WO1988001737A1 - Device for continually measuring the turbidity of a liquid - Google Patents

Device for continually measuring the turbidity of a liquid Download PDF

Info

Publication number
WO1988001737A1
WO1988001737A1 PCT/CH1987/000108 CH8700108W WO8801737A1 WO 1988001737 A1 WO1988001737 A1 WO 1988001737A1 CH 8700108 W CH8700108 W CH 8700108W WO 8801737 A1 WO8801737 A1 WO 8801737A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
measuring
turbidity
end window
window
Prior art date
Application number
PCT/CH1987/000108
Other languages
English (en)
French (fr)
Inventor
Benno Perren
Original Assignee
Benno Perren
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Benno Perren filed Critical Benno Perren
Publication of WO1988001737A1 publication Critical patent/WO1988001737A1/de

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/85Investigating moving fluids or granular solids
    • G01N21/8507Probe photometers, i.e. with optical measuring part dipped into fluid sample
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/15Preventing contamination of the components of the optical system or obstruction of the light path
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N21/49Scattering, i.e. diffuse reflection within a body or fluid
    • G01N21/53Scattering, i.e. diffuse reflection within a body or fluid within a flowing fluid, e.g. smoke

Definitions

  • the invention relates to a device for the continuous measurement of turbidity of a liquid contaminated by particles causing turbidity with the aid of a measuring probe, which has an end window and a built-in optical system for assessing the liquid illuminated at least in the area of the measuring probe, and also relates to a method for measuring the turbidity.
  • a measuring probe is generally used for the turbidity measurement of a contaminated liquid, through which the liquid flowing past or in a container is illuminated.
  • the rays reflected by the particles causing turbidity are collected by an optical system built into the probe and fed to a receiver, where the intensity of the reflected rays is recorded and any necessary control steps are initiated.
  • a disadvantage of such devices is that the end window of the probe that comes into contact with the liquid quickly fogs up with the particles contained in the liquid.
  • the service intervals - even with compensated systems - are largely determined by the contamination of the end window.
  • Another after Part of this is that the misted end window falsifies the measurement in the sense of an apparently stronger reflection.
  • the invention has for its object to provide a measuring device of the type mentioned, which delivers flawless results over long periods of time and requires only minimal service.
  • the inventive solution to this problem is served by a measuring chamber through which at least a partial flow of the liquid flows, in which the measuring probe is arranged such that the liquid flow strikes the end window at an angle.
  • the end window Due to the constant flushing of the end window, which can be reinforced with the help of a nozzle, the end window is mechanically self-cleaning, which makes precipitation on the window practically impossible. Accurate measurement results are obtained and an occasional check of the device is only recommended for safety reasons.
  • the device can be used to monitor pure and industrial water, condensates and emulsions as well as industrial water, practically for any liquid. Areas of application of the facility are e.g. water supply and treatment, sewage treatment plants, process engineering, washing plants, etc.
  • the tubular measuring chamber 1 completely filled with liquid, is closed on one side by the stopper 2, on the other side the measuring probe 3 is inserted and held in a sealing manner by the union nut 4. It has the measuring space 5, to which the extension 6 is also connected, the purpose of which is mentioned below.
  • Connected to the measuring chamber 1 are the two axially aligned tubes 7, through which the liquid to be checked flows in the direction of the arrows 8.
  • the axes of the measuring chamber 1 and the tubes 7 intersect at an angle other than 90 °.
  • the measuring chamber 1 and the tubes 7 are made, for example, of FVC and connected to one another by gluing, but they can also be cast together as a cross piece.
  • Two or more beam guides 9 are installed in the measuring probe 3 and irradiate the liquid in the measuring space 5 through the end window 10. Furthermore, the optical system 11 with the beam guide 12 is also accommodated in the measuring probe.
  • the end window 10 can be made of conventional glass, but better it is made of quartz glass or sapphire. It is arranged in such a way that the liquid flow in the tubes 7 strikes it directly at an angle, preferably at an angle of 45 °. This ensures that the flowing liquid constantly mechanically cleans the end window and therefore no precipitation can form on it, which could falsify the measurement or even make it impossible.
  • a bypass operation is indicated, ie only part of the liquid is passed through the measuring chamber 1, which is sufficient for the assessment of the total liquid volume. If, on the other hand, the amount of liquid flowing through the measuring chamber is too small to prevent fogging of the end window, it is advantageous to install the nozzle 13 in the pipe 7 in such a way that its jet is directed directly onto the end window 10. If there is a possibility of gas bubbles forming in the liquid or being carried along by them, then it is advantageous to pressurize the liquid in the measuring chamber in order to eliminate or at least reduce the gas bubbles.
  • the liquid to be monitored flows through the measuring chamber 1.
  • the liquid is illuminated in the area of the measuring probe 3, for example with light beams.
  • turbid particles e.g. Solid particles, or as is the case with an emulsion, reflect the rays.
  • These are collected by the optical system 11 and fed into the beam guide 12, which feeds them to a receiver (not shown).
  • the intensity of the reflected rays is a measure of the turbidity of the liquid.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Optical Measuring Cells (AREA)

