkolben 44 liegt am Ventilschaft 48 an, wobei das Ueberström-/Saugventil 43 durch eine Feder 50 in der Schliessposition gehalten ist. Unterhalb des Schaltkolbens 44 ist eine weitere Feder 49 angeordnet, welche den Schaltkolben 44 an den Ventilschaft 48 andrückt. Das Ausgleichsventil 54 ist als Rückschlagventil ausgebildet und steht über eine Bohrung 55 mit dem Kolbenraum 45 in Verbindung. Wenn im Kolbenraum 45 ein geringerer Druck als in der Leitung 16 herrscht, öffnet das Ventil 54 und gibt den Ventilsitz 56 frei, wodurch Brennstoff in den Kolbenraum 45 und die Leitungen 47 und 33 nachströmt.The fuel injection device shown in FIG. 2 has a third control device 42 in addition to the second control device. The pump piston 7, the axial piston unit 20 and the control device 31 are of the same design as in the example shown and described in FIG. 1. In addition to the passage 14, a feed line 46 for fuel is arranged on the pump cylinder 4 and is introduced into the pump chamber 6 at the upper end thereof. The third control device 42 comprises an overflow / suction valve 43 with an overflow space 53, a switching piston 44 and a compensating valve 54. The overflow space 53 is connected on the one hand via the flow line 52 to the fuel channel 5 and on the other hand to the fuel discharge line 16. A piston chamber 45 arranged below the switching piston 44 is connected to the passage 14 via the line 47. The switching piston 44 rests on the valve stem 48, the overflow / suction valve 43 being held in the closed position by a spring 50. A further spring 49 is arranged below the switching piston 44, which presses the switching piston 44 against the valve stem 48. The compensating valve 54 is designed as a check valve and is connected to the piston chamber 45 via a bore 55. If there is a lower pressure in the piston chamber 45 than in the line 16, the valve 54 opens and releases the valve seat 56, whereby Fuel flows into the piston chamber 45 and the lines 47 and 33.

Bei Beginn des Arbeitshubes des Pumpenkolbens 7 verschliesst die Steuerkante 10 den Durchlass 14, und durch den im Pumpenraum 6 aufgebauten Druck wird das Ventil 43 gegen den Ventilsitz 51 gepresst. Sobald die Steuerkante 12 den Durchlass 14 erreicht, breitet sich der Druckstoss über die Leitung 33 zum Rückstellkolben 34 in der Steuereinrichtung 31 und über die Leitung 47 in den Kolbenraum 45, und damit auf den Schaltkolben 44 aus. Wie bereits zu Figur 1 beschrieben, wird über die Steuereinrichtung 31 die Bewegung des Axialkolbens unterbrochen. Der Druckstoss auf den Schaltkolben 44 bewirkt über den Ventilschaft 48 ein sofortiges Oeffnen des Ueberström-/Saugventiles 43, wodurch der im Pumpenraum 6 herrschende Druck über die Leitung 46 in den Ueberströmraum 53 und damit die Brennstoffleitung 16 entlastet wird. Dieser Druckabfall im Pumpenraum 6 hat zur Folge, dass das Steuerventil 19 sofort und zu einem genau bestimmten Zeitpunkt schliesst und das Nachströmen von Brennstoff zur Einspritzdüse 1 verhindert.At the beginning of the working stroke of the pump piston 7, the control edge 10 closes the passage 14, and the valve 43 is pressed against the valve seat 51 by the pressure built up in the pump chamber 6. As soon as the control edge 12 reaches the passage 14, the pressure surge spreads via the line 33 to the return piston 34 in the control device 31 and via the line 47 into the piston chamber 45, and thus onto the switching piston 44. As already described for FIG. 1, the movement of the axial piston is interrupted via the control device 31. The pressure surge on the switching piston 44 causes the overflow / suction valve 43 to open immediately via the valve stem 48, as a result of which the pressure prevailing in the pump chamber 6 is relieved via the line 46 into the overflow chamber 53 and thus the fuel line 16. This pressure drop in the pump chamber 6 has the result that the control valve 19 closes immediately and at a precisely determined point in time and prevents the fuel from flowing to the injection nozzle 1.

