US3617950A - Junction circulator having a conductive septum in junction region - Google Patents

Junction circulator having a conductive septum in junction region Download PDF

Info

Publication number
US3617950A
US3617950A US7873A US3617950DA US3617950A US 3617950 A US3617950 A US 3617950A US 7873 A US7873 A US 7873A US 3617950D A US3617950D A US 3617950DA US 3617950 A US3617950 A US 3617950A
Authority
US
United States
Prior art keywords
conductive
boundaries
circulator
junction
common region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US7873A
Inventor
Clare Earl Barnes
Brian Owen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AT&T Corp
Original Assignee
Bell Telephone Laboratories Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bell Telephone Laboratories Inc filed Critical Bell Telephone Laboratories Inc
Application granted granted Critical
Publication of US3617950A publication Critical patent/US3617950A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/32Non-reciprocal transmission devices
    • H01P1/38Circulators
    • H01P1/383Junction circulators, e.g. Y-circulators
    • H01P1/39Hollow waveguide circulators

Definitions

  • ABSTRACT A junction circulator in which the usual magnetically biased ferrite post is modified by being separated from at least one conductive boundary by a dielectric gap and by having a conductive septum extending normal to the axis of the post at a point between the conductive boundaries. These modifications induce wave fields that more or less simulate those of the turnstile circulator and produce improved bandwidths of circulation.
  • FIG. 1 SHEET 1 0F 2 FIG. 1 PRIOR ART
  • GYROMAGNETIC MATERIAL 25 DIELECTRIC GAP 27 C.
  • This invention relates to symmetrical coupling devices for electromagnetic wave energy'and, more'particularly, to very broadband waveguide Y-junction circulators.
  • the basic Y-junctioncirculator comprises a conductively bounded junction of three waveguides having a magnetically biased gyromagsetic body extending along the axis of symmetry of the junction.
  • turnstile circulater One particular form has been referred to as a turnstile circulater, the name being descriptive of thestructural appendage which characterizes its construction.
  • the usual waveguide junction is supplemented by a shorted, circular waveguide stub rising out of one side of the junction in which the axially biased gyromagnetic body is located.
  • the structure is of interest because of its ability to support and tune'the counterrotating modes in the circular guide stub relative to the phase of the in-phase mode in the junction.
  • turnstile circulator has remained a laboratory curiosity because of its unwieldy and relatively complex mechanical structure. At least one attempt-to simplify the turnstile has been described by B. A. Auld in "The Synthesis of Symmetrical Waveguide Circulators, 7 IRE Transactions on Microwave Theory and Techniques, p. 238, Apr. 1959. However, this particularsimplification did not preserve the same waveguide modes in the junction and therefore did not preserve the bandwidth capabilities.
  • the electrical performance of the basic turnstile circulator is substantially improved upon with a structure that is no more mechanically complicated than a typical Y-junction circulator.
  • the usual magnetically biased gyromagnetic cylindrically shaped post extending along the axis of symmetry of the junction is foreshortened to create a dielectric discontinuity between one conductive boundary of the junction and one end of the post.
  • a conductive septum normal to the axis effectively terminates the other end of the post at a point spaced from the other conductive boundary of the junction.
  • the dielectric gap induces counterrotating electric fields in the gyromagnetic body normal to the magnetic bias.
  • FIG. 1 is a cutaway perspective view of a typical prior art turnstile circulator
  • FIG. 2 is a cutaway perspective view of a junction circulator in accordance with the present invention.
  • FIG. 3 shows typical reflection coefficient characteristics useful in understanding the operation of the invention.
  • FIGS. 4 and 5 show in cross section alternative arrangements of components within thejunction of FIG. 2.
  • the prior art circulator is shown for the purpose of comparison with the present invention. It comprisesthree rectangular waveguideslli, and I2 intersecting in a Y'at angles of in 'anI-I-plane junction (theplane of the guides broad dimension) to form a conductively bounded common region from which the waveguide branches symmetrically extend. Extending coaxially with the axis of symmetry of 'the Yfrom the upper boundary of the common'regionis a section of circular waveguide I3 thatis coupledat its lowerend by a circular aperture to the junction and thatisclosed at its upper e'nd by a'shortin'g bouh'dary l4.
