EP0278867B1 - Integrierter Mikrowellenzirkulator - Google Patents

Integrierter Mikrowellenzirkulator Download PDF

Info

Publication number
EP0278867B1
EP0278867B1 EP88400293A EP88400293A EP0278867B1 EP 0278867 B1 EP0278867 B1 EP 0278867B1 EP 88400293 A EP88400293 A EP 88400293A EP 88400293 A EP88400293 A EP 88400293A EP 0278867 B1 EP0278867 B1 EP 0278867B1
Authority
EP
European Patent Office
Prior art keywords
gyrator
waveguide
circulator
ferrite
pole piece
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP88400293A
Other languages
English (en)
French (fr)
Other versions
EP0278867A1 (de
Inventor
Gérard Forterre
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thomson Composants Microondes
Original Assignee
Thomson Composants Microondes
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thomson Composants Microondes filed Critical Thomson Composants Microondes
Publication of EP0278867A1 publication Critical patent/EP0278867A1/de
Application granted granted Critical
Publication of EP0278867B1 publication Critical patent/EP0278867B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/32Non-reciprocal transmission devices
    • H01P1/38Circulators
    • H01P1/383Junction circulators, e.g. Y-circulators
    • H01P1/39Hollow waveguide circulators

Definitions

  • the present invention relates to a waveguide circulator, for microwave waves, in which the gyrator can be integrated.
  • the circulator object of the invention is a model in which the power can reach and exceed the kilowatt, in a frequency range between 1 and 100 GHz.
  • a circulator is a microwave component having a number of doors, at least three, which transmits the energy it receives from one door to another door.
  • This component has the property of non-reciprocity, that is to say that, if the direction of the incident energy is modified, the function of the entry and exit gates is not exchanged.
  • This condition of non-reciprocity is introduced by the use in such a component of a gyrator comprising ferrites.
  • These are ceramic magnetic materials mainly constituted by metal oxides which, however, differ from conventional metallic magnetic materials in that they are non-conductive and have low losses of magnetic origin at microwave frequencies.
  • junctions consist of a junction with three or four doors made as a waveguide in which is inserted, in its center, at least one ferrite rod subjected to a transverse external magnetic field.
  • the waveguides are either made of welded sheet metal or molded, and it is difficult to precisely position and fix the ferrite piece (s) of the gyrator there, especially since the waveguides must not not have - apart from the doors - slots or air gaps, which have the double disadvantage of having a high impedance, and of presenting a microwave leak, dangerous for the user.
  • the circulator is pierced with two opposite circular holes, in its two parallel walls, and at the location where the gyrator must be located.
  • the gyrator is, for its part, in one piece and constituted by the stack of parts of cylindrical shape which are, for example, glued together.
  • This gyrator comprises, at least, a pole piece, a ferrite, a solid dielectric such as silica, a ferrite and a second pole piece.
  • One or two magnets are also bonded to the two pole pieces.
  • All components of the gyrator have substantially the same diameter at most equal to the diameter of the holes, so that the gyrator is in the form of a cylindrical part, which can be introduced through the holes made in the circulator.
  • Only the pole pieces can have, at a level corresponding to the main walls of the waveguide, a projecting flange of larger diameter, but equal to the diameter of the holes in the waveguide: the two radiators, which are also drilled with holes corresponding to the passage of the gyrator, block it in position, by resting on the external faces of the edges of the pole pieces.
  • the gyrator is therefore fixed by means of the radiators.
  • a special glue joint or a "microwave" seal can be added to eliminate any leakage of microwave radiation, and ensure thermal continuity for the cooling of the gyrator.
  • Figures 1 to 3 define what a circulator, and how to integrate a gyrator, but this preliminary reminder will simplify the explanations, thereafter, and to make more clear the presentation of the invention.
  • Figure 1 gives the plan of a three-door circulator produced from a T or Y junction and three arms formed by waveguides whose openings are called doors 1, 2, 3.
  • a step 4 ensures the ternary symmetry of the junction, so that the triangle ABC, formed between the points common to the three waveguides - in the plane of the figure - is an equilateral triangle.
