EP0255553B1 - Empfangsverfahren für frequenzmodulierte Stereo-Multiplex-Signale - Google Patents

Empfangsverfahren für frequenzmodulierte Stereo-Multiplex-Signale Download PDF

Info

Publication number
EP0255553B1
EP0255553B1 EP86110931A EP86110931A EP0255553B1 EP 0255553 B1 EP0255553 B1 EP 0255553B1 EP 86110931 A EP86110931 A EP 86110931A EP 86110931 A EP86110931 A EP 86110931A EP 0255553 B1 EP0255553 B1 EP 0255553B1
Authority
EP
European Patent Office
Prior art keywords
frequency
signal
stereo
modulated
band
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP86110931A
Other languages
English (en)
French (fr)
Other versions
EP0255553A1 (de
Inventor
Gerhard G. Gassmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Micronas GmbH
Original Assignee
Deutsche ITT Industries GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Deutsche ITT Industries GmbH filed Critical Deutsche ITT Industries GmbH
Priority to DE8686110931T priority Critical patent/DE3686156D1/de
Priority to EP86110931A priority patent/EP0255553B1/de
Priority to US07/073,613 priority patent/US4817167A/en
Priority to JP62195403A priority patent/JPS6346023A/ja
Publication of EP0255553A1 publication Critical patent/EP0255553A1/de
Application granted granted Critical
Publication of EP0255553B1 publication Critical patent/EP0255553B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/16Circuits
    • H04B1/1646Circuits adapted for the reception of stereophonic signals
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03DDEMODULATION OR TRANSFERENCE OF MODULATION FROM ONE CARRIER TO ANOTHER
    • H03D1/00Demodulation of amplitude-modulated oscillations
    • H03D1/22Homodyne or synchrodyne circuits

Definitions

  • the frequency conversion takes place by means of a frequency converter according to the single sideband phase method, in which the signal to be converted is split into two signal components rotated by 90 ° using a quadrature mixer.
  • the 90 ° relate to the phase position of the high-frequency carrier that is fed to the quadrature mixer for frequency conversion.
  • the two signal components are usually in a low IF range and, when combined, form the desired baseband signal.
  • Another FM reception method is associated with Circuit described in the specification DE-B 12 63 113.
  • 5 shows an exemplary embodiment with a negative feedback for receiving a frequency-modulated signal and its implementation in the listening area, the adjacent channels being suppressed.
  • the channels to be received contain stereo signals with a stereo subcarrier frequency of 38 kHz, and the entire stereo multiplex signal is transmitted with a maximum frequency deviation of +/- 75 kHz in the respective high-frequency channel.
  • 1 a to 3 b show the simplification of the adjacent channel selection by means of low-pass filters if the mixing frequency for the signal to be received is selected such that the center frequency of the frequency-modulated IF signal is less than twice the value of the maximum frequency swing of the signal to be received. This frequency conversion method is therefore also referred to as a low IF method.
  • the object of the invention specified in the claims is to further develop an FM reception method with negative feedback so that this method can be implemented with simple integrated circuits, in particular the channel selection with integrable analog low-pass filters.
  • Another object of the invention is to design the circuit arrangement so that largely digital signal processing is possible.
  • a particular advantage of the invention is that low-pass filters with relatively flat selection edges can be used for the channel selection after the high-frequency mixing, which can thus be integrated as a single-stage or multi-stage RC filter.
  • the frequency-determining elements are integrable metal oxide capacitors, resistors or current sources.
  • the possibly amplified antenna signal h which contains the frequency-modulated stereo multiplex signals hf transmitted channel by channel, is fed to the first input of the first and the second mixer m1, m2.
  • the oscillator signal fo is fed directly to the second input of the first mixer m1.
  • the control signal st for the RF oscillator ho controls the frequency of the oscillator signal fo.
  • the center frequency of the IF band is approximately zero and the frequency range of this IF band appears to be folded together in a band which, starting from 0 Hz, comprises approximately half the HF channel bandwidth .
  • This Frequency conversion method also from the zero IF method.