  • CylinderlS is longitudinally biased 'alongthe axis of symmetry by being permanently magnetically polarised or polarizedby theuse of externalm'agn'etsas'schematically representedby the vector H Operation of such'a circulator is usually explainedby'dividing the' excitation'of one port'of the junctioninto three excitations eachinvolving excitation-of allthree' ports.
  • the threeexcitations correspond to the 'eige'nvectors for the scattering matrix for the junctiomA first excitation excites all three ports equally and in phase while the remaining two excitations result inequalexcitations with'ph'ases that'resultin counterrotating circular polarizations within the junction.
  • the requirement for circulationin terms of these'excitations is that their reflection coefficients corresponding to theeigenvalues for the scattering matrix be displaced in phase by 120.
  • the counterrotating modes propagate up the circular loaded guide 13 with an electric new and a transverse magnetic field normal to the biasing field li and are reflected back toward the junction by boundary 14.
  • the net phase shifts for these modes with the gyromagnetic material unmagnetize'd are identical and are determined by the length of circular guide 13.
  • Magnetizin'g cylinder 15 increases and decreases the path lengths of the counterrotating modes, respectively, and by adjusting H and the length of guide 13 and cylinder 15, these modes can be separated by 120 from each other and from the inphase mode as required for circulator action. This corresponds to the Faraday rotation by cylinder 15 of 60".
  • the iriphase mode on the other hand, cannot propagate iiito circular guide 13 but is resonantly supported within the junction, resonant frequency normally being remote from the operating frequency.
  • FIG. 2 a waveguide junction like that of FIG. I is shown comprising guides 20, 21 and 22 corresponding in every respect to guides 10, 11 and 12. No external appendage is required. Instead, gyromagnetic elemeht 25 takes the form of an axially biased cylinder located within the common region of the junction on the axis of symmetry. Gap 27 filled either by air, or by a suitable nonmagnetic dielectric material having dielectric constant close to that of air or at least substantially different from that of cylinder 25, forms a space between the lower end of cylinder 25 and the lower conductive boundary of the junction.
  • the top end of cylinder 25 is terminated in a conductive and reflecting discontinuity formed by a thin surface 28 of conductive material such as copper, gold or aluminum foil bonded to the end surface and covering the full diameter of the end surface in a plane perpendicular to the axis of the cylinder.
  • a thin surface 28 of conductive material such as copper, gold or aluminum foil
  • the space between surface 28 and the top conductive boundary of the junction is filled by a second cylinder of gyromagnetic material 29 thus making surface 28 a conductive septum dividing one cylinder into two parts.
  • Such a structure is preferably assembled as a laminate of two cylinders of gyromagnetic material bonded to either face of a conductive foil.
  • septum 28 as it defines the length of cylinder 25 as well as the significance of gap 27 can be understood when it is recalled that in an ordinary H-plane resonantjunction, the electric fields are everywhere parallel to the axis of symmetry.
  • the region formed by gap 27, however, has a dielectric constant and permeability product that is different from that of the region occupied by gyromagnetic material of cylinder 25 so that the phase constants of the two regions differ. This creates an electric field in the plane of the interface between the two regions.
  • the counterrotating excitations launch waves as dielectrically supported modes in cylinder 25, travelling up cylinder 25 to be reflected at septum 28 and to couple back into the junction at gap 27.
  • the in-phase mode sees cylinders 25 and 29 together as a single dielectric resonator since this mode has no circularly polarized magnetic fields and does not excite any mode propagating along the axis of cylinders 25 and 29 and thus there is no gyromagnetic interaction with its material. Further, since the in-phase electric field is normal to septum 28, the mode is unaffected by the septum. Therefore, the diameters of cylinders 25 and 29 provide a means for controlling the phase of the in-phase mode while septum 28 provides the means for controlling the phase of the two counterrotating modes relative to the phase of the in-phase mode. The adjustments are independent since the separation between gap 27 and septum 28 exclusively determines the path length for the rotating modes.
  • FIG. 3 shows typical reflection coefficients in phase degrees of the several modes discussed above as they vary with frequency.
  • the in-phase mode as represented by curve 31 (considered as having a resonant delay) is adjusted so that its most linear portion falls within the band of intended operation in a given junction by controlling the diameters of cylinders 25 and 29.