  • the axis of this junction that is to say in the axis of the center of the triangle ABC, are placed two ferrite discs 6 and 7 subjected to a transverse magnetic field applied by one or two magnets 8 and 9, by l 'through pole pieces 10 and 11.
  • Figure 1 is a plane which passes through the plane of symmetry of the circulator, Figure 2, which is a section along X′X, allows to see the parts not shown in Figure 1.
  • Figure 2 which is a section along X′X, allows to see the parts not shown in Figure 1.
  • a circulator constituted as described above does not work correctly because it is not suitable.
  • the rectangular waveguides which are commonly used are standardized guides whose side ratio is of the order of 2 to 1 and which propagate the TE 10 mode.
  • To reduce the impedance of the waveguides it is necessary reduce the height "h". This reduction is achieved by the introduction into the junction of metal plates 14 and 15 constituting an impedance transformer. These plates are arranged against the main faces of the junction and the ferrite discs 6 and 7 are bonded opposite one another against these plates. It is obvious that the necessary introduction of these plates reduces the distance separating the ferrite discs and therefore increases the risk of breakdown at this level.
  • the power handling of a junction circulator of the prior art is therefore limited, thereby resulting in a significant limitation of its use.
  • Figure 2 shows how the elements just described are positioned and held in place.
  • the main faces 12 and 13 of the waveguide are each provided with a hole bordered by a shoulder 16 and 17 on which the impedance transformer 14 and 15 is brazed.
  • each hole penetrates an assembly constituted by a ferrite 6, a pole piece 10, a radiator, and a magnet 8, all the pieces of which are brazed together, l 'assembly being further brazed on the shoulder 16.
  • a metal plate 20 is introduced at the height of the longitudinal plane of symmetry, which has the effect of dividing the junction as well as the standard waveguides used in two junctions and associated guides of reduced height. This plate occupies the entire area of the junction. However it can extend beyond and occupy both the area of the junction and the arms.
  • two junctions in reduced impedance guides are obtained in this way with which two circulators are produced by placing in the axis of the junctions, on either side of the wall 20, two ferrite pads 18 and 19 which are thus opposite respectively the pads 6 and 7.
  • Each of these circulators receiving only half of the incident energy, the total admissible power in the circulator obtained by stacking the two elementary circulators and practically double that of a normal circulator.
  • This type of mounting requires a tool for mounting the ferrites 6, 7, 18, 19 relative to the pole pieces 10 and 11.
  • the junction with ternary symmetry is constituted by a waveguide of reduced height, the reduction ratio compared to the standard waveguides depending on the frequency and the power flowing through it.
  • the coupling of microwave waves to the gyrator takes place directly, without an impedance transformer. This means that the main faces 12 and 13 of the waveguide are flat, inside the cavity, and that no impedance transformer, such as 14-15 in FIG. 2, is soldered there. or molded.
  • the main faces 12 and 13 each have, at the base of the ternary center of symmetry, a circular hole 22 and 23.
  • the flanges 24 and 25 have an outer face - relative to the waveguide - planar 26 and 27, and coplanar with the outer surface of the faces 12 and 13 of the waveguide.
  • the power circulator comprises cooling means constituted either by two fin plates 28 and 29, air cooling, as shown in FIG. 4, or by two liquid circulation boxes, as shown in FIG. 7. These cooling means are also pierced with two holes 30 and 31, of diameter corresponding to the small diameter of the pole pieces 10 and 11.
  • the monobloc gyrator being positioned in the holes 22 and 23 of the waveguide, the fact of attaching the cooling plates 28 and 29 immobilizes the gyrator, because the internal faces, turned towards the waveguide, of the plates 28 and 29 come to bear on the external faces 26 and 27 of the edges of the pole pieces 10 and 11, and block the gyrator.
  • This magnetic circuit 32 is visible in FIG. 7, which gives a view - along the axis Y′Y of FIG. 1 - more general but less detailed than fig. 4.
  • the structure of the circulator according to the invention is such that one can check before integrating each of the parts, which will now be each better detailed, and the complete gyrator.