  • the output of the first mixer m1 is connected to the input of the first low pass t1 and the output of the second mixer m2 is connected to the input of the second low pass t2.
  • the selection edge of the first and the second low pass t1, t2 for the first and the second mixing signal z1, z2 is shown schematically in FIG. 4.
  • the pass band essentially comprises the area of the frequency-modulated stereo main signal fh, which is negative feedback in the hub, while the selection edge is in the area of the frequency-modulated stereo auxiliary signal fz, which is negative feedback in the frequency hub, and this is reduced on average by an amount to be determined even later .
  • the output signal of the first and the second low pass t1, t2, namely the first and the second filtered signal g1, g2, is fed to the first and the second control amplifier v1, v2, which with the respective amplified signal the input of the first or . of second analog-digital converter aw1, aw2 feeds.
  • the two control amplifiers v1, v2 with the same gain adapt the two filtered signals g1, g2 to the operating range of the two analog-digital converters aw1, aw2 in order to optimally use their resolution.
  • the first input of the first and the second digital mixer dm1, dm2 is fed. These are part of the digital quadrature mixer q2, which is used to unfold the IF band. It also contains the digital oscillator do and the digital 90 ° phase shifter p2.
  • the output signals of the two digital mixers dm1, dm2 are each fed to an input of the adder ad, the output signal of which is the developed frequency-modulated signal, namely the basic signal b1, which is fed to the frequency demodulator fd for demodulation.
  • the demodulated signal ds is the digital stereo multiplex signal in the baseband position, the frequency range of which is shown schematically in FIG.
  • the demodulated signal ds is supplied to the stereo demodulator circuit sd, which generates the main stereo signal L + R and the additional stereo signal L-R. For further signal processing, these two signals are fed to further circuit parts, which are not specified.
  • the stereo main signal L + R feeds the digital-to-analog converter dw, whose output signal is the third low-pass filter t3 and then passes through the amplifier v3, the output signal of which serves as the negative feedback signal g of the frequency swing negative feedback of the RF oscillator ho.
  • the third low pass t3 blocks all frequencies outside the main stereo signal L + R.
  • the digital-to-analog converter dw can also be supplied with the demodulated signal ds.
  • the subsequent third low-pass filter t3 must be transparent to the main stereo signal L + R and must be blocked to the additional stereo signal L-R.
  • the gain of the third amplifier v3 is selected such that the value of the mean amplitude reduction of the frequency-modulated stereo additional signal fz is the same as the value of the frequency swing negative feedback of the frequency-modulated stereo main signal L + R.
  • the mean amplitude of the demodulated stereo additional signal LR is too large compared to the demodulated stereo main signal L + R and must be reduced accordingly by a factor of 3, which corresponds to -10.44 dB. If the suppression of the additional stereo signal LR by the third low-pass filter t3 is incomplete, then the negative feedback signal g also causes a negative feedback in the region of the frequency-modulated additional stereo signal fz, and by this amount the mean amplitude of the frequency-modulated stereo Additional signal fz less be lowered. This naturally worsens the frequency selection of the adjacent channels.
  • the two signal paths can contain asymmetries, e.g. due to inequalities of the two mixers m1, m2, the two low-pass filters t1, t2 or the two control amplifiers v1, v2.
  • Asymmetries can affect the amplitudes, but also the phases of the first and second signals s1, s2.
  • the control or compensation circuit can determine and compensate for these amplitude or phase errors according to its own, not previously published European application 86 10 3522.8 (ITT case S.Mehrgardt 18). The refolding, the frequency demodulation and the stereo demodulation then take place under almost ideal conditions.
  • FIG. 2a shows the schematic spectrum of the frequency-modulated stereo multiplex signal hf in the area of the high-frequency carrier ft.
  • the frequency range also referred to as a channel, is symmetrical to the frequency of the high-frequency carrier ft.
  • the bandwidth of the frequency-modulated stereo multiplex signal is hf as is known, approximately equal to twice the sum of the maximum frequency deviation and the maximum signal frequency.