  • the spacing between septum 28 and gap 27 is selected so that the counterrotating modes, which together form a single linearly polarized mode as represented by curve 32 (considered as having linear delays) falls 180 away from curve 31.
  • Increasing the spacing between septum 28 and gap 27 has the effect of increasing the phase separation between curves 31 and 32.
  • l-I is then increased to separate the counterrotating modes by 120, raising one and lowering the other as indicated by curves 33 and 34, respectively. Circulation is then possible over the full range in which the curves generally parallel each other as indicated.
  • a typical embodiment according to these considerations would have the following illustrative proportions.
  • the gyromagnetic cylinder would have a diameter of approximately one wavelength in the gyromagnetic medium at the lowest operating frequency; the separation between gap and septum would be typically of order onequarter wavelength in the gyromagnetic medium; the gap would be typically of the order of one-fifth of the waveguide height; and the gyromagnetic material would be selected to avoid low field losses in accordance with standard practice for low field devices.
  • cylinder 29 above septum 28 serves only as dielectric material, it is preferable that this portion be formed from gyromagnetic material like that of cylinder 25 below septum 28 to simplify the construction, improve the magnetic biasing circuit, and minimize the dielectric discontinuity at septum 28.
  • cylinder 29 can, if desired, be replaced by a nonmagnetic dielectric preferably having a dielectric constant near to that of the gyromagnetic material.
  • the counterrotating modes are generated at both dielectric gaps 41 and 42, propagate in opposite directions to be respectively reflected by septa 43 and 44 interposed equal distances from gaps 41 and 42, respectively.
  • Septa 43 and 44 divide the gyromagnetic material into parts 45, 46 and 47 of which the gyromagnetic properties of only parts 45 and 47 are used.
  • FIG. 5 in effect reverses the relative positions of two dielectric discontinuities produced by a single gap 51 and the septa as compared to FIG. 4.
  • Duplicate counterrotating modes are respectively generated at both interfaces between nonmagnetic dielectric 51 and gyromagnetic cylinders 54 and 55, propagate in opposite directions in cylinders 54 and 55 to be reflected by septa 52 and 53. While this structure bears superficial similarity to the one shown by Bowness in Us. Pat. No. 3,136,962, June 9, 1964, it is noted that the use of septa 52 and 53 afford optimum mode conversion dimensions for gap 51 and the optimum phase length for gyromagnetic cylinders 54 and 55 not otherwise possible in the prior art.
  • the present invention provides an improvement upon circulators of the turnstile type. While particularly illustrated by way of the three branch or Y-junction form, it should be noted that a four branch tumstile junction has been described by P. J. Allen in Us. Pat. No. 2,867,772, granted June 6, 1959, and in the [RE Transactions on Microwave Theory and Techniques, Oct. I956 on P. 223. The principles of the invention are equally applicable to improving this four branch form as will be obvious to one skilled in the art in view of the foregoing teachings.
  • a broadband circulator for electromagnetic wave energy comprising a conductively bounded structure having a plurality of branches symmetrically extending away from a conductively bounded common region having a pair of opposite conductive boundaries and adapted to support said wave energy with an electric field perpendicular to said boundaries and a magnetic field lying substantially in loops in planes parallel to said boundaries, a body of magnetically polarized gyromagnetic material disposed on the axis of symmetry of said common region, said body being spaced from at least one conductive boundary of said common region to leave a dielectric gap therebetween, and a conductive septum extending nonnal to said axis between the conductive boundaries of said common region.
  • a broadband circulator for electromagnetic wave energy comprising a conductively bounded structure having a plurality of branches symmetrically extending away from a conductively bounded common region having a pair of opposite conductive boundaries and adapted to support said wave energy with an electric field perpendicular to said boundaries and a magnetic field lying substantially in loops in planes parallel to said boundaries, at body of magnetically polarized gyromagnetic material having a longitudinal axis symmetrically disposed in said common region, means for creating a dielectric discontinuity at one end of said body, and means for creating a conductive and reflecting discontinuity at a point on said body located between said dielectric discontinuity and a conductive boundary of said common region.