In Figur 3 ist zusätzlich zum Hauptschieber 32 die mechanische Sperreinrichtung 41 und die Nockenwellensteuerung 61 dargestellt. Die mechanische Sperreinrichtung 41 besteht im wesentlichen aus einem Sperrkörper 78, Klinken 79 und Entriegelungsbolzen 80. Die Schubstange 37 ragt in den Sperrkörper 78 hinein und weist in dessen Bereich eine Schulter 81 auf. Wird die Schubstange 37 mittels der Magnetspule 38 nach links verschoben, so nimmt die Schulter 81 den Sperrkörper 78 mit, und die federbelasteten Klinken 79 rasten in die Nocken 82 ein. Dadurch kann die Stromzufuhr zur Magnetspule 38 unterbrochen werden, und es besteht keine Ueberlastungs- und Ueberhitzungsgefahr. Die Rückstellung der Schubstange 37 erfolgt am Ende des Einspritzvorganges über den vom Einspritzdruck beaufschlagten Rückstellkolben 34. Dabei wird die Schubstange 37 gegen die Kraft der Feder 83 nach rechts gedrückt, und die Entriegelungsbolzen 80 nach aussen getrieben. Diese Entriegelungsbolzen 80 heben die Sperrklinken 79 an und geben dadurch die Nocken 82 am Sperrkörper 78 frei. Die Feder 77 drückt nun den Sperrkörper 78 wieder in seine Ausgangslage zurück.In addition to the main slide 32, FIG. 3 shows the mechanical locking device 41 and the camshaft control 61. The mechanical locking device 41 consists essentially of a locking body 78, pawls 79 and unlocking bolt 80. The push rod 37 protrudes into the locking body 78 and has a shoulder 81 in its area. If the push rod 37 is moved to the left by means of the magnetic coil 38, the shoulder 81 takes the locking body 78 with it, and the spring-loaded pawls 79 snap into the cams 82. This can interrupt the power supply to the solenoid 38 and there is no risk of overloading or overheating. The push rod 37 is reset at the end of the injection process by means of the return piston 34, which is acted upon by the injection pressure. The push rod 37 acts against the force of the spring 83 pressed to the right, and the unlocking bolts 80 driven outwards. These unlocking bolts 80 raise the pawls 79 and thereby release the cams 82 on the locking body 78. The spring 77 now pushes the locking body 78 back into its starting position.

Aus Sicherheitsgründen ist beim dargestellten Beispiel zusätzlich zur Magnetspule 38 der Einspritzansteuerung eine Nockenwellensteuerung 61 angeordnet. Diese besteht aus der Nockenscheibe 84 mit dem Nocken 85 und der am Sperrkörper 78 befestigten Ablaufrolle 86. Die Nockenwelle wird von einem nicht dargestellten Antrieb, welcher mit dem Kurbeltrieb in Verbindung steht, angetrieben. Bei Ausfall der elektrischen Impulsgeber 40 oder der Magnetspule 38, oder bei einem Stromausfall treibt der Nocken 85 über die Ablaufrolle 86 den Sperrkörper 78, und damit die Schubstange 37 bei Beginn des Einspritzvorganges nach links. Die Bewegung des Sperrkörpers 78 und der Schubstange 37 bedarf nur geringer Kräfte, und die Nockenwelle und deren Ansteuerung 61 kann deshalb leicht und ohne grossen kinematischen Aufwand gebaut werden. Die Rückstellung der Schubstange 37 am Ende des Einspritzvorganges erfolgt in gleicher Weise wie oben beschrieben. Im dargestellten Beispiel ist neben der Magnetspule 38 noch eine zweite Magnetspule 87 angeordnet. Beide erhalten über die elektrische Leitung 89 elektrische Impulse vom elektrischen Impulsgeber 40. Durch Betätigung dieser Magnetspule 87 mit einem elektrischen Impuls kann die Schubstange 37 nach rechts verschoben, und damit der Einspritzvorgang vorzeitig abgebrochen werden. Dies ermöglicht einen Notstop der Einspritzvorrichtung, da durch diese Verschiebung des Hauptschiebers 32 die Beaufschlagung des Axialkolbens 22 der Axialkolbeneinheit 20 unterbrochen und der Kolben 22 zurückgefahren wird.For safety reasons, in the example shown, a camshaft control 61 is arranged in addition to the solenoid 38 of the injection control. This consists of the cam disk 84 with the cam 85 and the run-off roller 86 attached to the blocking body 78. The camshaft is driven by a drive, not shown, which is connected to the crank drive. In the event of failure of the electrical pulse generator 40 or the magnetic coil 38, or in the event of a power failure, the cam 85 drives the blocking body 78 via the idler roller 86, and thus the push rod 37 to the left at the start of the injection process. The movement of the locking body 78 and the push rod 37 requires only small forces, and the camshaft and its control 61 can therefore be built easily and without great kinematic effort. The push rod 37 is reset at the end of the injection process in the same way as described above. In the example shown, a second magnetic coil 87 is arranged in addition to the magnetic coil 38. Both receive electrical impulses from the electrical pulse generator 40 via the electrical line 89. By actuating this magnetic coil 87 with an electrical pulse, the push rod 37 can be shifted to the right, and the injection process can therefore be stopped prematurely. This enables an emergency stop of the injection device, since this action of the main slide 32 interrupts the action on the axial piston 22 of the axial piston unit 20 and the piston 22 is retracted.