  • the adjacent channel in the area of the neighboring radio frequency carrier fn, whose frequency distance from the radio frequency carrier ft e.g. is equal to four times the maximum frequency swing is shown in dashed lines.
  • the oscillator signal fo which is used for downmixing lies in the middle of the high-frequency channel.
  • the frequency-modulated stereo main signal fh extends folded, from about 0 to +17.5 kHz and the frequency-modulated stereo additional signal fz, also folded, from about 23 kHz to 53 kHz.
  • the cross-hatching is intended to indicate that the folded upper and lower sidebands lie on each other in frequency in the specified areas.
  • the additional stereo signal L-R is in the form of an amplitude modulation with carrier suppression, the suppressed stereo subcarrier sh having a frequency of 38 kHz.
  • the bandwidth of this signal within the stereo multiplex signal extends from 23 kHz to 53 kHz.
  • the stroke negative feedback is no longer effective for this signal; it therefore retains the assumed frequency deviation of +/- 37.5 kHz unchanged.
  • FIG. 2c shows the schematic spectrum of the stereo multiplex signal ds according to the European stereo broadcasting standard.
  • the left-right sum signal is contained in the main stereo signal L + R and the left-right difference signal is contained in the additional stereo signal L-R.
  • This signal is in the form of amplitude modulation with carrier suppression, the suppressed stereo subcarrier sh having a frequency of 38 kHz and for its recovery the pilot signal p is also transmitted at 19 kHz.
  • the bandwidths, as already described, extend from 30 Hz to 15 kHz for the main stereo signal L + R and from 23 kHz to 53 kHz for the additional stereo signal LR, this signal being a gap at 38 kHz due to carrier suppression having.
  • FIGS. 3a and b The vector image of a phase modulation is shown in FIGS. 3a and b. If the amplitude of the two sidebands is reduced in accordance with FIG. 3b, the phase shift dp, dp * and thus also the frequency swing are reduced. This is important with the stroke negative feedback used. If one assumes that the stroke feedback is only for the frequency-modulated stereo main signal fh and the stroke reduction should be 3: 1, then the additional stereo signal LR modulated to 38 kHz would be a factor after FM demodulation 3 too big.
  • the correct amplitude ratio of the demodulated stereo additional signal can be reduced by a factor of 3 by reducing the amplitude of the frequency-modulated stereo additional signal fz Recover LR against the demodulated stereo main signal L + R. Because the spectrum of the phase modulation with the small modulation index present here corresponds approximately to the spectrum of an amplitude modulation with lower and upper sideband signals.
  • the damping a o / a in the range of the stereo subcarrier frequency of 38 kHz has a value of -10.44 dB; this corresponds to a third of the original amplitude.
  • the associated areas of the frequency-modulated stereo main signal fh and the frequency-modulated stereo additional signal fz from FIG. 2b are shown for comparison.
  • the bandwidth of the frequency-modulated stereo main signal fh is greater than the value of 17.5 kHz assumed in the example, for example due to a corresponding audio signal in the right and left audio channels, this has practically no influence on the circuit function, even if the amplitudes are on the band limit are already somewhat reduced by the selection edge, because it is known that the subsequent frequency demodulation as such is above a minimum signal amplitude in a large range from the amplitude of the frequency-modulated signal, here the frequency-modulated stereo main signal fh, independently.
  • the factor of the frequency sweep negative feedback should advantageously always be chosen so large that the frequency-modulated main stereo signal fh and the frequency-modulated additional stereo signal fz are clearly separated from one another in their frequency range in normal operation.
  • FIG. 5 shows the vector representation of the demodulation of an amplitude-modulated signal with different sidebands corresponding to the frequency-modulated stereo additional signal after the low-pass filtering with the flat selection edge.
  • the long pointer is the added carrier signal tr, which corresponds to the output signal of the digital oscillator do.
  • the two sideband vectors of the assumed sine modulation are the left less lowered sideband vector lv and the right more lowered sideband vector rv, the resultant cv of which together with the carrier signal tr gives a total result gr which has a small phase difference pd compared to the carrier signal tr.