  • the monobloc resonator is produced without air gap between the ferrites 6 and 7, the air gap being replaced by a dielectric or a plate metal 21. It is mainly constituted by at least two thin ferrites, produced either in the form of discs or with a section having a ternary symmetry. By thin ferrites is meant ferrites of small thickness compared to the wavelength in the composite resonator.
  • the dimensions of the ferrites and the dielectric are calculated so as to obtain a gyromagnetic resonator whose impedance is practically the same as that of the waveguide of reduced height constituting the ports of the junction.
  • Such a structure avoids the intrusion of dust or the condensation of material in the critical zone located between the ferrites.
  • the pole pieces 10 and 11 of mild steel or other, cylindrical, have a small diameter at the height of the cooling plates 28 and 29, and a large diameter, that of the protruding rim 24 and 25, at the height of the faces 12 and 13 of the waveguide. They can easily penetrate inside the waveguide, depending on the total thickness of the one-piece resonator 6 + 21 + 7. The important thing is that the distance between the two faces 26 and 27 of the edges is equal to the distance between the two outer faces of the walls 12 and 13 of the waveguide.
  • This film does not have to provide a rigid mechanical connection.
  • the diameter of the pole pieces 10 and 11, at the level of the insertion zone in the waveguide junction, must be as close as possible to that of the ferrites 6 and 7, in order to reduce the rate of energy coupled by the gap inevitably existing between these pole pieces and the metallic body of the junction, the coupling thus produced being of the magnetic type in a region where the magnetic fields have no transverse components.
  • the invention provides for microwave sealing bonding, and because the air knives have a very high impedance.
  • FIG. 5 - which gives only part of fig. 4 - shows another microwave sealing system, without glue or conductive lacquer.
  • the hole 31 in the cooling plate 29 is of a diameter such that the plate 29 is hooped onto the body of the pole piece 11.
  • the cooling plate 29 There is therefore mechanical fixing of the one-piece gyrator by the cooling plate 29, and there is no microwave leakage since there is hooping.
  • the plate 29 is machined to create a housing there for the seal 33, and a second projecting rim 36, around the pole piece 11, facilitates the centering of the seal 33.
  • the cooling means 28 and 29 comprise at least one flat plate in close contact with the external surfaces of the faces 12 and 13 of the waveguide. They are wider than the waveguide width, so that they overlap. These plates, once made integral, for example by screws which do not pass through the waveguide, ensure the mechanical rigidity of the gyrator, in its receiving structure and participate in the production of microwave seals.
  • the plates 28 and 29 may include fins, as in FIG. 4, or tubes allowing the circulation of a fluid, as in fig. 5, or even constitute "water boxes" as in fig. 7.
  • the coolant can still circulate in tubes welded to these plates.
  • the magnets 8 and 9 can be made of ferrite, or other materials such as samarium-cobalt. They can be glued to the monobloc gyrator, but they can also be positioned by the cooling plates 28 and 29, and held in place by the magnetic circuit 32.
  • the circulator according to the invention has a waveguide of very reduced height, therefore of impedance adapted to that of the gyrator.
  • the power which can pass through the circulator is less than if the waveguide is of greater height.
  • the resonator comprises, between the ferrites 6 and 7 and the dielectric 21 already described, at least a third ferrite 34 and a second dielectric 35, which means that the high-height circulator functions as two low height circulators mounted in parallel.
  • a resonator is mounted without a metal plate 20 (see fig. 3) being mounted in the waveguide.
  • the circulator according to the invention has been described as a power circulator: the models produced carry 1 KW at 2.45 GHz.
  • the structure according to the invention applies to low power circulators. In this case, it may have only one magnet, and the pole piece devoid of a magnet either rests on the main face not pierced with the waveguide, or is blocked by the cooling plate.
  • the applications of the circulator according to the invention are numerous. In the field of power, they relate to industrial heating, such as the drying of paper or inks, polymerizations, ... In the field of signal processing, the circulator can be integrated in a microwave head, and this up to '' at very high frequencies (at 94 GHz, for example).