Description

Einrichtung zur kontinuierlichen Trübungsmessung einer Flüssigkeit.
Die Erfindung betrifft eine Einrichtung zur kontinuierlichen Trübungsmessung einer durch eine Trübung verursachende Teilchen verunreinigtenFlüssigkeit mit Hilfe einer Messonde, welche ein Endfenster und ein eingebautes optisches System zur Beurteilung der zumindest im Bereich der Messonde angestrahlten Flüssigkeit aufweist, ferner betrifft sie ein Verfahren zur Trübungsmessung. Für die Trübungsmessung einer verunreinigten Flüssigkeit wird im allgemeinen eine Messonde verwendet, durch welche die vorbeiströmende oder in einem Behälter vorhandene Flüssigkeit angestrahlt wird. Die von den eine Trübung verursachenden Teilchen zurückgeworfenen Strahlen werden von einem in die Sonde eingebauten optischen System gesammelt und einem Empfänger zugeführt, wo die Intensität der reflektierten Strahlen erfasst wird und eventuell notwendige Regelschritte eingeleitet werden.
Nachteilig ist bei derartigen Einrichtungen, dass das mit der Flüssigkeit in Berührung kommende Endfenster der Sonde sich rasch mit den in der Flüssigkeit enthaltenen Teilchen beschlägt. So sind die Service-Intervalle - auch bei kompensierten Systemen - weitgehend von der Verschmutzung des Endfensters bestimmt. Ein weiterer Nach teil liegt darin, dass durch das beschlagene Endfenster die Messung im Sinne einer scheinbar stärkeren Rückstrahlung verfälscht wird.
Der Erfindung liegt die Aufgabe zugrunde, eine Messeinrichtung der eingangs genannten Art zu schaffen, welche über lange Zeitabschnitte einwandfreie Resultate liefert und nur eines minimalen Services bedarf.
Der erfindungsgemässen Lösung dieser Aufgabe dient eine mindestens von einem Teilstrom der Flüssigkeit durchströmte Messkammer, in welcher die Messonde derart angeordnet ist, dass der Flüssigkeitsstrom unter einem Winkel auf das Endfenster trifft.
Durch die ständige Bespülung des Endfensters, welche mit Hilfe einer Düse noch verstärkt werden kann, stellt sich eine mechanische Selbstreinigung des Endfensters ein, welche einen Niederschlag am Fenster praktisch unmöglich macht. Es ergeben sich genaue Messresultate und nur aus Sicherheitsgründen ist eine gelegentliche Überprüfung der Einrichtung empfehlenswert. Die Einrichtung kann zur Überwachung von Rein- und Brauchwasser, von Kondensaten und Emulsionen ebenso wie von Wässern aus der Industrie verwendet werden, praktisch für jede Flüssigkeit. Einsatzgebiete der Einrichtung sind z.B. die Wasserversorgung und -aufbereitung, Kläranlagen, die Verfahrenstechnik, Waschanlagen usw.
In der einzigen Figur der Zeichnung ist ein Ausführungsbeispiel der erfindungsgemässen Einrichtung dargestellt. Die rohrförmige, von Flüssigkeit gänzlich ausgefüllte Messkammer 1 ist auf der einen Seite vom Stopfen 2 äbgeschlössen, auf der anderen Seite ist die Messonde 3 eingesetzt und von der Überwurfmutter 4 abdichtend gehalten. Sie weist den Messraum 5 auf, an welchen sich noch die Verlängerung 6 anschliesst, deren Zweck weiter unten genannt wird. An die Messkammer 1 schliessen die beiden axial fluchtenden Rohre 7 an, welche von der zu überprüfenden Flüssigkeit in Richtung der Pfeile 8 durchströmt sind. Die Achsen der Messkammer 1 und der Rohre 7 schneiden sich unter einem von 90° verschiedenen Winkel, Die Messkammer 1 und die Rohre 7 sind beispielsweise aus FVC hergestellt und durch Klebung miteinander verbunden, sie können aber auch zusammen als Kreuzstück gegossen sein.
