EP0265521A1 - Rotor eines bohrlochschneckenmotors und dessen herstellung - Google Patents

Rotor eines bohrlochschneckenmotors und dessen herstellung Download PDF

Info

Publication number
EP0265521A1
EP0265521A1 EP86902578A EP86902578A EP0265521A1 EP 0265521 A1 EP0265521 A1 EP 0265521A1 EP 86902578 A EP86902578 A EP 86902578A EP 86902578 A EP86902578 A EP 86902578A EP 0265521 A1 EP0265521 A1 EP 0265521A1
Authority
EP
European Patent Office
Prior art keywords
rotor
shaping
screw
shaping element
tube block
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP86902578A
Other languages
English (en)
French (fr)
Other versions
EP0265521A4 (de
EP0265521B1 (de
Inventor
Anatoly Mikhailovich Kochnev
Andrei Nikolaevich Vshivkov
Vladimir Borisovich Goldobin
Samuil Solomonovich Nikomarov
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
PERMSKY FILIAL VSESOJUZNOGO NAUCHNO-ISSLEDOVATELSKOGO INSTITUTA BUROVOI TEKHNIKI
Original Assignee
PERMSKY FILIAL VSESOJUZNOGO NAUCHNO-ISSLEDOVATELSKOGO INSTITUTA BUROVOI TEKHNIKI
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by PERMSKY FILIAL VSESOJUZNOGO NAUCHNO-ISSLEDOVATELSKOGO INSTITUTA BUROVOI TEKHNIKI filed Critical PERMSKY FILIAL VSESOJUZNOGO NAUCHNO-ISSLEDOVATELSKOGO INSTITUTA BUROVOI TEKHNIKI
Priority to AT86902578T priority Critical patent/ATE75521T1/de
Publication of EP0265521A1 publication Critical patent/EP0265521A1/de
Publication of EP0265521A4 publication Critical patent/EP0265521A4/de
Application granted granted Critical
Publication of EP0265521B1 publication Critical patent/EP0265521B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B4/00Drives for drilling, used in the borehole
    • E21B4/02Fluid rotary type drives
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C1/00Rotary-piston machines or engines
    • F01C1/08Rotary-piston machines or engines of intermeshing engagement type, i.e. with engagement of co- operating members similar to that of toothed gearing
    • F01C1/10Rotary-piston machines or engines of intermeshing engagement type, i.e. with engagement of co- operating members similar to that of toothed gearing of internal-axis type with the outer member having more teeth or tooth-equivalents, e.g. rollers, than the inner member
    • F01C1/101Moineau-type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2230/00Manufacture
    • F04C2230/20Manufacture essentially without removing material
    • F04C2230/27Manufacture essentially without removing material by hydroforming
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49229Prime mover or fluid pump making
    • Y10T29/49236Fluid pump or compressor making
    • Y10T29/49242Screw or gear type, e.g., Moineau type
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49316Impeller making
    • Y10T29/49336Blade making
    • Y10T29/49339Hollow blade
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49805Shaping by direct application of fluent pressure