Landscapes

  • Waveguide Switches, Polarizers, And Phase Shifters (AREA)

Abstract

A junction circulator in which the usual magnetically biased ferrite post is modified by being separated from at least one conductive boundary by a dielectric gap and by having a conductive septum extending normal to the axis of the post at a point between the conductive boundaries. These modifications induce wave fields that more or less simulate those of the turnstile circulator and produce improved bandwidths of circulation.

Description

United States Patent Clare Earl Barnes Bethlehem;
Brian Owen, Allentown, both of Pa.
Feb. 2, 1970 Nov. 2, 197 1 Bell Telephone Laboratories, Incorporated Murray Hill, NJ.
Inventors App]. No. Filed Patented Assignee JUNCTION CIRCULATOR HAVING A CONDUCTIVE SEPTUM IN JUNCTION REGION 6 Claims, 5 Drawing Figs.
U.S. Cl 333/11, 333/98 R int. Cl 1101p 1/32, HOlp 5/12 Field of Search 333/].1
DlELECTRiC GAP 27 [56] References Cited UNITED STATES PATENTS 3,350,663 10/1967 Siekanowicz et al. 333/1 .1 3,517,340 6/1970 Magalhaes 333/1 .1
Primary ExaminerI-lerman Karl Saalbach Assistant Examiner-Paul L. Gensler Attorneys-J2. J. Guenther and E. W, Adams, .lr.
ABSTRACT: A junction circulator in which the usual magnetically biased ferrite post is modified by being separated from at least one conductive boundary by a dielectric gap and by having a conductive septum extending normal to the axis of the post at a point between the conductive boundaries. These modifications induce wave fields that more or less simulate those of the turnstile circulator and produce improved bandwidths of circulation.
GYROMAGNE MATERIAL 5 5 PATENTEDNLWZ |97| $617,950
SHEET 1 0F 2 FIG. 1 PRIOR ART) FIG. 2
GYROMAGNETIC MATERIAL 25 DIELECTRIC GAP 27 C. EBARNE INVENTORS a OWEN 3 A T TOR/V5 V JUNCTION CIRCULATOR HAVING A CONDUCTIVE SEPTUM IN JUNCTION REGION BACKGROUND OF THE INVENTION This invention relates to symmetrical coupling devices for electromagnetic wave energy'and, more'particularly, to very broadband waveguide Y-junction circulators.
The basic Y-junctioncirculator comprises a conductively bounded junction of three waveguides having a magnetically biased gyromagsetic body extending along the axis of symmetry of the junction. Numerous variations of this basic structure, principally having to do with the size and shapeof the gyromagnetic body and with 'means for matching "its impedance to the remainder of the structure, have been proposed to improve one or another'of the operating characteristics of the circulator.
It is now clearly understood that circulator action'depends upon therelationship between the responses of-the junction to three modes of excitation, namely,an in-phase'modeand t'wo counterrotating modes, the reflection coefficients "of which must be mutually displaced inphase by I". Thedifferences in bandwidth of various forms of circulatorsdepend up'o'n'th'e degree to which it is possiblein a particular structure to maintain this phase relation as frequency ischanged.
One particular form has been referred to as a turnstile circulater, the name being descriptive of thestructural appendage which characterizes its construction. Specifically, the usual waveguide junction is supplemented by a shorted, circular waveguide stub rising out of one side of the junction in which the axially biased gyromagnetic body is located. The structure is of interest because of its ability to support and tune'the counterrotating modes in the circular guide stub relative to the phase of the in-phase mode in the junction.
Despite its advantages, the turnstile circulatorhas remained a laboratory curiosity because of its unwieldy and relatively complex mechanical structure. At least one attempt-to simplify the turnstile has been described by B. A. Auld in "The Synthesis of Symmetrical Waveguide Circulators, 7 IRE Transactions on Microwave Theory and Techniques, p. 238, Apr. 1959. However, this particularsimplification did not preserve the same waveguide modes in the junction and therefore did not preserve the bandwidth capabilities.
SUMMARY OF THE INVENTION In accordance with the present invention the electrical performance of the basic turnstile circulator is substantially improved upon with a structure that is no more mechanically complicated than a typical Y-junction circulator. More particularly, the usual magnetically biased gyromagnetic cylindrically shaped post extending along the axis of symmetry of the junction is foreshortened to create a dielectric discontinuity between one conductive boundary of the junction and one end of the post. At the same time a conductive septum normal to the axis effectively terminates the other end of the post at a point spaced from the other conductive boundary of the junction. In general, the dielectric gap induces counterrotating electric fields in the gyromagnetic body normal to the magnetic bias. These fields couple to axially propagating modes which are reflected by the septum back into the junction so that the gyromagnetic body acts as did the circular guide stub of the turnstile. The position of the septum provides a unique control of phase separation between the reflection coefficients as required for circulation. However, all parts of the structure are fully contained within the junction.
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a cutaway perspective view of a typical prior art turnstile circulator;
FIG. 2 is a cutaway perspective view of a junction circulator in accordance with the present invention;
FIG. 3 shows typical reflection coefficient characteristics useful in understanding the operation of the invention; and
FIGS. 4 and 5 show in cross section alternative arrangements of components within thejunction of FIG. 2.