In die Messonde 3 sind zwei oder mehrere Strahlenleiter 9 eingebaut, welche durch das Endfenster 10 die Flüssigkeit im Messraum 5 bestrahlen. Ferner ist noch das optische System 11 mit dem Strahlenleiter 12 in der Messonde untergebracht.
Das Endfenster 10 kann aus herkömmlichem Glas hergestellt sein, besser jedoch besteht es aus Quarzglas oder Saphir. Es ist derart angeordnet, dass der Flüssigkeitsstrom in den Rohren 7 unter einem Winkel direkt darauf trifft, vorzugsweise unter einem Winkel von 45°. Dadurch ist gewährleistet, dass die strömende Flüssigkeit das Endfenster ständig mechanisch reinigt und sich daher kein Niederschlag auf demselben bilden kann, welcher die Messung verfälschen oder gar unmöglich machen könnte.
Wenn grosse Flüssigkeitsmengen in Behältern oder Rohrleitungssystemen überwacht werden müssen, ist ein Bypassbe- trieb angezeigt, d.h., dass nur eine Teilmenge der Flüssigkeit durch die Messkammer 1 geführt wird, was für die Beurteilung des gesamten Flüssigkeitsvolumens genügt. Ist andererseits die Flüssigkeitsmenge, welche die Messkammer durchströmt, zu gering, um ein Beschlagen des Endfensters mit Sicherheit zu verhindern, dann ist es vorteilhaft, die Düse 13 derart in das Rohr 7 einzubauen, dass ihr Strahl direkt auf das Endfenster 10 gerichtet ist. Sollte die Möglichkeit bestehen, dass in der Flüssigkeit Gasblasen entstehen oder solche von ihr mitgeführt werden, dann ist es vorteilhaft, die Flüssigkeit in der Messkammer unter Druck zu setzen, um die Gasblasen zu eliminieren oder wenigstens zu vermindern.
Die Funktionsweise der erfindungsgemässen Einrichtung ist die folgende:
Die Messkammer 1 wird von der zu überwachenden Flüssigkeit durchströmt. Mit Hilfe der Strahlenleiter 9 wird die Flüssigkeit im Bereich der Messonde 3 angestrahlt, beispielsweise mit Lichtstrahlen. Sind eine Trübung verursa- chende Teilchen in der Flüssigkeit enthalten, z.B. Feststoffteilchen oder wie es bei einer Emulsion zutrifft, so reflektieren sie die Strahlen. Diese werden vom optischen System 11 gesammelt und in den Strahlenleiter 12 eingespeist, welcher sie einem (nicht gezeichneten) Empfänger zuführt. Die Intensität der reflektierten Strahlen ist ein Mass für die Trübung der Flüssigkeit.
Je stärker die Trübung der Flüssigkeit ist, destomehr reduziert sich die wirksame Messtiefe. Einzelne Teilchen können beispielsweise noch in 10 cm Tiefe festgestellt werden, bei hoher Trübung jedoch nur noch in der Nähe des Endfensters. Um eine in allen Fällen ausreichende Messtiefe zur Verfügung zu haben, ist es vorteilhaft, den Messraum 5 vorzusehen. Wenn er auch nicht gänzlich von der Flüssigkeit durchströmt ist, so erneuert sich doch ständig sein Inhalt durch die auftretenden Turbulenzen. Seine Verlängerung 6, die eine gewisse Tiefe haben soll, ist vorgesehen, damit eventuell vorkommende Reflexionen der Strahlen an den Wänden oder am Boden möglichst vermieden und auf diese Weise Fehlerquellen ausgeschaltet werden.

