EP0279823A1 - Dispositif de mesure continue de la turbidite d'un liquide - Google Patents

Dispositif de mesure continue de la turbidite d'un liquide

Info

Publication number
EP0279823A1
EP0279823A1 EP87905171A EP87905171A EP0279823A1 EP 0279823 A1 EP0279823 A1 EP 0279823A1 EP 87905171 A EP87905171 A EP 87905171A EP 87905171 A EP87905171 A EP 87905171A EP 0279823 A1 EP0279823 A1 EP 0279823A1
Authority
EP
European Patent Office
Prior art keywords
liquid
measuring
turbidity
end window
measuring chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP87905171A
Other languages
German (de)
English (en)
Inventor
Benno Perren (verstorben)
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of EP0279823A1 publication Critical patent/EP0279823A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/85Investigating moving fluids or granular solids
    • G01N21/8507Probe photometers, i.e. with optical measuring part dipped into fluid sample
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/15Preventing contamination of the components of the optical system or obstruction of the light path
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N21/49Scattering, i.e. diffuse reflection within a body or fluid
    • G01N21/53Scattering, i.e. diffuse reflection within a body or fluid within a flowing fluid, e.g. smoke

Definitions

  • the invention relates to a device for the continuous measurement of turbidity of a liquid contaminated by particles causing turbidity with the aid of a measuring probe, which has an end window and a built-in optical system for assessing the liquid illuminated at least in the area of the measuring probe, and also relates to a method for measuring the turbidity.
  • a measuring probe is generally used for the turbidity measurement of a contaminated liquid, through which the liquid flowing past or in a container is illuminated.
  • the rays reflected by the particles causing turbidity are collected by an optical system built into the probe and fed to a receiver, where the intensity of the reflected rays is recorded and any necessary control steps are initiated.
  • a disadvantage of such devices is that the end window of the probe that comes into contact with the liquid quickly fogs up with the particles contained in the liquid.
  • the service intervals - even with compensated systems - are largely determined by the contamination of the end window.
  • Another after Part of this is that the misted end window falsifies the measurement in the sense of an apparently stronger reflection.
  • the invention has for its object to provide a measuring device of the type mentioned, which delivers flawless results over long periods of time and requires only minimal service.
  • the inventive solution to this problem is served by a measuring chamber through which at least a partial flow of the liquid flows, in which the measuring probe is arranged such that the liquid flow strikes the end window at an angle.
  • the end window Due to the constant flushing of the end window, which can be reinforced with the help of a nozzle, the end window is mechanically self-cleaning, which makes precipitation on the window practically impossible. Accurate measurement results are obtained and an occasional check of the device is only recommended for safety reasons.
  • the device can be used to monitor pure and industrial water, condensates and emulsions as well as industrial water, practically for any liquid. Areas of application of the facility are e.g. water supply and treatment, sewage treatment plants, process engineering, washing plants, etc.
  • the tubular measuring chamber 1 completely filled with liquid, is closed on one side by the stopper 2, on the other side the measuring probe 3 is inserted and held in a sealing manner by the union nut 4. It has the measuring space 5, to which the extension 6 is also connected, the purpose of which is mentioned below.
  • Connected to the measuring chamber 1 are the two axially aligned tubes 7, through which the liquid to be checked flows in the direction of the arrows 8.
  • the axes of the measuring chamber 1 and the tubes 7 intersect at an angle other than 90 °.
  • the measuring chamber 1 and the tubes 7 are made, for example, of FVC and connected to one another by gluing, but they can also be cast together as a cross piece.
  • Two or more beam guides 9 are installed in the measuring probe 3 and irradiate the liquid in the measuring space 5 through the end window 10. Furthermore, the optical system 11 with the beam guide 12 is also accommodated in the measuring probe.
  • the end window 10 can be made of conventional glass, but better it is made of quartz glass or sapphire. It is arranged in such a way that the liquid flow in the tubes 7 strikes it directly at an angle, preferably at an angle of 45 °. This ensures that the flowing liquid constantly mechanically cleans the end window and therefore no precipitation can form on it, which could falsify the measurement or even make it impossible.
  • a bypass operation is indicated, ie only part of the liquid is passed through the measuring chamber 1, which is sufficient for the assessment of the total liquid volume. If, on the other hand, the amount of liquid flowing through the measuring chamber is too small to prevent fogging of the end window, it is advantageous to install the nozzle 13 in the pipe 7 in such a way that its jet is directed directly onto the end window 10. If there is a possibility of gas bubbles forming in the liquid or being carried along by them, then it is advantageous to pressurize the liquid in the measuring chamber in order to eliminate or at least reduce the gas bubbles.
  • the liquid to be monitored flows through the measuring chamber 1.
  • the liquid is illuminated in the area of the measuring probe 3, for example with light beams.
  • turbid particles e.g. Solid particles, or as is the case with an emulsion, reflect the rays.
  • These are collected by the optical system 11 and fed into the beam guide 12, which feeds them to a receiver (not shown).
  • the intensity of the reflected rays is a measure of the turbidity of the liquid.