2 DETAILED DESCRIPTION Referring more particularly to FIG. l,the prior art circulator is shown for the purpose of comparison with the present invention. It comprisesthree rectangular waveguideslli, and I2 intersecting in a Y'at angles of in 'anI-I-plane junction (theplane of the guides broad dimension) to form a conductively bounded common region from which the waveguide branches symmetrically extend. Extending coaxially with the axis of symmetry of 'the Yfrom the upper boundary of the common'regionis a section of circular waveguide I3 thatis coupledat its lowerend by a circular aperture to the junction and thatisclosed at its upper e'nd by a'shortin'g bouh'dary l4. A cylinder 15 of magnetically polarized gyromagnetic material, such as yttrium iron garnetor ferrite, is located axially within guide 13. CylinderlS is longitudinally biased 'alongthe axis of symmetry by being permanently magnetically polarised or polarizedby theuse of externalm'agn'etsas'schematically representedby the vector H Operation of such'a circulator is usually explainedby'dividing the' excitation'of one port'of the junctioninto three excitations eachinvolving excitation-of allthree' ports. The threeexcitations correspond to the 'eige'nvectors for the scattering matrix for the junctiomA first excitation excites all three ports equally and in phase while the remaining two excitations result inequalexcitations with'ph'ases that'resultin counterrotating circular polarizations within the junction. The requirement for circulationin terms of these'excitations is that their reflection coefficients corresponding to theeigenvalues for the scattering matrix be displaced in phase by 120.
It isus'eful to examine the fields at the axis of symmetry due' toeach of-these excitations. Forthe in-phase mode, the components of electric field parallel tothe'axis of symmetry due to the excitation of the three ports will be in phase and simply add to one another. The transverse components, while in phase, are space displaced by 120 and cancel vectorially. Therefore, the electric field at the axis of symmetry due to the in phase mode lies only along the axis of symmetry. Similarly,
for the counterrotating modes, the components of electric and sum to zero. The transverse components, while phase displaced'by 120, are spaced displaced by 120 resulting in circularly polarized fields. Similar arguments could be made about the magnetic fields with the conclus'ion that the counterrotating modes can, and the in-phase mode cannot, couple to waves travelling along the axis of symmetry. This provides the means for adjusting the 'reflectioncoefficients as required for circulation. i 7
Thus in the prior art structure of FIG. I the counterrotating modes propagate up the circular loaded guide 13 with an electric new and a transverse magnetic field normal to the biasing field li and are reflected back toward the junction by boundary 14. The net phase shifts for these modes with the gyromagnetic material unmagnetize'd are identical and are determined by the length of circular guide 13. Magnetizin'g cylinder 15, however, increases and decreases the path lengths of the counterrotating modes, respectively, and by adjusting H and the length of guide 13 and cylinder 15, these modes can be separated by 120 from each other and from the inphase mode as required for circulator action. This corresponds to the Faraday rotation by cylinder 15 of 60". The iriphase mode, on the other hand, cannot propagate iiito circular guide 13 but is resonantly supported within the junction, resonant frequency normally being remote from the operating frequency.
With this background in mind principles of the present invention may be understood from FIG. 2. In all cases in which the structure, materials or principles of operation are the same as those described above, a detailed descriptioii thereof need not be repeated. I j v I Referring'then to FIG. 2 a waveguide junction like that of FIG. I is shown comprising guides 20, 21 and 22 corresponding in every respect to guides 10, 11 and 12. No external appendage is required. Instead, gyromagnetic elemeht 25 takes the form of an axially biased cylinder located within the common region of the junction on the axis of symmetry. Gap 27 filled either by air, or by a suitable nonmagnetic dielectric material having dielectric constant close to that of air or at least substantially different from that of cylinder 25, forms a space between the lower end of cylinder 25 and the lower conductive boundary of the junction.
In accordance with the invention, the top end of cylinder 25 is terminated in a conductive and reflecting discontinuity formed by a thin surface 28 of conductive material such as copper, gold or aluminum foil bonded to the end surface and covering the full diameter of the end surface in a plane perpendicular to the axis of the cylinder. In accordance with a preferred embodiment the space between surface 28 and the top conductive boundary of the junction is filled by a second cylinder of gyromagnetic material 29 thus making surface 28 a conductive septum dividing one cylinder into two parts. Such a structure is preferably assembled as a laminate of two cylinders of gyromagnetic material bonded to either face of a conductive foil.
The significance of septum 28 as it defines the length of cylinder 25 as well as the significance of gap 27 can be understood when it is recalled that in an ordinary H-plane resonantjunction, the electric fields are everywhere parallel to the axis of symmetry. The region formed by gap 27, however, has a dielectric constant and permeability product that is different from that of the region occupied by gyromagnetic material of cylinder 25 so that the phase constants of the two regions differ. This creates an electric field in the plane of the interface between the two regions. Thus, only the counterrotating excitations launch waves as dielectrically supported modes in cylinder 25, travelling up cylinder 25 to be reflected at septum 28 and to couple back into the junction at gap 27.
The in-phase mode sees cylinders 25 and 29 together as a single dielectric resonator since this mode has no circularly polarized magnetic fields and does not excite any mode propagating along the axis of cylinders 25 and 29 and thus there is no gyromagnetic interaction with its material. Further, since the in-phase electric field is normal to septum 28, the mode is unaffected by the septum. Therefore, the diameters of cylinders 25 and 29 provide a means for controlling the phase of the in-phase mode while septum 28 provides the means for controlling the phase of the two counterrotating modes relative to the phase of the in-phase mode. The adjustments are independent since the separation between gap 27 and septum 28 exclusively determines the path length for the rotating modes.