Claims (8)

1. A fuel injection device for a diesel internal combustion engine, in which an injection nozzle (1) is connected via a pressure line (2) to a fuel pump (3) in each case, the fuel pump (3) comprising a cylinder (4) having at least one fuel line (15, 16) for the inflow and outflow of fuel and a pump chamber (6) as well as a pump piston (7), the pump piston (7) being connected to and driven by an axial piston unit (20) acted upon by a pressure medium and the piston pump (7) comprising two control edges (10, 12), one of which is formed by an annular chamber (11) connected with the pump chamber (6), and the pump piston (7) being rotatable about its longitudinal axis (8), the axial piston unit (20) being connected via a hydraulic system to a pressure source (29) which is independent of the fuel system and a control device (31) having a control valve being arranged within said hydraulic system between the pressure source (29) and the axial piston unit (20), characterised in that the control device (31) comprises a main slide element (32) connected to a restoring piston (34) and acted upon by pressure medium, said restoring piston (34) is connected via a connecting line (33) with the pump chamber (6) and is acted upon by fuel, at least one second control device is arranged in the fuel lines (15, 5, 16) connected to the pump chamber (6), and said second control device is formed by the control edges (10, 12) on the pump piston (7) and a passage (14) in the pump housing (4) between the pump chamber (6) and the connecting line (33).
2. A fuel injection device for a diesel internal combustion engine according to claim 1, characterised in that the main slide element (32) of the control device (31) comprises control chambers (66, 67, 68) and control edges (64, 65) for opening and closing the pressure medium lines (27, 35) leading to the axial piston unit (20), and said main slide element (32) cooperates at one end with a pushrod (37) and at the other end with the restoring piston (34) acted upon by the fuel and connected with the pump chamber (6).
3. A fuel injection device for a diesel internal combustion engine according to claim 2, characterised in that at least part of the pushrod (37) forms the core (39) of a magnetic coil (38) and said magnetic coil (38) is connected to an electrical pulse transmitter (40).
4. A fuel injection device for a diesel internal combustion engine according to claim 2 or 3, characterised in that the pushrod (37) is part of a mechanical locking device (41) and said locking device (41) secures the pushrod (37) and the slide bodies (62, 63) with control edges (64, 65) of the main slide element (32) in a control position.
5. A fuel injection device for a diesel internal combustion engine according to one of claims 2 to 4, characterised in that the control device (31) is connected in the hydraulic system with a camshaft control (61) and the cam disc (84) acts upon the pushrod (32) of the control device (31),
6. A fuel injection device for a diesel internal combustion engine according to one of claims 1 to 5, characterised in that the axial piston (22) is double-acting and the pressure medium line (27) leading to the operating chamber (25) with the fully acted-upon piston surface (23) is guided via the control device (31) to the pressure source (29) and the pressure medium line (28) leading to the annular chamber (26) with the annular surface (24) of the piston (22) is guided directly to the pressure source (29).
7. A fuel injection device for a diesel internal combustion engine according to one of claims 1 to 6, characterised in that in the case of the second control device, the upper end face (9) of the pump piston (7) forms a first control edge (10), a groove (11) extending at an angle to the longitudinal axis (8) and having a second control edge (12) is arranged on the surface of the pump piston (7) in the direction of the longitudinal axis (8) and is connected via a duct (13) with the pump chamber (6), the passage (14) proceeding from the pump cylinder (4) is guided via the fuel line (5, 16) into the connecting line (33), the passage (14) lying above the first control edge (10) in the bottom dead centre of the pump piston (7) and beneath the second control edge (12) in the top dead centre of the pump piston (7).
8. A fuel injection device for a diesel internal combustion engine according to one of claims 1 to 7, characterised in that a third control device (42) in the fuel line (15, 5, 16) comprises an overflow/suction valve (43) and an operating piston (44) acting upon the valve shaft (48) of the overflow/suction valve (43), the overflow/suction valve (43) is connected via a supply line (46) with the upper end of the pump chamber (6) and the piston chamber (45) of the operating piston (44) is connected via a line (47) with the passage (14) in the pump cylinder (4) and therefore with the second control device.
EP87905420A 1986-09-09 1987-09-04 Fuel injection device for a diesel engine Expired - Lifetime EP0281580B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT87905420T ATE63614T1 (en) 1986-09-09 1987-09-04 FUEL INJECTION DEVICE FOR A DIESEL ENGINE.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH3616/86A CH671809A5 (en) 1986-09-09 1986-09-09
CH3616/86 1986-09-09