Definitions

  • the present invention relates to drilling technology and, more particularly, relates to one of the main assemblies of screw-bottom drive for drilling oil and gas wells, namely the rotor of a screw-bottom drive and method of making the same.
  • a screw-type soleplate drive with a multi-start rotor is known, which is designed in the form of a multi-start all-metal screw in which the number of turns of the screw surface (the screw teeth) is more than one (SU copyright document No. 926209).
  • the rotor is housed in a stator that has a multi-start internal helical surface with a number of gears that exceeds the number of gears of the rotor by one; this screw surface is produced on a covering from a resiliently elastic material, such as rubber, glued to the inner surface of the stator housing.
  • the rotor axis is offset relative to the stator axis coinciding with the drive axis by an eccentricity amount that is half the height of the rotor and stator teeth, while the axial pitch ratio of the screw teeth of the rotor and the stator is equal to the number of teeth ratio of these parts.
  • the rotor executes an orbital movement, the rotor axis rotating counterclockwise relative to the stator axis at an angular velocity ⁇ 1 , while the rotor itself rotates clockwise around its own axis at an angular velocity of ⁇ 2 .
  • the angular velocity ⁇ 1 is equal to the angular velocity ⁇ 2 multiplied by the number of rotor teeth, and the centrifugal force acting on the rotor is proportional to the rotor mass and the square of the angular velocity ⁇ 1 .
  • the multi-speed rotor of the drive described above is manufactured according to a gear milling method using a metal-cutting tool, such as a hob cutter.
  • This method is expensive, not powerful enough, it does not guarantee a high surface quality of the rotor teeth and requires complicated and expensive equipment - machine tools and tools to carry it out.
  • the working surfaces of the rotor must then be polished or ground, which is what a complicated configuration of the rotor surface and a large length of the rotor is a difficult technological task.
  • a screw downhole sole drive with a multi-start hollow rotor is also known.
  • the rotor is rigidly connected to a coupling by means of a threaded connection (see the book by Gusman MT, inter alia, "screw-borehole sole drives for drilling holes", 1981, “Nedra”, (Moscow), p . 125 to 188).
  • the metal in the middle of the rotor is removed.
  • the metal is removed by drilling a central hole in the rotor. This can also be achieved by using a thick-walled tube block for the manufacture of the rotor.
  • the centrifugal forces acting on the rotor can be somewhat reduced by reducing the dynamics of the transverse vibrations of the rotor and of the entire drive.
  • a significant amount of metal remains in the body of the teeth of the rotor in its peripheral area, which leads to the creation of significant centrifugal forces during operation of the drive and to a shortening of its service life.
  • the connection of the rotor with an articulated or a flexible shaft by means of a coupling provided with threaded connections is not reliable, because during operation of the drive under the action of dynamic forces a decoupling can take place.
  • the design of the rotor as a closed whole part or from a thick-walled tube also requires a high consumption of stainless steel.
  • the drives equipped with the rotor described above are characterized by a relatively low efficiency and not a high output, because the work of these drives results in high mechanical losses caused by the self-heating of the stator rubber.
  • the method consists in the deformation of a pipe block on a shaping screw surface due to the pressure of a flowing medium on the pipe block.
  • the method is carried out with the aid of a device in whose housing a shaping element with a shaping surface is accommodated, within which the tube block is located.
  • the shaping screw surface is provided on the inner surface of the shaping element, which simultaneously fulfills the function of the housing and consists of several axial partial surfaces.
  • the pressure of the flowing medium is generated in the cavity of the tube block arranged within the sealed shaping element.
  • the shaping of the rotor of a single screw pump takes place in several stages, with the tube block being lifted out of the shaping element for annealing treatment after each stage in order to reduce the hardness and to remove internal stresses.
  • the disadvantages of the known method and the devices for its implementation are low quality counted the outer working surface of the rotor, on which traces of the division of the shaping element are left, an additional machining of the outer surface of the rotor using special equipment being required to eliminate these traces.
  • Another disadvantage of the above-mentioned method and the device is the complicated production of the inner surfaces of the divisible shaping element as well as a complicated covering of the shaping screw surfaces in parting planes. These disadvantages are particularly noticeable in the manufacture of rotors with a large ratio of length to diameter, which makes it impossible to manufacture multi-speed rotors using the method described above.
  • Another disadvantage of the known method is that a high hydrostatic pressure of the flowing medium is required because the tube block is subjected to significant tensile deformations. This also results in a high energy intensity of the process.
  • the invention has for its object to provide a rotor for a screw-bottom drive and a method for producing this rotor and a device for carrying out the method, which make it possible to improve the energy characteristic of the drive by realizing design features of the rotor, reduce the friction losses and increase the performance in the manufacture of the rotor.
  • a rotor of a bottom hole drive which is designed in the form of a multi-start screw with a number of teeth of the screw surface of over 1 and rigidly connected to a clutch is designed according to the invention as a hollow body with a substantially constant wall thickness, the ratio between the length of the outer line of the rotor cross section and the length of the circumference described relative to this outer line being essentially in a range from 0.9 to 1.05.
  • Such a design of the rotor enables an improvement in the energy characteristic of the drive, a reduction in the transverse vibrations, an increase in the strength of the rotor under torsional and bending stresses, a reduction in the mass and the metal intensity of the rotor, a reduction in the consumption of stainless steel and a Improving the quality of the rotor to be manufactured.
  • the essence of the method for producing the rotor is that a tube block is deformed on a shaping surface by the pressure action of a flowing medium, and according to the invention a shaping element, the outer surface of which is a shaping surface, is arranged inside the tube block while the pressure of the flowing medium is applied to the pipe block from the outside.
  • the shape of the pipe block preferably carried out in two stages, in the first stage the tube block is given the shape of a screw polyhedron with rounded tips, in which the diameter of the circumference is slightly larger than the diameter of the circumference of the finished rotor and the number of side surfaces of the number of gears Helical surface of the rotor is equal, and the final shaping of the rotor screw surface is carried out in the second stage.
  • the essence of the device for the manufacture of the rotor according to the method set forth above is that a shaping element with a shaping surface is accommodated in the housing of the device, and according to the invention the shaping element within the Housing is attached to centering bushings, the shaping surface is carried out on the outer surface of the shaping element, the centering bushings having fitting sections which are set up for a sliding fit of the ends of the tube block.
  • each centering bushing has a shoulder adjoining its fitting section, against which the pipe block located on the fitting section is supported and in which an annular groove is provided, the width of the groove being essentially the same as the thickness of the pipe block, and in that A seal is housed in the groove.
  • the shaping element in some cases it is necessary for the shaping element to be arranged interchangeably in the housing and for a shaping element for preforming to be provided which is in the form of a screw polyhedron with rounded tips, in which the diameter of the circumference is somewhat larger than the diameter the circumference of the shaping element for final shaping and the number of side surfaces is equal to the number of gears of the rotor screw surface.
  • the rotor 1 is one of the main parts of a screw-hole sole drive (FIG. 1) and is designed in the form of a multi-start screw provided with external screw teeth 2 with a number of gears (teeth) of the screw surface of more than 1.
  • the rotor 1 is arranged within a stator 3, which has a coating 4 made of a resilient, elastic material such as rubber.
  • the Inner screw surface of the lining 4 forms screw teeth 5, the number of which exceeds the number of teeth of the rotor 1 by one.
  • the axis O1 (FIG. 2) of the rotor 1 is offset relative to the axis 0 2 of the stator 3 by the eccentricity quantity "e".
  • the rotor 1 (FIG. 1)
  • the bearing assembly 7 contains axle bearings and radial bearings (not shown) for absorbing borehole bottom loads.
  • a rock destruction tool 9 is connected to the lower end of the shaft 6 of the bearing assembly 7.
  • the stator 3 of the drive is connected to the lower end of a drill pipe 11 by means of a transition piece 10.
  • the rotor 1 (FIGS. 3, 4) is designed as a hollow body according to the present invention and contains a tubular casing 12 (housing) and a coupling 13 (FIG. 3) rigidly connected thereto for connection to the flexible shaft 8 (FIG. 1 ).
  • the coupling 13 (Fig. 3) is provided with elements 14, e.g. with threads, for connecting the flexible shaft 8.
  • the attachment can also be done by other known methods, e.g. by welding, using a cone.
  • the coupling 13 is preferably fastened in the tubular casing 12 by compressing the tubular casing 12 on the profiled outer surface of the coupling 13, on which recesses 15 are provided. This is done according to the procedure described above.
  • the recesses 15 can have different shapes, ie they can be designed as radial, non-continuous openings, longitudinal or transverse grooves or flattenings, ring or spiral grooves and their combinations. It is important that those formed on the profiled outer surface of the coupling 13 during the compression of the end section of the tubular casing 12 Approaches 16 with the recesses 15 of the coupling 13 for transmitting the torsional moment and the axial load in engagement.
  • FIGS. 3 and 5 show an embodiment of the recess 15 as an annular groove with a diameter d, which is arranged eccentrically with respect to the cylindrical outer surface 17 of the coupling 13.
  • the ratio between the length of the outer line 18 in the cross section of the rotor 1 and the length of the circumference 19 described relative to this outer line is essentially in a range from 0.9 to 1.05. Under otherwise identical conditions, the selection of this ratio below 0.9 leads to a reduction in the energy characteristics of the screw drive, based on the torsional moment and the power (due to a reduction in the number of rotor gears) to a reduction in the torsional and bending strength of the rotor, which is designed as a hollow body as well as a deterioration in the manufacturing quality of the rotor according to the method according to the invention and by means of the device according to the invention, which are described below because folds form and the geometric shape of the rotor is violated.
  • the rotor according to the invention has the following mode of operation.
  • a flushing liquid is supplied from the surface of the day via the drill pipe 11 (FIG. 1)
  • the rotor 1 is rotated under the action of an unbalanced liquid pressure on its side screw surface, and it rolls on the teeth of the stator 3.
  • the torsional moment to be generated on the rotor and the axial load are transmitted to the shaft 6 of the support assembly 7 via the flexible shaft 8, which is connected to the rotor 1 via the coupling 13.
  • the rotation is transmitted from the shaft 6 of the bearing group 7 to the rock destruction tool 9.
  • the above-described screw bottom drive rotor is made as follows.
  • the shaping element with the shaping multi-start external screw surface is inserted into a tube shell, which has previously been machined on the outer surface to the required surface quality (ground, polished), the ends of the tube shell are hermetically sealed against the shaping element, while simultaneously centering them guaranteed and pressure is generated from the outside around the pipe shell by a flowing medium, eg mineral oil.
  • a flowing medium eg mineral oil
  • the shaping of the rotor teeth is expedient according to the present method performed in two stages.
  • the tube shell is partially deformed to the incomplete tooth height, giving the tube block the shape of a screw polyhedron with rounded tips, and in the second stage, the screw surface of the rotor is finally shaped.
  • the use of a reduced size of the radial deformation ensures that the screw surface is produced in a quality-appropriate form, which has no folds and no other injuries.
  • the first stage can be carried out at a reduced pressure of the flowing medium, because in this stage the task of overcoming the stability of the cylindrical shape of the tube block and preforming the screw surface, which has the same number of gears and the same pitch of the helical line as in the finished rotor, is solved.
  • the tube block in the form of a screw polyhedron obtained after machining in the first stage is subjected to a final shaping for the production of the screw surface of the rotor by the same method, uz a pressure of the flowing medium is generated from the outside around the tube block with the shaping element located therein.
  • a method for producing the rotor proves to be optimal, in which a connection of its tubular casing 12 to the coupling 13 is made simultaneously with the shape of the screw surface of the rotor.
  • the coupling 13 with a profiled outer surface is inserted into the tubular casing before it is compressed; the outer surface is provided with recesses of this or that shape, for example with radial non-through openings, longitudinal or transverse grooves or flats, ring or screw grooves or combinations thereof.
  • lugs are formed on the inner surface thereof which engage with the cutouts engage the coupling, thereby ensuring transmission of the torsional moment generated on the tubular casing of the rotor and the axial forces to the coupling and then to the flexible shaft.
  • the method described above for producing the rotor of a screw-type borehole sole drive can be carried out by means of a device which is shown in longitudinal section in FIG. 6 and in cross section in FIG. 7.
  • the device contains a thick-walled tubular housing 20, in which a shaping element 21 is arranged, which is centered relative to the housing 20 by means of centering bushes 22, 22 '(FIG. 6).
  • the shaping outer surface of the shaping element 21 is designed in the form of screw teeth 23, which have the same direction and pitch of the helix with the rotor to be manufactured, the equidistant size being equal to the wall thickness ⁇ f (FIG. 4) of the tube block 24.
  • fitting sections 25 are provided, on which the tube blocks 24 are placed with their ends.
  • the centering bushes 22, 22 ' are provided at the points of their coupling with the housing 20 with seals 26, 26' which e.g. are in the form of 0-shaped rubber rings.
  • the centering bushing 22 has a shoulder adjoining the fitting section 25 with an annular end groove 27, in which there is a seal 28 made of rubber or another elastic material.
  • the width of the groove is essentially the same as the thickness "d" of the tube block 24.
  • the pipe block 24 is arranged on the fitting sections 25 (only one fitting section is shown in FIG. 6) of the centering bushes 22, 22 'in such a way that the end faces of the pipe block 24 are supported on the end faces of the seals 28 with a certain axial tensioning over the rubber .
  • the axial distortion (fastening) of the tube block 24, the centering bushes 22, 22 'with the seals 28 (only one seal is shown in FIG. 6) and the shaping element 21 is by means of the inner end faces 29 of round nuts 30 (in FIG. is only one) Round nut reproduced) guaranteed, which are screwed onto the end thread of the housing 20.
  • a cavity 31 for the supply of a flowing medium under pressure is formed between the outer surface of the tube block 24 and the inner surface of the housing 20.
  • openings 32 and 33 are provided in the housing 20.
  • the shaping element 21 (FIG. 6) is designed to be exchangeable in two stages during the manufacture of the rotor.
  • the shaping element 21 'used for preforming (FIG. 8) is designed in the form of a screw polyhedron, which in cross section has the shape of a polyhedron with rounded tips and a reduced height h of the screw teeth and an enlarged outer diameter d 2 compared to the sizes h 2 and d 3 of the shaping element 21 used for the final shaping. 8 shows superimposed outer lines of the cross sections of the shaping elements 21 'and 21 for the preliminary and final shaping.
  • the device is assembled and operated as follows.
  • the shaping element 21 is introduced into the tube block 24 of the rotor, the surface of which has previously been machined (ground, polished) to the surface quality required for the rotor.
  • a centering bushing 22 ′ is attached to one end of the shaping element 21, the end section of the tube block 24 being brought up to the fitting section on the centering bushing 22 ′ at the same time.
  • the second centering bushing 22 is attached to the free end of the shaping element 21, at the same time the fitting section of this centering bushing in the pipe block 24, but the outer surface of the centering bushing 22 in the Housing 20 are introduced.
  • the assembled parts are fastened in the housing 20 by means of the nuts 30 until the end faces of the tube block 24 are pressed into the body of the rubber seals 28 to a certain extent.
  • a flowing medium for example a mineral oil
  • the cylindrical tube block 24 loses its stability under the influence of the external pressure and is compressed over the shaping screw surfaces of the shaping element 21 to form rotor screw teeth on the outer surface of the tube block 24.
  • the gaps 26 between the housing 20 and the centering bushes 22 are hermetically sealed (similar to the bushing 22 '), while the hermetic sealing of the gaps between the centering bushings 22, 22' and the pipe block 24 is thereby achieved in the initial stage that the end faces of the tube block 24 are pressed into the rubber seals 28 with force.
  • the gap between the pipe block 24 and the fitting sections 25 of the centering bushings 22, 22 ' is sealed as a result of the hydraulic compression of the pipe block 24 on these fitting sections.
  • the pressure is released; the device is disassembled and the shaping element 21 is removed from the tubular casing of the rotor.
  • Fig. 9 shows an embodiment of the method for producing the rotor of a borehole sole drive with simultaneous pressing in of the clutch 13.
  • one end of the shaping element 21 is attached in the housing 20 by means of the centering bush 34, in which the clutch 13 is located, the The outer surface serves as a seat for the tube block 24 and is provided with a recess in the form of an eccentric groove.
  • the coupling is compressed at the same time; an approach is formed on the inner surface of the tubular casing, which fills the recess 15 of the coupling 13 and engages with it during the transmission of the torsional moment and the axial load.
  • the compression of the outer surface of the coupling 13 by means of the tube block 24 under the high pressure effect ensures a hermetic seal of the connection.
  • the present invention can be used to provide high-speed screw-bottom sole drives with improved energy characteristics and operating characteristics for drilling oil and gas wells with high efficiency.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • Mechanical Engineering (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Fluid Mechanics (AREA)
  • General Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Physics & Mathematics (AREA)
  • Rotary Pumps (AREA)
  • Manufacture Of Motors, Generators (AREA)
  • Drilling And Boring (AREA)
  • Cereal-Derived Products (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Nitrogen And Oxygen Or Sulfur-Condensed Heterocyclic Ring Systems (AREA)
  • Shaping Metal By Deep-Drawing, Or The Like (AREA)
  • Supercharger (AREA)
  • Turning (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)
  • Earth Drilling (AREA)
  • Press Drives And Press Lines (AREA)
  • Spinning Or Twisting Of Yarns (AREA)
  • Hydraulic Motors (AREA)