The relationships can be seen from FIG. 3 which shows typical reflection coefficients in phase degrees of the several modes discussed above as they vary with frequency. Thus, the in-phase mode as represented by curve 31 (considered as having a resonant delay) is adjusted so that its most linear portion falls within the band of intended operation in a given junction by controlling the diameters of cylinders 25 and 29. With the cylinders unmagnetized, the spacing between septum 28 and gap 27 is selected so that the counterrotating modes, which together form a single linearly polarized mode as represented by curve 32 (considered as having linear delays) falls 180 away from curve 31. Increasing the spacing between septum 28 and gap 27 has the effect of increasing the phase separation between curves 31 and 32. l-I is then increased to separate the counterrotating modes by 120, raising one and lowering the other as indicated by curves 33 and 34, respectively. Circulation is then possible over the full range in which the curves generally parallel each other as indicated.
A typical embodiment according to these considerations would have the following illustrative proportions. Using a waveguide with a 2:1 aspect ratio and operating within the standard recommended frequency range for dominant mode propagation; the gyromagnetic cylinder would have a diameter of approximately one wavelength in the gyromagnetic medium at the lowest operating frequency; the separation between gap and septum would be typically of order onequarter wavelength in the gyromagnetic medium; the gap would be typically of the order of one-fifth of the waveguide height; and the gyromagnetic material would be selected to avoid low field losses in accordance with standard practice for low field devices.
It will be noted that while cylinder 29 above septum 28 serves only as dielectric material, it is preferable that this portion be formed from gyromagnetic material like that of cylinder 25 below septum 28 to simplify the construction, improve the magnetic biasing circuit, and minimize the dielectric discontinuity at septum 28. However, cylinder 29 can, if desired, be replaced by a nonmagnetic dielectric preferably having a dielectric constant near to that of the gyromagnetic material.
In certain cases it may be desirable to modify the coupling to the counterrotating modes as shown in FIG. 4 by employing two dielectric gaps. Thus, in the structure of FIG. 4 the counterrotating modes are generated at both dielectric gaps 41 and 42, propagate in opposite directions to be respectively reflected by septa 43 and 44 interposed equal distances from gaps 41 and 42, respectively. Septa 43 and 44 divide the gyromagnetic material into parts 45, 46 and 47 of which the gyromagnetic properties of only parts 45 and 47 are used.
The embodiment shown in FIG. 5 in effect reverses the relative positions of two dielectric discontinuities produced by a single gap 51 and the septa as compared to FIG. 4. Duplicate counterrotating modes are respectively generated at both interfaces between nonmagnetic dielectric 51 and gyromagnetic cylinders 54 and 55, propagate in opposite directions in cylinders 54 and 55 to be reflected by septa 52 and 53. While this structure bears superficial similarity to the one shown by Bowness in Us. Pat. No. 3,136,962, June 9, 1964, it is noted that the use of septa 52 and 53 afford optimum mode conversion dimensions for gap 51 and the optimum phase length for gyromagnetic cylinders 54 and 55 not otherwise possible in the prior art.
The present invention provides an improvement upon circulators of the turnstile type. While particularly illustrated by way of the three branch or Y-junction form, it should be noted that a four branch tumstile junction has been described by P. J. Allen in Us. Pat. No. 2,867,772, granted June 6, 1959, and in the [RE Transactions on Microwave Theory and Techniques, Oct. I956 on P. 223. The principles of the invention are equally applicable to improving this four branch form as will be obvious to one skilled in the art in view of the foregoing teachings.
What is claimed is:
l. A broadband circulator for electromagnetic wave energy comprising a conductively bounded structure having a plurality of branches symmetrically extending away from a conductively bounded common region having a pair of opposite conductive boundaries and adapted to support said wave energy with an electric field perpendicular to said boundaries and a magnetic field lying substantially in loops in planes parallel to said boundaries, a body of magnetically polarized gyromagnetic material disposed on the axis of symmetry of said common region, said body being spaced from at least one conductive boundary of said common region to leave a dielectric gap therebetween, and a conductive septum extending nonnal to said axis between the conductive boundaries of said common region.
2. A broadband circulator for electromagnetic wave energy comprising a conductively bounded structure having a plurality of branches symmetrically extending away from a conductively bounded common region having a pair of opposite conductive boundaries and adapted to support said wave energy with an electric field perpendicular to said boundaries and a magnetic field lying substantially in loops in planes parallel to said boundaries, at body of magnetically polarized gyromagnetic material having a longitudinal axis symmetrically disposed in said common region, means for creating a dielectric discontinuity at one end of said body, and means for creating a conductive and reflecting discontinuity at a point on said body located between said dielectric discontinuity and a conductive boundary of said common region.
5. The circulator of claim 4 wherein a second body of gyromagnetic material fills the space between said conductive member and a conductive boundary of said common region.
6. The circulator of claim 4 wherein dielectric material fills the spaces between said body and said member and both of the conductive boundaries of said junction.
* l i i