Publications (2)

Publication Number Publication Date
EP0281580A1 EP0281580A1 (en) 1988-09-14
EP0281580B1 true EP0281580B1 (en) 1991-05-15

Family

ID=4259804

Family Applications (1)

Application Number Title Priority Date Filing Date
EP87905420A Expired - Lifetime EP0281580B1 (en) 1986-09-09 1987-09-04 Fuel injection device for a diesel engine

Country Status (9)

Country Link
US (1) US4907555A (en)
EP (1) EP0281580B1 (en)
JP (1) JPH0681937B2 (en)
KR (1) KR940011345B1 (en)
CN (1) CN1010336B (en)
CH (1) CH671809A5 (en)
FI (1) FI882144A (en)
PL (1) PL152523B1 (en)
WO (1) WO1988002068A1 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2227338B (en) * 1989-01-19 1993-09-08 Fuji Heavy Ind Ltd Air-fuel ratio control system for automotive engine
GB9011533D0 (en) * 1990-05-23 1990-07-11 Lucas Ind Plc Fuel pumping apparatus
US5230613A (en) * 1990-07-16 1993-07-27 Diesel Technology Company Common rail fuel injection system
GB9319283D0 (en) * 1993-09-17 1993-11-03 Lucas Ind Plc Fuel pumping apparatus
US5740782A (en) * 1996-05-20 1998-04-21 Lowi, Jr.; Alvin Positive-displacement-metering, electro-hydraulic fuel injection system
US5730104A (en) * 1997-02-19 1998-03-24 Caterpillar Inc. Injection rate shaping device for a fill metered hydraulically-actuated fuel injection system
US6085992A (en) * 1998-11-19 2000-07-11 Caterpillar Inc. Hydraulically-actuated fuel injector with rate shaping through restricted flow to intensifier piston
US6129072A (en) * 1999-04-02 2000-10-10 Caterpillar Inc. Hydraulically actuated device having a ball valve member
US6550453B1 (en) 2000-09-21 2003-04-22 Caterpillar Inc Hydraulically biased pumping element assembly and fuel injector using same
DE10248379A1 (en) * 2002-10-17 2004-04-29 Robert Bosch Gmbh Fuel injection device for an internal combustion engine
GB2549141A (en) * 2016-04-08 2017-10-11 Delphi Int Operations Luxembourg Sarl Fuel pump
CN113494364B (en) * 2021-07-27 2022-07-29 达魔重卡电动汽车制造(杭州)有限公司 Closed-loop control module for gas fuel supply system of turbine engine

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH352531A (en) * 1958-04-12 1961-02-28 Etienne Bessiere Pierre Injection pump
GB1216837A (en) * 1967-05-26 1970-12-23 Bryce Berger Ltd Liquid fuel injection pumps
DE2126777A1 (en) * 1971-05-28 1972-12-14 Bosch Gmbh Robert Pump nozzle for fuel injection for internal combustion engines
DE2126736A1 (en) * 1971-05-28 1972-12-07 Bosch Gmbh Robert Fuel injection system for internal combustion engines
JPS51101628A (en) * 1975-01-24 1976-09-08 Diesel Kiki Co
US4182492A (en) * 1978-01-16 1980-01-08 Combustion Research & Technology, Inc. Hydraulically operated pressure amplification system for fuel injectors
JPS54155319A (en) * 1978-05-29 1979-12-07 Komatsu Ltd Fuel injection controller for internal combustion engine
US4219154A (en) * 1978-07-10 1980-08-26 The Bendix Corporation Electronically controlled, solenoid operated fuel injection system
US4273087A (en) * 1979-10-22 1981-06-16 Caterpillar Tractor Co. Dual fuel rotary controlled pilot and main injection
DE3001155A1 (en) * 1980-01-15 1981-07-16 Robert Bosch Gmbh, 7000 Stuttgart FUEL INJECTION SYSTEM FOR SELF-IGNITIONING INTERNAL COMBUSTION ENGINE
US4325340A (en) * 1980-07-21 1982-04-20 The United States Of America As Represented By The Secretary Of The Army Variable pressure fuel injection system
DE3100725A1 (en) * 1980-12-16 1982-07-01 Gebrüder Sulzer AG, 8401 Winterthur Device for the controlled delivery of fuel in an internal combustion engine
US4425893A (en) * 1981-12-07 1984-01-17 The Garrett Corporation Fuel injection
JPS58214659A (en) * 1982-06-07 1983-12-13 Toyota Motor Corp Hydraulically driven fuel injection device
JPS5939963A (en) * 1982-08-27 1984-03-05 Nippon Denso Co Ltd Fuel injector
JPS61226527A (en) * 1985-03-30 1986-10-08 Nippon Denso Co Ltd Fuel injection control device
US4674448A (en) * 1985-07-04 1987-06-23 Sulzer Brothers Limited Fuel injection system for a multi-cylinder reciprocating internal combustion engine