Abstract

Die Erfindung betrifft einen Rotor (1) eines Schrauben-Bohrlochsohlenantriebes, der in Form einer mehrgängigen Schraube als Hohlkörper mit einer im wesentlichen gleichbleibenden Wanddicke ausgebildet ist. Das Verhältnis zwischen der Länge der Außenlinie des Rotorquerschnittes und der Länge des relativ zu dieser Außenlinie beschriebenen Umkreises liegt im wesentlichen in einem Bereich von 0,9 bis 1,05. Bei der Herstellung des Rotors (1) wird innerhalb eines Rohrblockes ein formgebendes Element angeordnet, und von außen des Rohrblockes wird der Druck eines fließenden Mediums angelegt. Die Vorrichtung für die Herstellung des Rotors enthält die Hohlgehäuse, in dem ein formgebendes Element an Zentrierbuchsen angeordnet ist. Die Buchsen haben Paßabschnitte, die für einen Schiebesitz der Enden des Rohrblockes eingerichtet sind.

Description

    Gebiet der Technik
  • Die vorliegende Erfindung bezieht sich auf die Bohrtechnik und betrifft insbesondere eine der Hauptbaugruppen von Schrauben-Bohrlochsohlenantrieben zum Niederbringen von Erdöl- und Erdgasbohrungen, nämlich den Rotor eines Schrauben-Bohrlochsohlenantriebes und Verfahren zu seiner Herstellung.
  • Stand der Technik
  • Es ist ein Schrauben-Bohrlochsohlenantrieb mit einem mehrgängigen Rotor bekannt, der in Form einer mehrgängigen Ganzmetallschraube ausgebildet ist, bei der die Anzahl der Gänge der Schraubenfläche (der Schraubenzähne) mehr als Eins ist (SU-Urheberscheinschrift Nr. 926209).
  • Der Rotor ist in einem Stator untergebracht, der eine mehrgängige Innenschraubenfläche mit einer Anzahl an Gängen aufweist, die die Anzahl der Gänge des Rotors um Eins übersteigt; diese Schraubenfläche ist an einem Belag aus einem federnd-elastischen an der Innenfläche des Statorgehäuses angeklebten Werkstoff wie Gummi durch Formung hergestellt. Die Rotorachse ist relativ zu der mit der Antriebsachse zusammenfallenden Statorachse um eine Exzentrizitätsgröße versetzt, die die Hälfte der Höhe der Rotor- und Statorzähne beträgt, während das Achsteilungsverhältnis der Schraubenzähne des Rotors und des Stators dem Zähnezahlverhältnis dieser Teile gleich ist. Bei der Berührung der Rotorzähne und der Statorzähne miteinander werden im Oberteil des Rotors offene Hohlräume gebildet, die sich über die Ganghöhe der Schraubenlinie schließen. Beim
  • Fördern einer Spülflüssigkeit in den Schrauben-Bohrlochsohlenantrieb von der Tagesoberfläche über ein Bohrgestänge, an dessen unteres Ende der Schraubenbohrlochsohlenantrieb angeschlossen ist, führt der Rotor eine Umlaufbewegung aus, wobei die Rotorachse eine Drehung relativ zu der Statorachse entgegen dem Uhrzeigersinn mit einer Winkelgeschwindigkeit ω1 ausführt, während sich der Rotor selbst um seine eigene Achse im Uhrzeigersinn mit einer Winkelgeschwindigkeit von ω2 dreht. Die Winkelgeschwindigkeit ω1 ist der mit der Rotorzähnezahl multiplizierten Winkelgeschwindigkeit ω2 gleich, und die auf den Rotor einwirkende Zentrifugalkraft ist der Rotormasse und dem Quadrat der Winkelgeschwindigkeit ω 1 proportional.
  • Infolge einer hohen Masse des als ein Ganzteil ausgeführten Rotors und der bedeutenden Winkelgeschwindigkeit ω1 der Rotorachse entstehen beim Betrieb des Antriebes große Zentrifugalkräfte, die intensive querwirkende Schwingungen auslösen, welche die Lebensdauer des Rotors, des Stators, der gelenkartigen Baugruppe sowie der Gewindeverbindungen des Antriebes und des Bohrgestänges negativ beeinflussen. Dieser Umstand gehört zu einem wesentlichen Nachteil des oben beschriebenen Antriebes.
  • Der mehrgängige Rotor des oben beschriebenen Antriebes wird nach einem Verfahren zum Zahnradfräsen mittels eines spanenden Werkzeuges zur Metallbearbeitung, u.z. eines Wälzfräsers hergestellt. Dieses Verfahren ist kostspielig, nicht leistungsstark genug, es gewährleistet keine hohe Oberflächengüte der Rotorzähne und erfordert zu seiner Durchführung komplizierte und teuere Ausrüstungen - Werkzeugmaschinen und Werkzeuge. Zur Verbesserung der Oberflächengüte des Rotors müssen die Arbeitsflächen des Rotors anschließend poliert oder geschliffen werden, was bei einer komplizierten Konfiguration der Rotoroberfläche und einer großen Länge des Rotors eine schwierige technologische Aufgabe darstellt.
  • Bei der Bearbeitung der Zähne eines mehrgängigen Rotors von einer großen Länge findet ein Verschleiß der Schneiden des Wälzfräsers statt, wodurch die Genauigkeit des herzustellenden Fertigerzeugnisses vermindert wird.
  • Es ist auch ein Schrauben-Bohrlochsohlenantrieb mit einem mehrgängigen Hohlrotor bekannt. Für den Anschluß einer Gelenk- oder einer biegsamen Welle ist der Rotor mit einer Kupplung mittels einer Gewindeverbindung starr verbunden (siehe das Buch von Gusman M.T. u.a. "Schrauben-Bohrlochsohlenantriebe zum Niederbringen von Bohrungen", 1981, "Nedra", (Moskau), S. 125 bis 188). Bei dem genannten Rotor ist das in der Mitte befindliche Metall entfernt. Die Entfernung des Metalls geschieht durch Ausbohren einer Zentralbohrung im Rotor. Das kann auch durch die Verwendung eines dickwandigen Rohrblockes für die Herstellung des Rotors erzielt werden.
  • Dadurch können die auf den Rotor einwirkenden Zentrifugalkräfte etwas herabgesetzt werden, indem die Dynamik der querwirkenden Schwingungen des Rotors und des gesamten Antriebes vermindert wird. Es bleibt jedoch eine bedeutende Metallmasse im Körper der Zähne des Rotors in seinem peripheren Bereich bestehen, was zum Entstehen von bedeutenden Zentrifugalkräften beim Betrieb des Antriebes und zu einer Verkürzung seiner Lebensdauer führt. Außerdem ist die Verbindung des Rotors mit einer Gelenk- oder einer biegsamen Welle mittels einer mit Gewindeverbindungen versehenen Kupplung nicht zuverlässig, weil beim Betrieb des Antriebes unter Einwirkung von dynamischen Kräften eine Entkupplung stattfinden kann.
  • Die Schraubenzähne des Rotors des genannten Antriebes werden ebenfalls im Zahnradfräsverfahren hergestellt, das mit den oben erwähnten Nachteilen behaftet ist.
  • Die Ausführung des Rotors als ein geschlossener Ganzteil oder aus einem dickwandigen Rohr erfordert außerdem einen hohen Verbrauch an rostfreiem Stahl. Die mit dein oben beschriebenen Rotor ausgerüsteten Antriebe zeichnen sich durch einen relativ geringen Wirkungsgrad und eine nicht hohe Leistung aus, denn bei der Arbeit dieser Antriebe entstehen hohe mechanische, durch die Selbsterhitzung des Statorgummis verursachte Verluste.
  • Es ist ein leistungsfähigeres Verfahren zur Herstellung eines eingängigen Rotors für Muano-Schraubenpumpen bekannt (US-PS 2 464 011).
  • Das Verfahren besteht in der Verformung eines Rohrblockes an einer formgebenden Schraubenfläche durch die Druckeinwirkung eines fließenden Mediums auf den Rohrblock. Das Verfahren wird mit Hilfe einer Vorrichtung durchgeführt, in deren Gehäuse ein formgebendes Element mit einer formgebenden Oberfläche untergebracht ist, innerhalb dessen sich der Rohrblock befindet.
  • Die formgebende Schraubenfläche ist an der Innenfläche des formgebenden Elementes vorgesehen, das gleichzeitig die Funktion des Gehäuses erfüllt und aus mehreren axialen Teilflächen besteht. Der Druck des fließenden Mediums wird im Hohlraum des innerhalb des abgedichteten formgebenden Elementes angeordneten Rohrblockes erzeugt. Die Formgebung des Rotors einer Einschraubenpumpe erfolgt in mehreren Stadien, wobei nach jedem Stadium der Rohrblock aus dem formgebenden Element zur Glühbehandldung ausgehoben wird, um die Härte zu vermindern und Eigenspannungen zu beseitigen. Zu den Nachteilen des bekannten Verfahrens und der Vorrichtungen für seine Durchführung wird eine niedrige Güte der Außenarbeitsfläche des Rotors gezählt, an welcher Spuren der Teilung des formgebenden Elementes hinterlassen werden, wobei zur Beseitigung dieser Spuren eine zusätzliche spanende Bearbeitung der Außenfläche des Rotors unter Anwendung von Spezialausrüstungen erforderlich ist.