Claims (6)

1. A broadband circulator for electromagnetic wave energy comprising a conductively bounded structure having a plurality of branches symmetrically extending away from a conductively bounded common region having a pair of opposite conductive boundaries and adapted to support said wave energy with an electric field perpendicular to said boundaries and a magnetic field lying substantially in loops in planes parallel to said boundaries, a body of magnetically polarized gyromagnetic material disposed on the axis of symmetry of said common region, said body being spaced from at least one conductive boundary of said common region to leave a dielectric gap therebetween, and a conductive septum extending normal to said axis between the conductive boundaries of said common region.
2. A broadband circulator for electromagnetic wave energy comprising a conductively bounded structure having a plurality of branches symmetrically extending away from a conductively bounded common region having a pair of opposite conductive boundaries and adapted to support said wave energy with an electric field perpendicular to said boundaries and a magnetic field lying substantially in loops in planes parallel to said boundaries, a body of magnetically polarized gyromagnetic material having a longitudinal axis symmetrically disposed in said common region, means for creating a dielectric discontinuity at one end of said body, and means for creating a conductive and reflecting discontinuity at a point on said body located between said dielectric discontinuity and a conductive boundary of said common region.
3. The circulator of claim 1 wherein said conductively bounded structure comprises three rectangular waveguides forming a Y-junction.
4. The circulator of claim 2 wherein the ends of said body are both spaced from the conductive boundaries of the junction such that the other end of said body coincides with said point, and wherein a thin conductive member is bonded to the surface of said other end.
5. The circulator of claim 4 wherein a second body of gyromagnetic material fills the space between said conductive member and a conductive boundary of said common region.
6. The circulator of claim 4 wherein dielectric material fills the spaces between said body and said member and both of the conductive boundaries of said junction.
US7873A 1970-02-02 1970-02-02 Junction circulator having a conductive septum in junction region Expired - Lifetime US3617950A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US787370A 1970-02-02 1970-02-02