Landscapes

  • Non-Reversible Transmitting Devices (AREA)

Claims (11)

1. Integrierter Mikrowellenzirkulator mit einem Wellenleiteranschluß, einem im Symmetriezentrum des Anschlusses liegenden Gyrator sowie mit Kühlplatten (28, 29), die auf die Hauptflächen (12, 13) des Wellenleiters aufgebracht sind, wobei diese Hauptflächen zwei kreisförmige Löcher (22, 23) einander gegenüberliegend und auf das Symmetriezentrum des Anschlusses zentriert aufweisen, dadurch gekennzeichnet, daß
- der Gyrator ein Monoblockzylinder ist, der mindestens einen Magneten (8), ein erstes Polstück (10), einen ersten Ferrit (6), ein festes Dielektrikum (21), einen zweiten Ferrit (7) und ein zweites Polstück (11) besitzt, wobei der Durechmesser der Polstücke höchstens gleich dem Durchmesser der Löcher (22, 23) ist und wobei der Gyrator durch die Löcher in den Hauptflächen (12, 13) des Wellenleiters hindurchdringt,
- die Kühlplatten (28, 29) den Gyrator im Wellenleiter festlegen.
2. Zirkulator nach Anspruch 1, dadurch gekennzeichnet, daß der Wellenleiter eine Höhe (h) besitzt, die der Impedanz des Gyrators (8 ... 9) angepaßt ist, und daß seine Hauptseiten (12, 13) im Inneren des Wellenleiters eben sind und keine Impedanzanpassungsstücke aufweisen.
3. Zirkulator nach Anspruch 1, dadurch gekennzeichnet, daß der Durchmesser der den Gyrator bildenden Bauteile durch die Berechnung des Resonators bestimmt wird, der von den Ferriten (6, 7) und dem Feststoffdielektrikum (21) gebildet wird, und zwar abhängig von der Betriebsfrequenz des Zirkulators und der übertragenen Leistung, und daß alle diese Bauteile miteinander verklebt sind.
4. Zirkulator nach Anspruch 1, dadurch gekennzeichnet, daß jedes der Polstücke (10, 11) des Gyrators einen vorspringenden Rand (24, 25) größeren Durchmessers als der Rest des Gyrators besitzt, wobei jeder Rand (24, 25) eine bezüglich des Wellenleiters äußere Fläche (26, 27) besitzt, die mit der äußeren Oberfläche einer Hauptseite (12, 13) des Wellenleiters in einer Ebene liegt.
5. Zirkulator nach Anspruch 4, dadurch gekennzeichnet, daß die Löcher (22, 23) in den Hauptseiten (12, 13) des Wellenleiters einen Durchmesser besitzen, der dem Durchmesser der vorspringenden Ränder (24, 25) der Polstücke (10, 11) gleicht.
6. Zirkulator nach Anspruch 5, dadurch gekennzeichnet, daß jede Kühlplatte (28, 29) ein Loch (30, 31) in der Achse des Gyrators aufweist, das den gleichen Durchmesser wie die Polstücke (10, 11) besitzt, und daß eine Dichtung (34, 35) aus leitfähigem Klebstoff oder Lack zwischen den Polstücken und den Hauptseiten (12, 31) des Wellenleiters sowie den Kühlplatten (28, 29) die Dichtheit bezüglich der Mikrowellen und die thermische Kontinuität zwischen dem Gyrator und den Kühlplatten (28, 29) sichert.
7. Zirkulator nach Anspruch 5, dadurch gekennzeichnet, daß jede Kühlplatte (28, 29) ein Loch (30, 31) in der Achse des Gyrators und mit gleichem Durchmesser wie die Polstücke (10, 11) aufweist und daß mindestens eine Kühlplatte (29) auf ein Polstück (11) aufgepreßt ist, wobei eine flache Dichtung (33), die für die Mikrowellenenergie undurchlässig ist, zwischen der Kühlplatte (29) und der Oberseite (27) des vorspringenden Rands (25) des Polstücks (11) angeordnet ist.
8. Zirkulator nach Anspruch 1, dadurch gekennzeichnet, daß die Kühlplatten (28, 29) größere Abmessungen als der Wellenleiter besitzen und gegen den Wellenleiter unter Festlegung des Monoblockgyrators durch außerhalb des Wellenleiters liegende Gewindestifte angedrückt werden.
9. Zirkulator nach Anspruch 1, dadurch gekennzeichnet, daß der Gyrator im Fall großer Leistung mindestens zwei Resonatoren in Reihe besitzt, nämlich ein erstes Polstück (10), einen ersten Ferrit (6), ein erstes Dielektrikum (21), einen zweiten Ferrit (34), ein zweites Dielektrikum (35), einen dritten Ferrit (7) und ein zweites Polstück (11).
10. Zirkulator nach Anspruch 1, dadurch gekennzeichnet, daß im Fall großer Leistung mit einer Metallplatte (20) in der Mittelebene des Wellenleiters der Gyrator aus zwei Halbgyratoren in Monoblockbauweise zusammengesetzt ist, die je ein Polstück (10), einen ersten Ferrit (6), ein festes Dielektrikum (21) und einen zweiten Ferrit (34) aufweisen, wobei jeder Monoblock-Halbgyrator durch eine Kühlplatte (28, 29) zu beiden Seiten der Metallplatte (20) festgelegt ist.
11. Zirkulator nach Anspruch 1, dadurch gekennzeichnet, daß im Fall geringer Leistung nur ein einziger Magnet (9) vorgesehen ist, wobei das Polstück (10), das keinen Magneten besitzt, entweder mittels einer Kühlplatte (28) oder mittels der nicht gelochten Hauptseite (12) des Wellenleiters festgelegt ist.
EP88400293A 1987-02-13 1988-02-09 Integrierter Mikrowellenzirkulator Expired - Lifetime EP0278867B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8701865A FR2611089B1 (fr) 1987-02-13 1987-02-13 Circulateur hyperfrequence integre
FR8701865 1987-02-13