Claims

Patentansprüche
1. Einrichtung zur kontinuierlichen Trübungsmessung einer durch eine Trübung verursachende Teilchen verunreinigten Flüssigkeit mit Hilfe einer Messonde, welche ein Endfenster und ein eingebautes optisches System zur Beurteilung der zumindest im Bereich der Messonde angestrahlten Flüssigkeit aufweist, g e k e n n z e i c h n e t durch eine mindestens von einem Teilstrom der Flüssigkeit durchströmte Messkammer (1), in welcher die Messonde (3) derart angeordnet ist, dass der Flüssigkeitsstrom unter einem Winkel auf das Endfenster (10) trifft.
2. Einrichtung nach Anspruch 1, dadurch gekennzeichnet, dass der Flüssigkeitsstrom vorzugsweise unter einem Winkel von 45° auf das Endfenster (10) trifft.
3. Einrichtung nach Anspruch 1, dadurch gekennzeichnet, dass der Flüssigkeitsstrom aus einer auf das Endfenster (10) gerichteten Düse (13) in die Messkammer (1) eintritt.
4. Einrichtung nach Anspruch 1, dadurch gekennzeichnet, dass die Messkammer (1) gegenüber dem Endfenster (10) einen mit dem Flüssigkeitsstrom in Verbindung stehenden Messraum (5) aufweist.
5. Einrichtung nach Anspruch 4, dadurch gekennzeichnet, dass an den Messraum (5) eine Verlängerung (6) anschliesst.
6. Einrichtung nach Anspruch 1, dadurch gekennzeichnet, dass die Flüssigkeit in der Messkammer (1) unter Druck steht.
7. Einrichtung nach Anspruch 1, dadurch gekennzeichnet, dass das Endfenster (10) aus Quarzglas besteht.
8. Einrichtung nach Anspruch 1, dadurch gekennzeichnet, dass das Endfenster (10) aus Saphir besteht.
9. Verfahren zur Trübungsmessung mit der Einrichtung nach Anspruch 1, dadurch gekennzeichnet, dass die Intensität der von der angestrahlten Flüssigkeit reflektierten und vom optischen System (11) empfangenen Strahlen als Mass für die Trübung der Flüssigkeit ausgewertet wird.
PCT/CH1987/000108 1986-09-01 1987-08-26 Device for continually measuring the turbidity of a liquid WO1988001737A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH3505/86A CH670513A5 (de) 1986-09-01 1986-09-01
CH3505/86-4 1986-09-01

Publications (1)

Publication Number Publication Date
WO1988001737A1 true WO1988001737A1 (en) 1988-03-10

Family

ID=4257434

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CH1987/000108 WO1988001737A1 (en) 1986-09-01 1987-08-26 Device for continually measuring the turbidity of a liquid

Country Status (4)

Country Link
US (1) US4874243A (de)
EP (1) EP0279823A1 (de)
CH (1) CH670513A5 (de)
WO (1) WO1988001737A1 (de)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5048325A (en) * 1988-08-12 1991-09-17 Outokumpu Oy Measuring cell
EP0501622A1 (de) * 1991-02-26 1992-09-02 Philip Morris Products Inc. Laminarströmungsstaubschutz für Weitwinkellinsen
DE102004028420B3 (de) * 2004-06-04 2006-02-09 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Vorrichtung und Verfahren zur optischen Detektion von in Abgasen chemischer Prozesse enthaltenen Stoffen
EP1775032A1 (de) 2005-10-13 2007-04-18 BvL Oberflächentechnik GmbH Oberflächenreinigungsvorrichtung
EP2922646A4 (de) * 2012-11-23 2016-08-17 Commw Scient Ind Res Org Bewuchsresistenter strömungsverteiler