Also Published As

Publication number Publication date
CN1010336B (en) 1990-11-07
JPH01500843A (en) 1989-03-23
JPH0681937B2 (en) 1994-10-19
CH671809A5 (en) 1989-09-29
CN87106777A (en) 1988-07-13
FI882144A0 (en) 1988-05-06
FI882144A (en) 1988-05-06
US4907555A (en) 1990-03-13
EP0281580A1 (en) 1988-09-14
PL152523B1 (en) 1991-01-31
WO1988002068A1 (en) 1988-03-24
KR940011345B1 (en) 1994-12-05
KR880701828A (en) 1988-11-05
PL267640A1 (en) 1988-06-09

Similar Documents

Publication Publication Date Title
DE19581047B4 (en) Hydraulically operated electronically controlled fuel injector
DE2503346C2 (en) Fuel distributor injection pump for internal combustion engines
DE2126736A1 (en) Fuel injection system for internal combustion engines
DE3235413A1 (en) FUEL INJECTION DEVICE
DE2945484C2 (en)
EP0281580B1 (en) Fuel injection device for a diesel engine
DE2126787A1 (en) Fuel injection device for internal combustion engines
DE3714762C2 (en)
DE19545162B4 (en) Fuel injection device with spring-biased control valve
DE19716750A1 (en) Fuel pressure powered engine compression braking system
EP0290797A2 (en) Fuel injection pump
EP0282508B1 (en) Fuel injection device for a diesel internal combustion engine with preinjection
DE3428174A1 (en) FUEL INJECTION PUMP FOR INTERNAL COMBUSTION ENGINES
DE3211877A1 (en) FUEL INJECTION PUMP
DE2645565A1 (en) FUEL INJECTION PUMP
EP0273225B1 (en) Fuel injection pump for internal-combustion engines
DE3612700C2 (en)
DE10139055A1 (en) Method, computer program, control and / or regulating device and fuel system for an internal combustion engine
DE3524980C2 (en) Fuel injection pump for an internal combustion engine
DE2913909C2 (en)
EP0406592B1 (en) Fuel injection pump
DE3236828A1 (en) FUEL INJECTION DEVICE
DE19602474B4 (en) Injection timing control device for a fuel injection pump
DE60004983T2 (en) PUMP WITH A VARIABLE FLOW RATE AND ITS USE IN A COMMON RAIL FUEL INJECTION SYSTEM
DE3008070C2 (en)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

17P Request for examination filed

Effective date: 19880902

17Q First examination report despatched

Effective date: 19890803

ITF It: translation for a ep patent filed

Owner name: INTERPATENT ST.TECN. BREV.

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

REF Corresponds to:

Ref document number: 63614

Country of ref document: AT

Date of ref document: 19910615

Kind code of ref document: T

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
REF Corresponds to:

Ref document number: 3770159

Country of ref document: DE

Date of ref document: 19910620

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: CH

Ref legal event code: PLI

Owner name: MAN B&W DIESEL A/S

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732

ITPR It: changes in ownership of a european patent

Owner name: CONCESSIONE DI LICENZA;MAN B & W DIESEL A/S

REG Reference to a national code

Ref country code: FR

Ref legal event code: CL

EPTA Lu: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 19940801

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19940819

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19940822

Year of fee payment: 8

Ref country code: AT

Payment date: 19940822

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19940825

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19940930

Year of fee payment: 8

EAL Se: european patent in force in sweden

Ref document number: 87905420.3

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19950811

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19950814

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19950825

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19950904

Ref country code: AT

Effective date: 19950904

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19950905

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19950930

BERE Be: lapsed

Owner name: NOVA-WERKE A.G.

Effective date: 19950930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19960401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19960531

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19960401

EUG Se: european patent has lapsed

Ref document number: 87905420.3

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19960904

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19960930

Ref country code: CH

Effective date: 19960930

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19960904

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19970603

NLUE Nl: licence registered with regard to european patents

Effective date: 19920214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050904