Publications (2)

Publication Number Publication Date
EP0278867A1 EP0278867A1 (de) 1988-08-17
EP0278867B1 true EP0278867B1 (de) 1992-05-13

Family

ID=9347908

Family Applications (1)

Application Number Title Priority Date Filing Date
EP88400293A Expired - Lifetime EP0278867B1 (de) 1987-02-13 1988-02-09 Integrierter Mikrowellenzirkulator

Country Status (4)

Country Link
US (1) US4808949A (de)
EP (1) EP0278867B1 (de)
DE (1) DE3870902D1 (de)
FR (1) FR2611089B1 (de)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5285174A (en) * 1992-12-23 1994-02-08 Hughes Aircraft Company Temperature-compensated waveguide isolator
JP2010187053A (ja) 2009-02-10 2010-08-26 Shimada Phys & Chem Ind Co Ltd 導波管サーキュレータ
US9520633B2 (en) 2014-03-24 2016-12-13 Apollo Microwaves Ltd. Waveguide circulator configuration and method of using same
CN108631033B (zh) * 2018-06-12 2023-08-15 西南应用磁学研究所 小型化siw表贴式环行器

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB963414A (en) * 1962-08-23 1964-07-08 Mullard Ltd Waveguide circulator
US3466571A (en) * 1968-02-28 1969-09-09 Motorola Inc High peak power waveguide junction circulators having inductive posts in each port for tuning circulator
US3617950A (en) * 1970-02-02 1971-11-02 Bell Telephone Labor Inc Junction circulator having a conductive septum in junction region
US3684983A (en) * 1970-06-19 1972-08-15 E & M Lab High speed circulator switch
FR2208202B1 (de) * 1972-11-28 1977-04-08 Thomson Csf
US4145672A (en) * 1976-11-12 1979-03-20 Trw Inc. Microwave ferrite circulator having dielectric tube for housing circulator elements
US4254384A (en) * 1977-11-07 1981-03-03 Trw Inc. Electronic waveguide switch
FR2443750A1 (fr) * 1978-12-08 1980-07-04 Lignes Telegraph Telephon Circulateur de puissance a faible perte d'insertion