Abstract

Le liquide à surveiller entre dans la chambre de mesure (1) et atteint la fenêtre (10) de la sonde de mesure (3) sous un certain angle. Grâce au nettoyage automatique qui se produit ainsi, aucun dépôt qui puisse fausser la mesure ne peut se former sur la fenêtre. Si la quantité de liquide à mesurer est faible et la vitesse du courant insuffisante pour assurer un bon effet de nettoyage, une buse (13) peut être prévue, son jet étant dirigé sur la fenêtre. Le liquide est dirigé dans la région de la sonde de mesure (3) au moyen de guides (9). Si des particules responsables de la turbidité sont contenues dans le liquide, les rayons sont réfléchis, captés par un système optique (11) et amenés par les guides (12) à un récepteur (non représenté).
EP87905171A 1986-09-01 1987-08-26 Dispositif de mesure continue de la turbidite d'un liquide Withdrawn EP0279823A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH3505/86A CH670513A5 (fr) 1986-09-01 1986-09-01
CH3505/86 1986-09-01

Publications (1)

Publication Number Publication Date
EP0279823A1 true EP0279823A1 (fr) 1988-08-31

Family

ID=4257434

Family Applications (1)

Application Number Title Priority Date Filing Date
EP87905171A Withdrawn EP0279823A1 (fr) 1986-09-01 1987-08-26 Dispositif de mesure continue de la turbidite d'un liquide

Country Status (4)

Country Link
US (1) US4874243A (fr)
EP (1) EP0279823A1 (fr)
CH (1) CH670513A5 (fr)
WO (1) WO1988001737A1 (fr)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI80802C (fi) * 1988-08-12 1990-07-10 Outokumpu Oy Maetcell.
GB9005021D0 (en) * 1990-03-06 1990-05-02 Alfa Laval Sharples Ltd Turbidity measurement
CA2061251C (fr) * 1991-02-15 1998-04-14 Robert Alan Heiberger Mesure de la saturation sanguine et de l'hematocrite
US5115342A (en) * 1991-02-26 1992-05-19 Philip Morris Incorporated Laminar flow dust shield for wide angle lens
FI93582C (fi) * 1991-09-18 1995-04-25 Janesko Oy Sovitelma prosessissa olevan optisen ikkunan puhdistamiseksi
US5247188A (en) * 1992-01-23 1993-09-21 High Yield Technology Concentrator funnel for vacuum line particle monitors
DE4233218C2 (de) * 1992-10-02 1998-10-08 Conducta Endress & Hauser Vorrichtung zur Trübungsmessung in wäßrigen Meßmedien
US5828458A (en) * 1995-01-26 1998-10-27 Nartron Corporation Turbidity sensor
FR2785681B1 (fr) * 1998-11-10 2000-12-15 Cogema Cellule de mesure d'activite d'un liquide, pourvue d'un moyen de rincage de sonde
US7180591B1 (en) * 1999-06-03 2007-02-20 Micron Technology, Inc Semiconductor processors, sensors, semiconductor processing systems, semiconductor workpiece processing methods, and turbidity monitoring methods
US7530877B1 (en) * 1999-06-03 2009-05-12 Micron Technology, Inc. Semiconductor processor systems, a system configured to provide a semiconductor workpiece process fluid
US6290576B1 (en) 1999-06-03 2001-09-18 Micron Technology, Inc. Semiconductor processors, sensors, and semiconductor processing systems
US6507401B1 (en) 1999-12-02 2003-01-14 Aps Technology, Inc. Apparatus and method for analyzing fluids
JP4338008B2 (ja) * 2001-10-05 2009-09-30 津田駒工業株式会社 糊濃度計の清浄装置
US7300630B2 (en) * 2002-09-27 2007-11-27 E. I. Du Pont De Nemours And Company System and method for cleaning in-process sensors
DE102004028420B3 (de) * 2004-06-04 2006-02-09 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Vorrichtung und Verfahren zur optischen Detektion von in Abgasen chemischer Prozesse enthaltenen Stoffen
JP2008536095A (ja) * 2005-02-11 2008-09-04 スワゲロック カンパニー 流体濃度感知配置
DE102005049473B4 (de) 2005-10-13 2009-08-27 BvL Oberflächentechnik GmbH Oberflächenreinigungsvorrichtung
JP2007155372A (ja) * 2005-12-01 2007-06-21 Miura Co Ltd 光学計測装置
US9001319B2 (en) 2012-05-04 2015-04-07 Ecolab Usa Inc. Self-cleaning optical sensor
AU2013350327A1 (en) * 2012-11-23 2015-06-11 Commonwealth Scientific And Industrial Research Organisation Fouling resistant flow manifold
DE102013103735A1 (de) 2013-04-15 2014-10-16 Endress + Hauser Conducta Gesellschaft für Mess- und Regeltechnik mbH + Co. KG Anordnung zur optischen Messung einer oder mehrerer physikalischer, chemischer und/oder biologischer Prozessgrößen eines Mediums
US20160370287A1 (en) * 2015-06-17 2016-12-22 Flodesign Sonics, Inc. Turbidity sensor with improved flow path
US20170050226A1 (en) * 2015-08-21 2017-02-23 Parker-Hannifin Corporation Self-cleaning monitoring system for biomass processing