  • Einen anderen Nachteil des genannten Verfahrens und der Vorrichtung bilden die komplizierte Herstellung der Innenflächen des teilbaren formgebenden Elementes sowie eine komplizierte Deckung der formgebenden Schraubenflächen in Teilungsebenen. Diese Nachteile werden besonders bei der Herstellung von Rotoren mit einem großen Verhältnis der Länge zum Durchmesser spürbar, was die Herstellung von mehrgängigen Rotoren nach dem oben beschriebenen Verfahren unmöglich macht.
  • Ein weiterer Nachteil des bekannten Verfahrens besteht darin, daß ein hoher hydrostatischer Druck des fließenden Mediums erforderlich ist, weil der Rohrblock bedeutenden Zugverformungen ausgesetzt wird. Dadurch wird auch eine hohe Energieintensität des Prozesses bedingt.
  • Offenbarung der Erfindung
  • Der Erfindung liegt die Aufgabe zugrunde, einen Rotor für einen Schrauben-Bohrlochsohlenantrieb sowie ein Verfahren zur Herstellung dieses Rotors und eine Vorrichtung für die Durchführung des Verfahrens zu schaffen, die es gestatten, durch die Realisierung von Konstruktionsbesonderheiten des Rotors die Energiekennlinie des Antriebes zu verbessern, die Reibungsverluste zu vermindern und die Leistung bei der Herstellung des Rotors zu erhöhen.
  • Das Wesen der Erfindung besteht darin, daß ein Rotor eines Bohrlochsohlenantriebes, der in Form einer mehrgängigen Schraube mit einer Anzahl der Zähne der Schraubenfläche von über 1 ausgebildet und mit einer Kupplung starr verbunden ist, erfindungsgemäß als Hohlkörper mit einer im wesentlichen gleichbleibenden Wanddicke ausgeführt ist, wobei das Verhältnis zwischen der Länge der Außenlinie des Rotorquerschnittes und der Länge des relativ zu dieser Außenlinie beschriebenen Umkreises im wesentlichen in einem Bereich von 0,9 bis 1,05 liegt.
  • Eine solche Ausführung des Rotors ermöglicht eine Verbesserung der Energiekennlinie des Antriebes, eine Herabsetzung der querwirkenden Schwingungen, eine Erhöhung der Festigkeit des Rotors bei Torsions- und Biegebeanspruchungen, eine Verminderung der Masse und der Metallintensität des Rotors, eine Senkung des Verbrauches an rostfreiem Stahl sowie eine Verbesserung der Qualität des herzustellenden Rotors.
  • Das Wesen des Verfahrens zur Herstellung des Rotors besteht darin, daß ein Rohrblock an einer formgebenden Oberfläche durch die Druckeinwirkung eines fließenden Mediums verformt wird, und erfindungsgemäß ein formgebendes Element, dessen Außenfläche eine formgebende Oberfläche darstellt, innerhalb des Rohrblockes angeordnet wird, während der Druck des fließenden Mediums von außen an den Rohrblock angelegt wird. Dadurch wird es möglich, eine hohe Qualität der Schraubenfläche des Rotors zu erzielen, den Energie- und Arbeitsaufwand für dessen Herstellung zu vermindern, die Herstellungszeit zu verkürzen und einen Rotor mit verbesserten technischen Daten, einer verbesserten Oberflächengüte, einer höheren Qualität und Genauigkeit der Arbeitsfläche herzustellen, durch die geringe Reibungsverluste und eine verbesserte Energiekennlinie des mit dem erfindungsgemäßen Rotor ausgerüsteten Antriebes gewährleistet werden.
  • In einigen Fällen wird die Formgebung des Rohrblockes vorzugsweise in zwei Stadien durchgeführt, wobei in dem ersten Stadium dem Rohrblock die Form eines Schraubenpolyeders mit abgerundeten Spitzen verliehen wird, bei dem der Durchmesser des Umkreises etwas größer als der Durchmesser des Umkreises des fertigen Rotors ist und die Anzahl der Seitenflächen der Anzahl der Gänge der Schraubenfläche des Rotors gleicht, und im zweiten Stadium die endgültige Formgebung der Rotorschraubenfläche vorgenommen wird.
  • Dadurch wird es möglich, die Bildung von Metallfalten bei der Formgebung des Rohrblockes zu vermeiden und eine hohe Fertigungsqualität, Maß- und Formgenauigkeit zu gewährleisten.
  • Es ist vorteilhaft, vor der Verformung in den Rohrblock eine Kupplung mit an der Außenfläche vorhandenen Aussparungen einzuführen und gleichzeitig mit der Formgebung der Rotorschraubenfläche eine Stauchung des Rohrblockes über die Oberfläche der Kupplung vorzunehmen und dadurch diese im Rotor zu befestigen.
  • Dadurch kann die für die Herstellung des Rotors mit der Kupplung erforderliche Zeit verkürzt werden, weil der Arbeitsgang der Formgebung der Schraubenarbeitsfläche des Rotors und der Arbeitsgang zum Befestigen der Kupplung im Rotor zur gleichen Zeit ausgeführt werden (zeitlich zusammenfallen). Außerdem werden die Zuverlässigkeit und die Dichtigkeit der Verbindung des Rotors mit der Kupplung erhöht.
  • Das Wesen der Vorrichtung für die Herstellung des Rotors nach dem oben dargelegten Verfahren besteht darin, daß im Gehäuse der Vorrichtung ein formgebendes Element mit einer formgebenden Oberfläche untergebracht ist, und erfindungsgemäß das formgebende Element innerhalb des Gehäuses an Zentrierbuchsen angebracht ist, die formgebende Oberfläche an der Außenfläche des formgebenden Elementes ausgeführt ist, wobei die Zentrierbuchsen Paßabschnitte haben, die für einen Schiebesitz der Enden des Rohrblockes eingerichtet sind. Dadurch werden eine sichere Anordnung des formgebenden Elementes relativ zu dem Gehäuse und dem Rohrblock erzielt und die Herstellung eines Rotors mit einer Außenarbeitsfläche von hoher Güte gewährleistet sowie die Fertigung des formgebenden Elementes vereinfacht.
  • Es ist vorteilhaft, daß jede Zentrierbuchse einen an deren Paßabschnitt anschließenden Ansatz hat, gegen welchen sich der auf dem Paßabschnitt befindliche Rohrblock stützt und in dem eine Ringnut vorgesehen ist, dabei ist die Breite der Nut der Dicke des Rohrblockes im wesentlichen gleich, und in der Nut ist eine Dichtung untergebracht. Dadurch wird es möglich, eine zuverlässige Vorverdichtung des Hochdruckraumes der Vorrichtung von Beginn der Verformung des Rohrblockes auf den Paßabschnitten der Zentrierbuchsen zu gewährleisten und die Betriebszuverlässigkeit der Vorrichtung zur Herstellung des Rotors zu erhöhen.
  • In einigen Fällen ist es notwendig, daß das formgebende Element im Gehäuse austauschbar angeordnet wird und daß ein zur Vorformgebung dienendes formgebendes Element vorgesehen wird, das in Form eines Schraubenpolyeders mit abgerundeten Spitzen ausgebildet ist, bei dem der Durchmesser des Umkreises etwas größer ist als der Durchmesser des Umkreises des formgebenden Elementes zur Endformgebung und die Anzahl der Seitenflächen der Anzahl der Gänge der Rotorschraubenfläche gleich ist.
  • Dadurch können eine Faltenbildung an den Arbeitsflächen des Rotors vermieden, eine hohe Oberflächengüte erzielt sowie eine Maß- und Formgenauigkeit gewährleistet werden.
  • Beschreibung
  • Im folgenden wird die Erfindung anhand der eingehenden Beschreibung von konkreten Ausführungsbeispielen unter Bezugnahme auf Zeichnungen erläutert. Es zeigt:
    • Fig. 1 in schematischer Darstellung einen Schrauben-Bohrlochsohlenantrieb zum Niederbringen von Erdöl- und Erdgasbohrungen mit dem erfindungsgemäßen Rotor in teilweisem Längsschnitt;
    • Fig. 2 einen Querschnitt durch den Antrieb nach Linie II-II in Fig. 1 ;
    • Fig. 3 einen Längsschnitt durch den erfindungsgemäßen Rotor;
    • Fig. 4 einen Querschnitt durch den Rotor nach Linie IV-IV in Fig. 3;
    • Fig. 5 einen Querschnitt durch den Rotor nach Linie V-V in Fig. 3;