Also Published As

Publication number Publication date
FR2611089B1 (fr) 1989-02-24
US4808949A (en) 1989-02-28
FR2611089A1 (fr) 1988-08-19
EP0278867A1 (de) 1988-08-17
DE3870902D1 (de) 1992-06-17

Similar Documents

Publication Publication Date Title
EP0113273B1 (de) Verkapselungsgehäuse für Leistungshalbleiter mit Eingangs-/Ausgangs-Isolierung
EP0278867B1 (de) Integrierter Mikrowellenzirkulator
EP1573809A1 (de) An der oberfläche angebrachte mikrowellenkapselung und entsprechende anbringung mit mehrschichtiger schaltung
CA1312930C (fr) Combineur/diviseur multivoie
EP0493191A1 (de) Last für eine Mikrowellen-Streifenleitung auf einem dielektrischen Substrat
EP0446107B1 (de) Übertragungssystem für elektrische Energie, im Mikrowellenbereich, mit kreismagnetischem Effekt, wie ein Zirkulator, Isolator oder Filter
EP0387955A1 (de) Gehäuse für eine integrierte Hyperfrequenzschaltung
EP0230819A1 (de) Miniaturisiertes gyromagnetisches Gerät und dessen Zusammenbauverfahren
EP0019510A1 (de) Drehbare Verbindung für mehrere Leitungen in einer elektromagnetischen Detektionsanlage
EP0058283B1 (de) Ferrit-Mikrowellenvorrichtung und Anwendung dieser Vorrichtung
FR2702920A1 (fr) Dispositif électronique miniaturisé, notamment dispositif à effet gyromagnétique.
EP3261170B1 (de) Hypefrequenz-zirkulator mit doppelzellen und geringem platzbedarf, und sein herstellungsverfahren
FR2677176A1 (fr) Convertisseur mode coaxial-mode guide d'ondes.
FR2755544A1 (fr) Dispositif de filtrage a cavite metallique a inserts dielectriques
FR2879828A1 (fr) Circulateur hyperfrequence a plots de connexion
EP0012682B1 (de) Leistungszirkulator mit geringem Übertragungsverlust
EP2083470A1 (de) Elektronisches Bauteil zur Montage auf der präzise positionierten elektrischen Verbindungsfläche
FR2668304A1 (fr) Dephaseur reciproque en guide dielectrique a ferrite.
EP0031768B1 (de) Nicht-wechselseitige Hochleistungs-Mikrowellenvorrichtung
EP1251544B1 (de) Mirkowellenverstärker-Elektronenröhre mit miniaturisierter Eingangssteckanordnung und Verfahren zur Herstellung
EP0341107A1 (de) Wanderfeldröhre mit einer Kupplungsvorrichtung zwischen ihrer Verzögerungsleitung und den äusseren Mikrowellenschaltungen
WO2021116632A1 (fr) Dispositif électrotechnique pour un aéronef
FR2494916A1 (fr) Circulateur pour la transmission d'ondes electromagnetiques hyperfrequence
JPS623922Y2 (de)
BE1013508A3 (fr) Dispositif de transition entre un guide d'ondes et un element rayonnant.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE GB IT

17P Request for examination filed

Effective date: 19880910

17Q First examination report despatched

Effective date: 19910304

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: THOMSON COMPOSANTS MICROONDES

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE GB IT

ITF It: translation for a ep patent filed
REF Corresponds to:

Ref document number: 3870902

Country of ref document: DE

Date of ref document: 19920617

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19930209

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19930209

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19931103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050209