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9005021D0 (en) * 1990-03-06 1990-05-02 Alfa Laval Sharples Ltd Turbidity measurement
GB2253920B (en) * 1991-02-15 1995-07-12 Cobe Lab Medical equipment for connection to an optical fibre probe
FI93582C (fi) * 1991-09-18 1995-04-25 Janesko Oy Sovitelma prosessissa olevan optisen ikkunan puhdistamiseksi
US5247188A (en) * 1992-01-23 1993-09-21 High Yield Technology Concentrator funnel for vacuum line particle monitors
DE4233218C2 (de) * 1992-10-02 1998-10-08 Conducta Endress & Hauser Vorrichtung zur Trübungsmessung in wäßrigen Meßmedien
US5828458A (en) * 1995-01-26 1998-10-27 Nartron Corporation Turbidity sensor
FR2785681B1 (fr) 1998-11-10 2000-12-15 Cogema Cellule de mesure d'activite d'un liquide, pourvue d'un moyen de rincage de sonde
US6290576B1 (en) 1999-06-03 2001-09-18 Micron Technology, Inc. Semiconductor processors, sensors, and semiconductor processing systems
US7530877B1 (en) 1999-06-03 2009-05-12 Micron Technology, Inc. Semiconductor processor systems, a system configured to provide a semiconductor workpiece process fluid
US7180591B1 (en) * 1999-06-03 2007-02-20 Micron Technology, Inc Semiconductor processors, sensors, semiconductor processing systems, semiconductor workpiece processing methods, and turbidity monitoring methods
US6507401B1 (en) 1999-12-02 2003-01-14 Aps Technology, Inc. Apparatus and method for analyzing fluids
JP4338008B2 (ja) * 2001-10-05 2009-09-30 津田駒工業株式会社 糊濃度計の清浄装置
US7300630B2 (en) * 2002-09-27 2007-11-27 E. I. Du Pont De Nemours And Company System and method for cleaning in-process sensors
JP2008536095A (ja) * 2005-02-11 2008-09-04 スワゲロック カンパニー 流体濃度感知配置
JP2007155372A (ja) * 2005-12-01 2007-06-21 Miura Co Ltd 光学計測装置
US9001319B2 (en) * 2012-05-04 2015-04-07 Ecolab Usa Inc. Self-cleaning optical sensor
DE102013103735A1 (de) * 2013-04-15 2014-10-16 Endress + Hauser Conducta Gesellschaft für Mess- und Regeltechnik mbH + Co. KG Anordnung zur optischen Messung einer oder mehrerer physikalischer, chemischer und/oder biologischer Prozessgrößen eines Mediums
WO2016205744A1 (en) * 2015-06-17 2016-12-22 Flodesign Sonics, Inc. Turbidity sensor with improved flow path
US20170050226A1 (en) * 2015-08-21 2017-02-23 Parker-Hannifin Corporation Self-cleaning monitoring system for biomass processing

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3496366A (en) * 1965-06-04 1970-02-17 Zellweger Uster Ag Apparatus and method for determining the count of textile materials
US3861198A (en) * 1972-11-03 1975-01-21 Gam Rad Fluid analyzer with self-cleaning viewing windows
FR2567645A1 (fr) * 1984-07-12 1986-01-17 Ajinomoto Kk Procede et appareil de mesure de la turbidite d'un milieu liquide

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3714444A (en) * 1970-07-16 1973-01-30 Keene Corp Suspended solids analyzer
DE2433355A1 (de) * 1974-07-11 1976-01-22 Krohne Fa Ludwig Schlammtruebungsmessgeraet
US4343552A (en) * 1979-12-28 1982-08-10 Purecycle Corporation Nephelometer

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3496366A (en) * 1965-06-04 1970-02-17 Zellweger Uster Ag Apparatus and method for determining the count of textile materials
US3861198A (en) * 1972-11-03 1975-01-21 Gam Rad Fluid analyzer with self-cleaning viewing windows
FR2567645A1 (fr) * 1984-07-12 1986-01-17 Ajinomoto Kk Procede et appareil de mesure de la turbidite d'un milieu liquide