    • Fig. 6 einen Längsschnitt durch eine Vorrichtung zur Herstellung des Rotors;
    • Fig. 7 einen Querschnitt durch eine Vorrichtung zur Herstellung des Rotors nach Linie VII-VII in Fig. 6;
    • Fig. 8 einen Querschnitt durch formgebende Kerne zur Vor-und Endformgebung;
    • Fig. 9 eine Teilansicht einer Vorrichtung zur Herstellung des Rotors unter gleichzeitigem Einpressen einer Kupplung im Längsschnitt.
    Ausführungsvarianten der Erfindung
  • Der Rotor 1 stellt eines der Hauptteile eines Schrauben-Bohrlochsohlenantriebes (Fig. 1) dar und ist in Form einer mehrgängigen mit Außenschraubenzähnen 2 versehenen Schraube mit einer Anzahl der Gänge (der Zähne) der Schraubenfläche von über 1 ausgebildet. Der Rotor 1 ist innerhalb eines Stators 3 angeordnet, der einen Belag 4 aus einem federnd-elastischen Werkstoff wie Gummi hat. Die Innenschraubenfläche des Belags 4 bildet Schraubenzähne 5, deren Anzahl die Anzahl der Zähne des Rotors 1 um Eins übersteigt. Die Achse O1 (Fig. 2) des Rotors 1 ist relativ zu der Achse 02 des Stators 3 um die Exzentrizitätsgröße "e" versetzt. Der Rotor 1 (Fig. 1) ist mit einer Welle 6 einer Lagerungsbaugruppe 7 des Antriees mittels einer biegsamen Welle 8 oder einer Gelenkwelle (nicht wiedergegeben) verbunden. Die Lagerungsbaugruppe 7 enthält Achslager und Radiallager (nicht wiedergegeben) zur Aufnahme von Bohrlochsohlenbelastungen. An das untere Ende der Welle 6 der Lagerungsbaugruppe 7 ist ein Gesteinszerstörungswerkzeug 9 angeschlossen. Der Stator 3 des Antriebes ist mittels eines Übergangsstückes 10 an das untere Ende eines Bohrgestänges 11 angeschlossen.
  • Der Rotor 1 (Fig. 3, 4) ist gemäß der vorliegenden Erfindung als Hohlkörper ausgeführt und enthält eine Rohrhülle 12 (Gehäuse) sowie eine mit dieser starr verbundene Kupplung 13 (Fig. 3) zur Verbindung mit der biegsamen Welle 8 (Fig. 1). Die Kupplung 13 (Fig. 3) ist mit Elementen 14, z.B. mit Gewinden, für den Anschluß der biegsamen Welle 8 versehen. Die Befestigung kann auch nach anderen bekannten Verfahren, z.B. durch Schweißen, mittels Kegel vorgenommen werden.
  • Bevorzugt ist die Befestigung der Kupplung 13 in der Rohrhülle 12 durch Stauchung der Rohrhülle 12 an der profilierten Außenfläche der Kupplung 13, an welcher Aussparungen 15 vorhanden sind. Das wird nach dem oben beschriebenen Verfahren durchgeführt. Die Aussparungen 15 können unterschiedliche Form aufweisen, d.h. sie können als radiale nicht durchgehende Öffnungen, Längs- oder Quernuten oder Abflachungen, Ring- oder Wendelnuten und deren Kombinationen ausgeführt werden. Es ist wichtig, daß die sich bei der Stauchung des Endabschnittes der Rohrhülle 12 an der profilierten Außenfläche der Kupplung 13 bildenden Ansätze 16 mit den Aussparungen 15 der Kupplung 13 zur Übertragung des Torsionsmomentes und der axialen Belastung in Eingriff stehen.
  • Als Beispiel wird in Fig. 3 und Fig. 5 eine Ausführungsform der Aussparung 15 als Ringnut mit einem Durchmesser d gezeigt, die gegenüber der zylinderförmigen Außenfläche 17 der Kupplung 13 exzentrisch angeordnet ist.
  • Das Verhältnis zwischen der Länge der Außenlinie 18 im Querschnitt des Rotors 1 und der Länge des relativ zu dieser Außenlinie beschriebenen Umkreises 19 liegt im wesentlichen in einem Bereich von 0,9 bis 1,05. Die Wahl dieses Verhältnisses unter 0,9 führt unter sonst gleichen Bedingungen zu einer Verminderung der Energiekenndaten des Schraubenantriebes, bezogen auf das Torsionsmoment und die Leistung (infolge einer Verminderung der Anzahl der Rotorgänge) zu einer Herabsetzung der Torsions- und Biegefestigkeit des als Hohlkörper ausgeführten Rotors sowie zu einer Verschlechterung der Fertigungsqualität des Rotors nach dem erfindungsgemäßen Verfahren und mittels der erfindungsgemäßen Vorrichtung, die nachstehend beschrieben werden, weil sich Falten bilden und die geometrische Form des Rotors verletzt wird.
  • Die Wahl des genannten Verhältnisses über 1,05 führt zu einer Verminderung des Wirkungsgrades des Antriebes (infolge einer Vergrößerung der Anzahl der Rotorgänge), zu einer Herabsetzung der Torsions- und Biegefestigkeit des Rotors und einigen Schwierigkeiten bei der Herstellung des Rotors nach dem erfindungsgemäßen Verfahren und mittels der erfindungsgemäßen Vorrichtung, die nachstehend beschrieben werden, weil die Betriebsdruckwerte und die Energieintensität des Prozesses zur Herstellung des Rotors bedeutend erhöht werden.
  • Der erfindungsgemäße Rotor hat folgende Wirkungsweise. Bei der Zuführung einer Spülflüssigkeit von der Tagesoberfläche über das Bohrgestänge 11 (Fig. 1) wird der Rotor 1 unter Einwirkung eines nicht ausgeglichenen Flüssigkeitsdruckes auf seine Seitenschraubenfläche in Drehung versetzt, und er wälzt sich auf den Zähnen des Stators 3 ab. Das dabei am Rotor zu erzeugende Torsionsmoment und die axiale Belastung werden auf die Welle 6 der Auflagerungsbaugruppe 7 über die biegsame Welle 8 übertragen, die an den Rotor 1 über die Kupplung 13 angeschlossen ist. Von der Welle 6 der Auflagerungsgruppe 7 wird die Drehung auf das Gesteinszerstörungswerkzeug 9 übertragen.
  • Der oben beschriebene Rotor eines Schrauben-Bohrlochsohlenantriebes wird wie folgt hergestellt. In eine Rohrhülle, die vorher an der Außenfläche auf die erforderliche Oberflächengüte (geschliffen, poliert) bearbeitet worden ist, wird das formgebende Element mit der formgebenden mehrgängigen Außenschraubenfläche eingesetzt, die Enden der Rohrhülle werden gegenüber dem formgebenden Element hermetisch abgeschlossen, wobei gleichzeitig deren gegenseitige Zentrierung gewährleistet und von außen um die Rohrhülle Druck durch ein fließendes Medium, z.B. Mineralöl erzeugt wird. Unter der Einwirkung dieses Druckes büßt die Rohrhülle die Standfestigkeit ein und sie wird im Querschnitt verformt; die Rohrhülle liegt an der formgebenden Oberfläche des formgebenden Elementes dicht an und nimmt dabei die erforderliche geometrische Form eines mehrgängigen Rotors eines Schrauben-Bohrlochsohlenantriebes an. In einigen Fällen, insbesondere bei einer großen Höhe der Rotorzähne und einer geringen Anzahl derselben wird die Formgebung der Rotorzähne nach dem vorliegenden Verfahren zweckmäßigerweise in zwei Stadien durchgeführt. Im ersten Stadium wird die Rohrhülle teilweise auf die nicht volle Zahnhöhe verformt, wobei dem Rohrblock die Form eines Schraubenpolyeders mit abgerundeten Spitzen verliehen wird, und im zweiten Stadium wird die endgültige Formgebung der Schraubenfläche des Rotors vorgenommen. Dabei wird im ersten Stadium durch die Anwendung einer verminderten Größe der Radialverformung die Herstellung der Schraubenfläche einer qualitätsgerechten, keine Falten und keine anderen Verletzungen aufweisenden Form gewährleistet. Das erste Stadium kann bei einem verminderten Druck des fließenden Mediums durchgeführt werden, weil in diesem Stadium die Aufgabe einer Überwindung der Standfestigkeit der Zylinderform des Rohrblockes und einer Vorformgebung der Schraubenfläche, die dieselbe Anzahl der Gänge und dieselbe Ganghöhe der Schraubenlinie wie beim fertigen Rotor aufweist, gelöst wird. Der nach der Bearbeitung im ersten Stadium gewonnene Rohrblock in Form eines Schraubenpolyeders wird einer endgültigen Formgebung zur Herstellung der Schraubenfläche des Rotors nach demselben Verfahren ausgesetzt, u.z., es wird ein Druck des fließenden Mediums von außen um den Rohrblock mit dem darin befindlichen formgebenden Element erzeugt.