  • the total gr resulting is the vector responsible for the amplitude of the demodulated additional stereo signal. With a different phase position of the added carrier signal tr, the amplitude of the demodulated additional stereo signal is correspondingly smaller.
  • phase position of the added carrier signal tr depends on the phase position of the pilot signal p. That too Phase can be falsified by the selection edge that may already start there. However, this does not result in any distortion, but, as just described, a possible further reduction in the amplitudes of the demodulated additional stereo signal, which is, however, permissible to a limited extent if it is ensured that all reductions taken together do not exceed the permissible total reduction.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Stereo-Broadcasting Methods (AREA)
  • Circuits Of Receivers In General (AREA)

Description

  • Die Erfindung betrifft ein Empfangsverfahren mit einer zugehörigen Schaltungsanordnung zur Frequenzumsetzung hochfrequent (= HF) übertragener frequenzmodulierter (= FM) Stereo-Multiplex-Signale in ein ZF-Band (ZF = Zwischenfrequenz), dessen Mittenfrequenz etwa gleich Null ist. Die Frequenzumsetzung erfolgt dabei mittels eines Frequenzumsetzers nach der Einseitenband-Phasenmethode, bei der das umzusetzende Signal mittels eines Quadraturmischers in zwei um 90° gedrehte Signalkomponenten aufspalten wird. Die 90° beziehen sich dabei auf die Phasenlage des hochfrequenten Trägers, der dem Quadraturmischer zur Frequenzumsetzung zugeführt wird. Die beiden Signalkomponenten befinden sich in der Regel in einem Tief-ZF-Bereich und bilden nach ihrer Kombination das gewünschte Basisbandsignal.
  • Ein derartiges Empfangsverfahren mit zugehöriger Schaltungsanordnung ist in der europäischen Patentaumeldung EP 0 062 872 beschrieben. Nach der Tief-Frequenzumsetzung im Quadraturmischer und der Tiefpaßfilterung erfolgt eine Digitalisierung der Signale in den beiden parallelen Signalzweigen, wodurch für die nachfolgende Signalverarbeitung, Feinselektion und Demodulation die bekannten Vorteile der digitalen Signalverarbeitung zur Verfügung stehen. Die grobe Kanalselektion erfolgt in den beiden parallelen Signalzweigen jeweils mittels eines analogen Tiefpaßfilters. Die Digitalisierung kommt dem Gleichlauf der Signalverarbeitung in den beiden parallelen Signalzweigen zugute und ermöglicht somit erst eine qualitativ zufriedenstellende direkte Frequenzumsetzung. Die beschriebene Schaltung liefert an ihrem Ausgang das frequenzdemodulierte Signal, das im einfachsten Fall bereits das Schleifenfiltersignal zur Nachsteuerung des Oszillators im Quadraturmischer ist.
  • Ein weiteres FM-Empfangsverfahren ist mit zugehöriger Schaltung in der Auslegeschrift DE-B 12 63 113 beschrieben. Deren Fig. 5 zeigt ein Ausführungsbeispiel mit Hubgegenkopplung zum Empfang eines frequenzmodulierten Signals und dessen Umsetzung in den Hörbereich, wobei die Nachbarkanäle unterdrückt sind. Dabei enthalten die zu empfangenden Kanäle Stereosignale mit einer Stereo-Hilfsträger-Frequenz von 38 kHz, und das gesamte Stereo-Multiplexsignal wird mit einem maximalen Frequenzhub von +/- 75 kHz im jeweiligen hochfrequenten Kanal übertragen. Fig. 1 a bis 3b zeigen dabei die Vereinfachung der Nachbarkanalselektion mittels Tiefpaßfiltern, wenn die Mischungsfrequenz für das zu empfangende Signal so gewählt wird, daß die Mittenfrequenz des frequenzmodulierten ZF-Signals kleiner als der doppelte Wert des maximalen Frequenzhubes des zu empfangenden Signals ist. Man bezeichnet dieses Frequenzumsetzungsverfahren daher auch als Tief-ZF-Verfahren.