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5048325A (en) * 1988-08-12 1991-09-17 Outokumpu Oy Measuring cell
EP0501622A1 (de) * 1991-02-26 1992-09-02 Philip Morris Products Inc. Laminarströmungsstaubschutz für Weitwinkellinsen
DE102004028420B3 (de) * 2004-06-04 2006-02-09 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Vorrichtung und Verfahren zur optischen Detektion von in Abgasen chemischer Prozesse enthaltenen Stoffen
US7525664B2 (en) 2004-06-04 2009-04-28 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Device and method for optical detecting substances contained in waste gases of chemical processes
EP1775032A1 (de) 2005-10-13 2007-04-18 BvL Oberflächentechnik GmbH Oberflächenreinigungsvorrichtung
DE102005049473A1 (de) * 2005-10-13 2007-04-19 BvL Oberflächentechnik GmbH Oberflächenreinigungsvorrichtung
DE102005049473B4 (de) * 2005-10-13 2009-08-27 BvL Oberflächentechnik GmbH Oberflächenreinigungsvorrichtung
EP2922646A4 (de) * 2012-11-23 2016-08-17 Commw Scient Ind Res Org Bewuchsresistenter strömungsverteiler

Also Published As

Publication number Publication date
CH670513A5 (de) 1989-06-15
EP0279823A1 (de) 1988-08-31
US4874243A (en) 1989-10-17

Similar Documents

Publication Publication Date Title
WO1988001737A1 (en) Device for continually measuring the turbidity of a liquid
WO2013041608A1 (de) Reinigungsanlage
DE3033680A1 (de) Dosier- und leitungssystem fuer analysegeraete
DE2511559C2 (de) Verfahren und Vorrichtung zum Analysieren von Fluidproben auf einen interessierenden Bestandteil
EP1721139A1 (de) Anordnung und verfahren zur spektroskopischen bestimmung der bestandteile und konzentrationen pumpfähiger organischer verbindungen
DE60129563T2 (de) Verfahren und vorrichtung zur trübungsmessung
DE102014000056B3 (de) Vorrichtung und Verfahren zur spektroskopischen Bestimmung von Komponenten in Flüssigkeiten
EP3136083B1 (de) Verfahren und vorrichtung zur bestimmung einer stoffkonzentration oder eines stoffes in einem flüssigen medium
DE2521453A1 (de) Verfahren zur messung des absorptionsvermoegens von durchflussproben und durchflusskuevette, insbesondere zur durchfuehrung dieses verfahrens
CH461846A (de) Verfahren zur Bestimmung des Fettinhaltes von Fettemulsionen, insbesondere Milch
EP0043042B1 (de) Vorrichtung zur kolorimetrischen Messung von Gasspuren
WO2001090718A1 (de) Verfahren und vorrichtung zur bestimmung von analytkonzentrationen
DE2626292A1 (de) Eintauch-kolorimeter
EP0989405B1 (de) Vorrichtung und Verfahren zur Analyse von chemischen Substratgehalten in einer Flüssigkeit
DE3221063C2 (de) Vorrichtung zur automatischen, analytischen Prüfung von Flüssigkeiten, insbesondere von Wasser
DE1598831C3 (de) Trubungsmesser mit Kontrollvorrich tung
DE19544851A1 (de) Vorrichtung zur Untersuchung von Flüssigkeitsproben
EP0078268B1 (de) Prüfanlage für die vorausbestimmung des wirkungsgrades der böden von destillier- und/oder absorptionskolonnen
WO2024074603A1 (de) Sensorblock für die analyse einer flüssigkeit
DE102006026044A1 (de) Vorrichtung zur Bestimmung stark schwankender Gehalte flüchtiger Stoffe in Flüssigkeiten
DE1773656A1 (de) Verfahren und Vorrichtung zur Entnahme von Milchproben aus einer Durchflussleitung
AT526372A1 (de) Verfahren zur Bestimmung einer Verschmutzung
DE19947651C2 (de) Vorrichtung zur Bestimmung einer Ablagerung biologischen Materials auf einer Oberfläche einer Meßzelle
DE3826199A1 (de) Geraet zur durchfuehrung fotometrischer messungen an fluessigkeiten
DE19937756A1 (de) Verfahren und Vorrichtung zur Bestimmung der Klarphase einer zu reinigenden Flüssigkeit

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE FR GB IT LU NL SE

WWE Wipo information: entry into national phase

Ref document number: 1987905171

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1987905171

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1987905171

Country of ref document: EP