  • In vielen Fällen erweist sich ein Verfahren zur Herstellung des Rotors als optimal, bei dem gleichzeitig mit der Formgebung der Schraubenfläche des Rotors eine Verbindung seiner Rohrhülle 12 mit der Kupplung 13 vorgenommen wird. Zu diesem Zweck wird in die Rohrhülle vor deren Stauchung die Kupplung 13 mit einer profilierten Außenfläche eingeführt; die Außenfläche ist mit Aussparungen dieser oder jener Form, z.B. mit radialen nicht durchgehenden Öffnungen, Längs- oder Quernuten oder Abflachungen, Ring- oder Schraubennuten oder deren Kombinationen versehen. Bei der Stauchung des Endabschnittes der Rohrhülle des Rotors werden an deren Innenfläche Ansätze gebildet, die mit den Aussparungen an der Kupplung in Eingriff treten und dabei eine Übertragung des an der Rohrhülle des Rotors erzeugten Torsionsmoments und der Axialkräfte auf die Kupplung und dann auf die biegsame Welle gewährleisten.
  • Das oben beschriebene Verfahren zur Herstellung des Rotors eines Schrauben-Bohrlochsohlenantriebes kann mittels einer Vorrichtung durchgeführt werden, die in Fig. 6 im Längsschnitt und in Fig. 7 im Querschnitt dargestellt ist. Die Vorrichtung enthält ein dickwandiges Rohrgehäuse 20, in dem ein formgebendes Element 21 angeordnet ist, das relativ zu dem Gehäuse 20 mittels Zentrierbuchsen 22, 22' (Fig. 6) zentriert wird. Die formgebende Außenfläche des formgebenden Elementes 21 ist in Form von Schraubenzähnen 23 ausgebildet, die mit dem herzustellenden Rotor die gleiche Richtung und Ganghöhe der Schraubenlinie haben, wobei die Äquidistantengröße gleich der Wanddicke <f (Fig. 4) des Rohrblockes 24 ist. An der Außenfläche der Zentrierbuchsen 22 (Fig. 6) sind Paßabschnitte 25 vorgesehen, auf welche die Rohrblöcke 24 mit ihren Enden gesetzt sind.
  • Die Zentrierbuchsen 22, 22' sind an den Stellen ihrer Kopplung mit dem Gehäuse 20 mit Dichtungen 26, 26' versehen, die z.B. in Form von 0-förmigen Gummiringen ausgebildet sind.
  • Die Zentrierbuchse 22 hat einen an den Paßabschnitt 25 angrenzenden Ansatz mit einer ringförmigen Stirnnut 27, in der sich eine Dichtung 28 aus Gummi oder aus einem anderen elastischen Werkstoff befindet. Die Breite der Nut ist im wesentlichen der Dicke " d " des Rohrblockes 24 gleich. Der Rohrblock 24 ist auf den Paßabschnitten 25 (in Fig. 6 ist nur ein Paßabschnitt dargestellt) der Zentrierbuchsen 22, 22' so angeordnet, daß sich die Stirnflächen des Rohrblockes 24 auf die Stirnflächen der Dichtungen 28 mit einer bestimmten axialen Verspannung über den Gummi stützen. Der axiale Verzug (Befestigung) des Rohrblockes 24, der Zentrierbuchsen 22, 22' mit den Dichtungen 28 (in Fig. 6 ist nur eine Dichtung wiedergegeben) und des formgebenden Elementes 21 ist mittels der Innenstirnflächen 29 von Rundmuttern 30 (in Fig. ist nur eine Rundmutter wiedergegeben) gewährleistet, die auf die Endgewinde des Gehäuses 20 aufgeschraubt sind.
  • Zwischen der Außenfläche des Rohrblockes 24 und der Innenfläche des Gehäuses 20 ist ein Hohlraum 31 für die Zuführung eines fließenden Mediums unter Druck gebildet. Zu diesem Zweck sind im Gehäuse 20 Öffnungen 32 und 33 vorgesehen.
  • In Übereinstimmung mit dem erfindungsgemäßen Verfahren wird das formgebende Element 21 (Fig. 6) bei der Herstellung des Rotors in zwei Stadien austauschbar ausgeführt. Das zur Vorformgebung dienende formgebende Element 21' (Fig. 8) ist in Form eines Schraubenpolyeders ausgebildet, das im Querschnitt die Form eines Polyeders mit abgerundeten Spitzen aufweist und eine verminderte Höhe h der Schraubenzähne und einen vergrößerten Außendurchmesser d2 im Vergleich zu den Größen h2 und d3 des zur endgültigen Formgebung dienenden formgebenden Elementes 21 hat. In Fig. 8 sind übereinandergelegte Außenlinien der Querschnitte der formgebenden Elemente 21' und 21 für die Vor- und Endformgebung gezeigt.
  • Die Vorrichtung wird wie folgt zusammengebaut und betrieben. In den Rohrblock 24 des Rotors, dessen Oberfläche vorher bis auf die für den Rotor erforderliche Oberflächengüte bearbeitet (geschliffen, poliert) worden ist, wird das formgebende Element 21 eingeführt. An einem Ende des formgebenden Elementes 21 wird eine Zentrierbuchse 22' angebracht, wobei gleichzeitig der Endabschnitt des Rohrblockes 24 bis zum Paßabschnitt an der Zentrierbuchse 22' gebracht wird. Im Gehäuse 20 wird das formgebende Element 21 mit dem Rohrblock 24 und einer der Zentrierbuchsen 22, 22' untergebracht, die zweite Zentrierbuchse 22 wird an dem freien Ende des formgebenden Elementes 21 angebracht, wobei gleichzeitig der Paßabschnitt dieser Zentrierbuchse in den Rohrblock 24, aber die Außenfläche der Zentrierbuchse 22 in das Gehäuse 20 eingeführt werden. Die zusammengebauten Teile werden im Gehäuse 20 mittels der Muttern 30 bis zu einem gewissen Eindrücken der Stirnflächen des Rohrblockes 24 in den Körper der Gummidichtungen 28 befestigt. Dann wird in den Hohlraum 31 der Vorrichtung durch die Öffnung 32 im Gehäuse 20 ein fließendes Medium, z.B. ein Mineralöl, zugeführt und die Luft aus dem Hohlraum 31 durch die Öffnung 33 verdrängt. Beim Austreten des Öls aus der Öffnung 33 wird diese durch einen Hahn (nicht wiedergegeben) abgesperrt. Bei der weiteren Zuführung des fließenden Mediums büßt der zylinderförmige Rohrblock 24 unter der Einwirkung des Außendruckes seine Standfestigkeit ein und wird über die formgebenden Schraubenflächen des formgebenden Elementes 21 unter Bildung von Rotorschraubenzähnen an der Außenfläche des Rohrblockes 24 gestaucht. Durch die Dichtungen 26 werden die zwischen dem Gehäuse 20 und den Zentrierbuchsen 22 bestehenden Spalte (ähnlich für die Buchse 22') hermetisch abgeschlossen, während die hermetische Abdichtung der zwischen den Zentrierbuchsen 22, 22' und dem Rohrblock 24 bestehenden Spalte im Anfangsstadium dadurch verwirklicht wird, daß die Stirnflächen des Rohrblockes 24 unter Kraftaufwand in die Gummidichtungen 28 eingedrückt werden. Je nach der Zunahme des Druckes des fließenden Mediums im Hohlraum 31 und der Verformung des Rohrblockes 24 findet die Abdichtung der zwischen dem Rohrblock 24 und den Paßabschnitten 25 der Zentrierbuchsen 22, 22' bestehenden Spalte infolge der hydraulischen Stauchung des Rohrblockes 24 auf diesen Paßabschnitten statt.
  • Nach der Beendigung der Verformung des Rohrblockes 24, was nach einer schnellen Druckerhöhung des fließenden Mediums festgestellt wird, wird der Druck abgebaut; die Vorrichtung wird auseinandergenommen, und das formgebende Element 21 wird aus der Rohrhülle des Rotors demontiert.
  • Fig. 9 zeigt eine Ausführungsform des Verfahrens zur Herstellung des Rotors eines Bohrlochsohlenantriebes unter gleichzeitigem Einpressen der Kupplung 13. Bei dieser Ausführungsvariante wird das eine Ende des formgebenden Elementes 21 im Gehäuse 20 mittels der Zentrierbuchse 34 angebracht, in der sich die Kupplung 13 befindet, deren Außenfläche als Sitzfläche für den Rohrblock 24 dient und mit einer Aussparung in Form einer exzentrischen Nut versehen ist. Bei der Formgebung der Schraubenfläche des Rotors findet gleichzeitig eine Stauchung der Kupplungh tatt; dabei wird an der Innenfläche der Rohrhülle ein Ansatz gebildet, der die Aussparung 15 der Kupplung 13 ausfüllt und mit dieser bei der Übertragung des Torsionsmomentes und der axialen Belastung in Eingriff steht. Durch die Stauchung der Außenfläche der Kupplung 13 mittels des Rohrblockes 24 unter der Hochdruckeinwirkung wird eine hermetische Abdichtung der Verbindung gewährleistet.
  • Industrielle Anwendbarkeit
  • Die vorliegende Erfindung kann zur Schaffung von schnellaufenden Schrauben-Bohrlochsohlenantrieben mit verbesserten Energiekennlinien und Betriebskenndaten zum Niederbringen von Erdöl- und Erdgasbohrungen mit hoher Wirksamkeit eingesetzt werden.