  • Der in den Ansprüchen angegebenen Erfindung liegt die Aufgabe zugrunde, ein FM-Empfangsverfahren mit Hubgegenkopplung so weiterzubilden, daß dieses Verfahren mit einfachen integrierten Schaltungen realisiert werden kann, wobei insbesondere die Kanalselektion mit integrierbaren analogen Tiefpässen erfolgen soll. Eine weitere Aufgabe der Erfindung ist es, die Schaltungsanordnung so auszubilden, daß eine weitgehend digitale Signalverarbeitung möglich ist.
  • Die Erfindung wird nun anhand der Figuren der Zeichnung näher erläutert:
    • Fig. 1 zeigt in Form eines Blockschaltbildes schematisch ein Ausführungsbeispiel einer erfindungsgemäßen Schaltungsanordnung,
    • Fig. 2a bis c zeigen in schematischer Form die Spektren einiger Signale,
    • Fig. 3a und b zeigen in Vektordarstellung den Einfluß der Signalamplitude auf den Phasenwinkel bei phasenmodulierten Signalen,
    • Fig. 4 zeigt die Frequenzgangkurve des ersten bzw. des zweiten Tiefpasses in doppelt-logarithmischer Darstellung zusammen mit dem schematischen Spektrum des hubgegengekoppelten Mischungssignals von Fig. 2b, und
    • Fig. 5 zeigt in vektorieller Form den Phasenfehler, der sich bei der Demodulation amplitudenmodulierter Signale mit in der Amplitude unterschiedlichen Seitenbändern ergibt.
  • Ein besonderer Vorteil der Erfindung besteht darin, daß für die Kanalselektion nach der Hochfrequenzmischung Tiefpaßfilter mit relativ flachen Selektionsflanken verwendet werden können, die damit als ein- oder mehrstufige RC-Filter integrierbar sind. Die frequenzbestimmenden Elemente sind dabei integrierbare Metall-Oxid-Kondensatoren, Widerstände oder Stromquellen.
  • In Fig. 1 ist das ggf. verstärkte Antennensignal h, welches die kanalweise übertragenen frequenzmodulierten Stereo-Multiplex-Signale hf enthält, jeweils dem ersten Eingang des ersten und des zweiten Mischers m1, m2 zugeführt. Diese sind Bestandteil des HF-Quadraturmischers q1, der ferner den in der Frequenz steuerbaren HF-Oszillator ho und das 90°-Phasendrehglied p1 enthält, dessen Eingang mit dem Oszillatorsignal fo gespeist ist und dessen Ausgang mit dem zweiten Eingang des zweiten Mischers m2 verbunden ist. Dem zweiten Eingang des ersten Mischers m1 ist direkt das Oszillatorsignal fo zugeführt. Das Steuersignal st für den HF-Oszillator ho steuert die Frequenz des Oszillatorsignals fo. Sie wird etwa in die Mitte des zu empfangenden Kanals gelegt, daher ist die Mittenfrequenz des ZF-Bandes etwa gleich null und der Frequenzbereich dieses ZF-Bandes erscheint gleichsam zusammengefaltet in einem Band, das von 0 Hz ausgehend, etwa die halbe HF-Kanalbandbreite umfaßt. Man spricht daher bei diesem Frequenzumsetzungsverfahren auch von dem Null-ZF-Verfahren.
  • Die bekannten Verfahren zur sogenannten Entfaltung bedienen sich verschiedener Verfahren, die der Phasenmethode der Einseitenbanddemodulation nahestehen, und z.B. in dem Buch von H. Meinke und F.W. Gundlach "Taschenbuch der Hochfrequenztechnik", 2. Auflage, Berlin 1962, Seite 1309 bis 1313, insbesondere Abb. 25.1 "Schema des Einseitenbandumsetzers nach Weaver" beschrieben ist.