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH424317A (de) * 1965-06-04 1966-11-15 Zellweger Uster Ag Verfahren und Vorrichtung zur Bestimmung der Nummer von Textilmaterial
US3714444A (en) * 1970-07-16 1973-01-30 Keene Corp Suspended solids analyzer
US3861198A (en) * 1972-11-03 1975-01-21 Gam Rad Fluid analyzer with self-cleaning viewing windows
DE2433355A1 (de) * 1974-07-11 1976-01-22 Krohne Fa Ludwig Schlammtruebungsmessgeraet
US4343552A (en) * 1979-12-28 1982-08-10 Purecycle Corporation Nephelometer
JPS6123947A (ja) * 1984-07-12 1986-02-01 Ajinomoto Co Inc 液体の濁度測定方法及びその装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO8801737A1 *

Also Published As

Publication number Publication date
WO1988001737A1 (fr) 1988-03-10
US4874243A (en) 1989-10-17
CH670513A5 (fr) 1989-06-15

Similar Documents

Publication Publication Date Title
EP0279823A1 (fr) Dispositif de mesure continue de la turbidite d'un liquide
DE1773391B2 (de) Automatisch arbeitendes Analysegerät
DE2462095A1 (de) Mess- und regeleinrichtung fuer die konzentration einer emulsion
DE2511559C2 (de) Verfahren und Vorrichtung zum Analysieren von Fluidproben auf einen interessierenden Bestandteil
EP1721139A1 (fr) Ensemble et procede de determination spectroscopique des constituants et des concentrations de composes organiques aptes au pompage
DE2049467B2 (de) Photoelektrisches Zähl- und Meßgerät für mikroskopische Teilchen einer Suspension
DE2820254C3 (de) Verfahren und Gerät zur automatischen Analyse der Partikelgröße
WO2020225433A1 (fr) Réfractomètre en ligne, permettant en particulier de déterminer les teneurs en eau d'un liquide, en particulier d'un lubrifiant réfrigérant
DE60129563T2 (de) Verfahren und vorrichtung zur trübungsmessung
DE102014000056B3 (de) Vorrichtung und Verfahren zur spektroskopischen Bestimmung von Komponenten in Flüssigkeiten
CH461846A (de) Verfahren zur Bestimmung des Fettinhaltes von Fettemulsionen, insbesondere Milch
EP3136083B1 (fr) Procede et dispositif de determination d'une matiere ou d'une concentration de matiere dans un milieu liquide
DE2521453A1 (de) Verfahren zur messung des absorptionsvermoegens von durchflussproben und durchflusskuevette, insbesondere zur durchfuehrung dieses verfahrens
EP0843170A2 (fr) Dispositif pour mesurer la tension de surface de liquides
DE3024847A1 (de) Vorrichtung zur kolorimetrischen messung von gasspuren
DE2462281C3 (fr)
DE2539599A1 (de) Vorrichtung zur untersuchung der qualitaet einer fluessigkeit
EP0989405A1 (fr) Dispositif et procédé de détermination des teneurs des substances chimiques d'un liquide
DE19544851A1 (de) Vorrichtung zur Untersuchung von Flüssigkeitsproben
WO2024074603A1 (fr) Bloc de capteurs pour analyse de liquide
EP0078268B1 (fr) Dispositif de test permettant de prevoir le degre d'efficacite de plateaux de colonnes servant a la distillation et/ou a l'absorption
DE3221063A1 (de) Verfahren und vorrichtung zur automatischen, analytischen pruefung von fluessigkeiten, insbesondere von wasser
AT526372A1 (de) Verfahren zur Bestimmung einer Verschmutzung
DE2441994A1 (de) Verfahren und vorrichtung zur ultraschallpruefung von werkstuecken
DE4440417C2 (de) Meßvorrichtung zum Ermitteln eines Pulveranteils

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19880520

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE DE FR GB IT NL SE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 19900301