Claims (7)

1. Rotor (1) eines Bohrlochsohlenantriebes, der in Form einer mehrgängigen Schraube mit einer Anzahl der Gänge der Schraubenfläche von über 1 ausgebildet und mit einer Kupplung (13) starr verbunden ist,
dadurch gekennzeichnet ,
daß der Rotor (1) als Hohlkörper mit einer im wesentlichen gleichbleibenden Wanddicke ausgeführt ist, wobei das Verhältnis zwischen der Länge der Außenlinie (18) des Rotorquerschnittes und der Länge des relativ zu dieser Außenlinie beschriebenen Umkreises (19) im wesentlichen in einem Bereich von 0,9 bis 1,05 liegt.
2. Verfahren zur Herstellung des Rotors nach Anspruch 1, bei dem ein Rohrblock (24) an einer formgebenden Oberfläche durch Druckeinwirkung eines fließenden Mediums verformt wird, dadurch gekennzeichnet, daß ein formgebendes Element (21), dessen Außenfläche eine formgebende Oberfläche darstellt, innerhalb des Rohrblockes (24) angeordnet wird, und der Druck des fließenden Mediums von außen auf den Rohrblock (24) angelegt wird.
3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, daß die Formgebung des Rohrblockes (24) in zwei Stadien durchgeführt wird, wobei im ersten Stadium dem Rohrblock (24) die Form eines Schraubenpolyeders mit abgerundeten Spitzen verliehen wird, bei dem der Durchmesser d2 des Umkreises etwas größer als der Durchmesser des Umkreises (19) des fertigen Rotors (1) ist, und die Anzahl der Seitenflächen der Anzahl der Gänge der Schraubenfläche des Rotors (1) gleicht, und im zweiten Stadium die endgültige Formgebung der Schraubenfläche des Rotors (1) vorgenommen wird.
4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, daß vor der Verformung in den Rohrblock (24) eine Kupplung (13) mit einer profilierten Oberfläche eingeführt und gleichzeitig mit der Formgebung der Schraubenfläche des Rotors (1) eine die Befestigung der Kupplung (13) im Rotor (1) bewirkende Stauchung des Rohrblockes (24) über die profilierte Oberfläche der Kupplung (13) vorgenommen wird.
5. Vorrichtung zur Herstellung des Rotors nach einem der Ansprüche 1 bis 4, in deren Gehäuse (20) ein formgebendes Element (21) mit einer formgebenden Oberfläche sowie Dichtungen (26,26') untergebracht sind, welche zusammen mit dem Gehäuse (20) einen Hohlraum (31) für die Zuführung eines fließenden Mediums unter Druck bilden, dadurch gekennzeichnet, daß sie mit Zentrierbuchsen (22, 22') versehen ist, an denen innerhalb des Gehäuses das formgebende Element (21) angebracht ist, und die formgebende Oberfläche an der Außenfläche des formgebenden Elementes (21) ausgeführt ist, wobei die Zentrierbuchsen (22, 22') Paßabschnitte (25) haben, die für einen Schiebesitz der Enden des Rohrblockes (24) eingerichtet sind.
6. Vorrichtung nach Anspruch 5, dadurch gekennzeichnet, daß jede Zentrierbuchse (22, 22') einen an deren Paßabschnitt (25) anschließenden Ansatz haben, gegen welchen sich der auf dem Paßabschnitt befindliche Rohrblock (24) stützt und in dem eine Ringnut (27) vorgesehen ist, bei der die Breite der Dicke des Rohrblockes (24) im wesentlichen gleich ist und in der eine Dichtung (28) untergebracht ist.
7. Vorrichtung nach Anspruch 5, dadurch gekennzeichnet, daß das formgebende Element (21) im Gehäuse austauschbar angeordnet ist und daß ein zur Vorformgebung dienendes formgebendes Element (21') vorgesehen ist, das in Form eines Schraubenpolyeders mit abgerundeten Spitzen ausgebildet ist, bei dem der Durchmesser d2 des Umkreises etwas größer ist als der Durchmesser des Umkreises d3 des formgebenden Elementes (21) zur Endformgebung und die Anzahl der Seitenflächen der Anzahl der Gänge der Schraubenfläche des Rotors (1) gleich ist.
EP86902578A 1986-01-31 1986-01-31 Rotor eines bohrlochschneckenmotors und dessen herstellung Expired - Lifetime EP0265521B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT86902578T ATE75521T1 (de) 1986-01-31 1986-01-31 Rotor eines bohrlochschneckenmotors und dessen herstellung.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/SU1986/000008 WO1987004753A1 (en) 1986-01-31 1986-01-31 Rotor of downhole screw motor, method and device for making thereof

Publications (3)

Publication Number Publication Date
EP0265521A1 true EP0265521A1 (de) 1988-05-04
EP0265521A4 EP0265521A4 (de) 1989-03-14
EP0265521B1 EP0265521B1 (de) 1992-04-29

Family

ID=21616965

Family Applications (1)

Application Number Title Priority Date Filing Date
EP86902578A Expired - Lifetime EP0265521B1 (de) 1986-01-31 1986-01-31 Rotor eines bohrlochschneckenmotors und dessen herstellung

Country Status (9)

Country Link
US (1) US4909337A (de)
EP (1) EP0265521B1 (de)
JP (1) JPH0633702B2 (de)
AT (1) ATE75521T1 (de)
DE (1) DE3685113D1 (de)
DK (1) DK476087D0 (de)
NO (1) NO172003C (de)
PT (1) PT82181B (de)
WO (1) WO1987004753A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991009201A1 (en) * 1989-12-08 1991-06-27 Permsky Filial Vsesojuznogo Nauchno-Issledovatelskogo Instituta Burovoi Tekhniki Working organ of helical-type down-hole drive for hole drilling
EP3358131A3 (de) * 2017-02-06 2018-11-14 Roper Pump Company Gelappter rotor mit kreisförmigem querschnitt für fluidantriebsvorrichtung