Publications (1)

Publication Number Publication Date
US3617950A true US3617950A (en) 1971-11-02

Family

ID=21728555

Family Applications (1)

Application Number Title Priority Date Filing Date
US7873A Expired - Lifetime US3617950A (en) 1970-02-02 1970-02-02 Junction circulator having a conductive septum in junction region

Country Status (1)

Country Link
US (1) US3617950A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3866150A (en) * 1972-11-28 1975-02-11 Thomson Csf Waveguide junction circulator having conductive partition in magnetic midplane of function
US4672333A (en) * 1984-11-13 1987-06-09 Licentia Patent-Verwaltungs-Gmbh Waveguide junction circulator
EP0278867A1 (en) * 1987-02-13 1988-08-17 Thomson Composants Microondes Integrated microwave circulator

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3350663A (en) * 1966-01-27 1967-10-31 Rca Corp Latched ferrite circulators
US3517340A (en) * 1968-12-23 1970-06-23 Bell Telephone Labor Inc Circulator having conductive post capacitively coupled between first and second transmission line conductors for broadbanding purposes

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3350663A (en) * 1966-01-27 1967-10-31 Rca Corp Latched ferrite circulators
US3517340A (en) * 1968-12-23 1970-06-23 Bell Telephone Labor Inc Circulator having conductive post capacitively coupled between first and second transmission line conductors for broadbanding purposes

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3866150A (en) * 1972-11-28 1975-02-11 Thomson Csf Waveguide junction circulator having conductive partition in magnetic midplane of function
US4672333A (en) * 1984-11-13 1987-06-09 Licentia Patent-Verwaltungs-Gmbh Waveguide junction circulator
EP0278867A1 (en) * 1987-02-13 1988-08-17 Thomson Composants Microondes Integrated microwave circulator
FR2611089A1 (en) * 1987-02-13 1988-08-19 Thomson Semiconducteurs INTEGRATED HYPERFREQUENCY CIRCULATOR

Similar Documents

Publication Publication Date Title
US3714608A (en) Broadband circulator having multiple resonance modes
US3617951A (en) Broadband circulator or isolator of the strip line or microstrip type
US4027253A (en) Non-reciprocal broadband slot line device
US4463330A (en) Dielectric waveguide
US3560893A (en) Surface strip transmission line and microwave devices using same
US4689584A (en) Dielectric slab circulators
US4697158A (en) Reduced height waveguide circulator
US3085212A (en) Tunable circulator
US3174116A (en) Trough line microstrip circulator with spaced ferrite surrounding transverse conductive rod
US4034377A (en) Ferrite circulators and isolators and circuits incorporating the same
US2840787A (en) Hybrid tau type waveguide junction
US3534299A (en) Miniature microwave isolator for strip lines
US2729794A (en) High frequency apparatus
US3016495A (en) Magnetostatic microwave devices
US3886500A (en) Flat hybrid-t structure for transmitting wave energy
US10615474B2 (en) Apparatuses and methods for mode suppression in rectangular waveguide
EP0120915B1 (en) Millimeter-wave phase shifting device
US3851279A (en) Tee junction waveguide circulator having dielectric matching posts at junction
US3555459A (en) Gyromagnetic device having a plurality of outwardly narrowing tapering members
EP0205570B1 (en) A compound dielectric multi-conductor transmission line
US3617950A (en) Junction circulator having a conductive septum in junction region
US3886502A (en) Broad band field displacement isolator
US3755759A (en) Slot line
US3517340A (en) Circulator having conductive post capacitively coupled between first and second transmission line conductors for broadbanding purposes
Sakiotis et al. Broad-band ferrite rotators using quadruply-ridged circular waveguide