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4926949A (en) * 1988-12-07 1990-05-22 Drilex Systems, Inc. Thermal shield for drilling motors
US5090497A (en) * 1990-07-30 1992-02-25 Baker Hughes Incorporated Flexible coupling for progressive cavity downhole drilling motor
US5135059A (en) * 1990-11-19 1992-08-04 Teleco Oilfield Services, Inc. Borehole drilling motor with flexible shaft coupling
JP3650183B2 (ja) * 1995-10-13 2005-05-18 栃木富士産業株式会社 スクリューロータの加工方法
AU1928599A (en) 1997-12-18 1999-07-05 Baker Hughes Incorporated Methods of making stators for moineau pumps
US6309195B1 (en) * 1998-06-05 2001-10-30 Halliburton Energy Services, Inc. Internally profiled stator tube
US6241494B1 (en) * 1998-09-18 2001-06-05 Schlumberger Technology Company Non-elastomeric stator and downhole drilling motors incorporating same
US6495405B2 (en) * 2001-01-29 2002-12-17 Sharp Laboratories Of America, Inc. Method of optimizing channel characteristics using laterally-crystallized ELA poly-Si films
US20070000695A1 (en) * 2005-06-30 2007-01-04 Baker Hughes Incorporated Mud motor force absorption tools
US7828533B2 (en) * 2006-01-26 2010-11-09 National-Oilwell, L.P. Positive displacement motor/progressive cavity pump
EP2136962B1 (de) 2007-04-18 2010-10-20 National Oilwell Varco, L.P. Antriebssysteme und-verfahren mit einer spindel mit langer reichweite
GB0819794D0 (en) * 2008-10-29 2008-12-03 Nat Oilwell Varco Lp Spindle drive systems and methods
US8469104B2 (en) * 2009-09-09 2013-06-25 Schlumberger Technology Corporation Valves, bottom hole assemblies, and method of selectively actuating a motor
US8777598B2 (en) 2009-11-13 2014-07-15 Schlumberger Technology Corporation Stators for downwhole motors, methods for fabricating the same, and downhole motors incorporating the same
US20110116961A1 (en) * 2009-11-13 2011-05-19 Hossein Akbari Stators for downhole motors, methods for fabricating the same, and downhole motors incorporating the same
US9347266B2 (en) 2009-11-13 2016-05-24 Schlumberger Technology Corporation Stator inserts, methods of fabricating the same, and downhole motors incorporating the same
US9309884B2 (en) 2010-11-29 2016-04-12 Schlumberger Technology Corporation Downhole motor or pump components, method of fabrication the same, and downhole motors incorporating the same
US8640793B2 (en) * 2011-10-19 2014-02-04 Earth Tool Company, Llc Dynamic steering tool
DE112012004811T5 (de) * 2011-11-18 2014-07-31 Smith International, Inc. Verdrängungsmotor mit radial eingeschränktem Rotormitnehmer
US20150122549A1 (en) * 2013-11-05 2015-05-07 Baker Hughes Incorporated Hydraulic tools, drilling systems including hydraulic tools, and methods of using hydraulic tools
CN104563972B (zh) * 2015-01-12 2017-11-14 重庆科技学院 小功率深井抽油机
JP6818324B2 (ja) * 2017-06-29 2021-01-20 国立大学法人 東京大学 海洋資源揚鉱装置およびこれを用いた海洋資源の揚鉱方法
JP6810937B2 (ja) * 2017-06-29 2021-01-13 国立大学法人 東京大学 海洋資源揚鉱装置およびこれを用いた海洋資源の揚鉱方法
US10895256B2 (en) 2017-12-14 2021-01-19 Schlumberger Technology Corporation Stator and rotor profile for improved power section performance and reliability
CN109915044B (zh) * 2019-03-22 2023-11-21 中国地质大学(北京) 一种装配式螺杆钻具金属定子轴向加工装配工艺

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1378442A (en) * 1917-11-16 1921-05-17 Lanston Monotype Machine Co Process of corrugating cylindrical bodies
US2463341A (en) * 1946-02-25 1949-03-01 Fmc Corp Motor pump with sand trap and piming means
US2464011A (en) * 1946-11-29 1949-03-08 Fmc Corp Helical hollow rotor pump
US2532145A (en) * 1948-03-02 1950-11-28 Robbins & Myers Pump
US3512904A (en) * 1968-05-24 1970-05-19 Clifford H Allen Progressing cavity helical pump
US4127368A (en) * 1971-02-19 1978-11-28 Langer Paul G Rotor for eccentric helical gear pump
SU436944A1 (de) * 1971-11-29 1974-07-25
DE2240423A1 (de) * 1972-08-17 1974-03-07 Hermetic Pumpen Gmbh Foerdereinrichtung, insbesondere foerderpumpe
US3889506A (en) * 1974-03-25 1975-06-17 Western Electric Co Method and apparatus for forming a tubular billet about a mandrel using multi-directional stress
HU184664B (en) * 1979-03-14 1984-09-28 Olajipari Foevallal Tervezoe Hydraulic drilling motor for deep drilling
US4567953A (en) * 1980-12-10 1986-02-04 Baldenko Dmitry F Bottom-hole multistart screw motor
US4585401A (en) * 1984-02-09 1986-04-29 Veesojuzny Ordena Trudovogo Krasnogo Znameni Naucho-Issle Multistage helical down-hole machine with frictional coupling of working elements, and method therefor

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO8704753A1 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991009201A1 (en) * 1989-12-08 1991-06-27 Permsky Filial Vsesojuznogo Nauchno-Issledovatelskogo Instituta Burovoi Tekhniki Working organ of helical-type down-hole drive for hole drilling
EP3358131A3 (de) * 2017-02-06 2018-11-14 Roper Pump Company Gelappter rotor mit kreisförmigem querschnitt für fluidantriebsvorrichtung
US10968699B2 (en) 2017-02-06 2021-04-06 Roper Pump Company Lobed rotor with circular section for fluid-driving apparatus

Also Published As

Publication number Publication date
NO172003C (no) 1993-05-26
US4909337A (en) 1990-03-20
DE3685113D1 (de) 1992-06-04
DK476087A (da) 1987-09-11
PT82181B (pt) 1992-05-29
PT82181A (pt) 1986-09-16
NO172003B (no) 1993-02-15
EP0265521A4 (de) 1989-03-14
DK476087D0 (da) 1987-09-11
ATE75521T1 (de) 1992-05-15
JPS63502292A (ja) 1988-09-01
EP0265521B1 (de) 1992-04-29
NO873890L (no) 1987-09-16
JPH0633702B2 (ja) 1994-05-02
WO1987004753A1 (en) 1987-08-13
NO873890D0 (no) 1987-09-16

Similar Documents

Publication Publication Date Title
EP0265521B1 (de) Rotor eines bohrlochschneckenmotors und dessen herstellung
DE69936649T2 (de) Innen profiliertes statorrohr
EP0193618B1 (de) Montagevorrichtung und -verfahren für den orientierten Zusammenbau eines Schraubenmotors
DE60202873T2 (de) Verfahren zu herstellung eines stators für eine exzenterschneckenpumpe und sich daraus ergebender stator
DE2720130A1 (de) Meisseldirektantrieb fuer tiefbohrwerkzeuge
EP0671569A1 (de) Drehgelenkkupplung, insbesondere an einer Gelenkwelle einer Exzenterschneckenmaschine
EP0180748A1 (de) Planetengetriebe
DE2818332A1 (de) Verfahren zur herstellung einer antriebswelle mit balligen aussenkeilzaehnen
DE112011101162T5 (de) Geschrämter Stator für einen Verdrängungsmotor
DE19827101A1 (de) Nach dem Moineau-Prinzip arbeitende Maschine für den Einsatz in Tiefbohrungen
EP1129292B1 (de) Schnecke für eine exzenterschneckenpumpe oder einen untertagebohrmotor
EP2180967B1 (de) Verfahren zur herstellung eines maschinengehäuses mit oberflächengehärteter fluidkammer
DE2449108A1 (de) Bohrmaschine mit frei um ihre achse drehbaren bohrmeisseln
DE4113986A1 (de) Hydraulisch angetriebener bohrmotor zum tiefbohren
DE3049836C2 (de) Bohrlochsohlenantrieb für Bohrwerkzeuge
DE2649130B2 (de) Zahnradpumpe
EP0229376B1 (de) Exzenterwelle einer Rotationskolbenbrennkraftmaschine
DE2228367A1 (de) Verfahren und einrichtung zum walzen von innenzahnraedern
DE1151157B (de) Steuereinrichtungen fuer die Druckoelfelder zur Kolbenentlastung bei Axialkolben-getrieben
DE3345419A1 (de) Schrauben-bohrlochsohlenmaschine
DE2651344A1 (de) Hydraulische maschine
DE69925346T2 (de) Moineau Pumpe
DE1813749A1 (de) Motorgetriebene Pumpe mit Lagergestell und Verfahren zu ihrer Herstellung
DE10223306B4 (de) Gehäuse zur Aufnahme eines Lagerbauteiles und Verfahren zu dessen Herstellung
DE10108898B4 (de) Verfahren zur Formung von Antriebskomponenten an elektrischen Antrieben

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19871023

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE FR GB IT LI NL SE

A4 Supplementary search report drawn up and despatched

Effective date: 19890314

17Q First examination report despatched

Effective date: 19900910

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE FR GB IT LI NL SE

REF Corresponds to:

Ref document number: 75521

Country of ref document: AT

Date of ref document: 19920515

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3685113

Country of ref document: DE

Date of ref document: 19920604

ITF It: translation for a ep patent filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
ET Fr: translation filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19930122

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19930126

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19930131

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19930204

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19930217

Year of fee payment: 8

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19940114

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19940117

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19940131

Ref country code: CH

Effective date: 19940131

Ref country code: BE

Effective date: 19940131

Ref country code: AT

Effective date: 19940131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19940201

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19940319

Year of fee payment: 9

BERE Be: lapsed

Owner name: PERMSKY FILIAL VSESOJUZNOGO NAUCHNO-ISSLEDOVATELS

Effective date: 19940131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19940801

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

EUG Se: european patent has lapsed

Ref document number: 86902578.3

Effective date: 19940910

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19950131

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19950131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19950929

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19951003

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050131