  • Der Ausgang des ersten Mischers m1 ist mit dem Eingang des ersten Tiefpasses t1 und der Ausgang des zweiten Mischers m2 ist mit dem Eingang des zweiten Tiefpasses t2 verbunden. Die Selektionsflanke des ersten und des zweiten Tiefpasses t1, t2 für das erste bzw. das zweite Mischungssignal z1, z2 ist in Fig. 4 schematisch dargestellt. Der Durchlaßbereich umfaßt dabei im wesentlichen den Bereich des im Hub gegengekoppelten frequenzmodulierten Stereo-Haupt-Signals fh, während die Selektionsflanke im Bereich des frequenzmodulierten im Frequenzhub gegengekoppelten Stereo-Zusatz-Signals fz liegt und dieses im Mittel um einen noch später näher zu bestimmenden Betrag absenkt.
  • Das Ausgangssignal des ersten bzw. des zweiten Tiefpaßes t1, t2, nämlich das erste bzw. das zweite gefilterte Signal g1, g2, ist dem ersten bzw. dem zweiten Regelverstärker v1, v2 zugeführt, der mit dem jeweils verstärkten Signal den Eingang des ersten bzw. des zweiten Analog-Digital-Wandlers aw1, aw2 speist. Die beiden Regelverstärker v1, v2 mit gleicher Verstärkung passen die beiden gefilterten Signale g1, g2 an den Austeuerbereich der beiden Analog-Digital-Wandler aw1, aw2 an, um deren Auflösung optimal auszunutzen.
  • Mit den beiden digitalisierten Signalen s1ʹ, s2ʹ, wird jeweils der erste Eingang des ersten bzw. des zweiten Digitalmischers dm1, dm2 gespeist. Diese sind Bestandteil des digitalen Quadraturmischers q2, der der Entfaltung des ZF-Bandes dient. Er enthält ferner den digitalen Oszillator do und den digitalen 90°-Phasenschieber p2. Die Ausgangssignale der beiden Digitalmischer dm1, dm2 werden jeweils einem Eingang des Addierers ad zugeführt, dessen Ausgangssignal das entfaltete frequenzmodulierte Signal, nämlich das Basissignal b1, ist, das zur Demodulation dem Frequenzdemodulator fd zugeführt ist. Das demodulierte Signal ds ist das digitale Stereo-Multiplex-Signal in der Basisbandlage, dessen Frequenzbereich schematisch in der Fig. 2c für das entsprechende analoge Stereo-Multiplex-Signal gezeigt ist. Das demodulierte Signal ds wird der Stereo-Demodulatorschaltung sd zugeführt, die das Stereo-Haupt-Signal L+R und das Stereo-Zusatz-Signal L-R erzeugt. Diese beiden Signale werden zur weiteren Signalverarbeitung weiteren nicht näher bezeichneten Schaltungsteilen zugeführt.
  • Zusätzlich wird mit dem Stereo-Haupt-Signal L+R der Digital-Analog-Wandler dw gespeist, dessen Ausgangssignal den dritten Tiefpaß t3 und anschließend den Verstärker v3 durchläuft, dessen Ausgangssignal als das Gegenkopplungssignal g der Frequenzhubgegenkopplung des HF-Oszillators ho dient. Der dritte Tiefpaß t3 sperrt alle Frequenzen außerhalb des Stereo-Haupt-Signals L+R.
  • Anstatt mit dem Stereo-Haupt-Signal L+R kann der Digital-Analog-Wandler dw auch mit dem demodulierten Signal ds gespeist werden. Dabei muß der nachfolgende dritte Tiefpaß t3 für das Stereo-Haupt-Signal L+R durchlässig und für das Stereo-Zusatz-Signal L-R sperrend sein. In beiden Fällen ist die Verstärkung des dritten Verstärkers v3 so gewählt, daß der Wert der mittleren Amplitudenabsenkung des frequenzmodulierten Stereo-Zusatz-Signals fz gleich groß wie der Wert der Frequenzhubgegenkopplung des frequenzmodulierten Stereo-Haupt-Signals L+R ist.
  • Wird z.B. der Frequenzhub des frequenzmodulierten Stereo-Haupt-Signals L+R um den Faktor 3 reduziert, dann ist nach der Frequenzdemodulation die mittlere Amplitude des demodulierten Stereo-Zusatz-Signals L-R im Vergleich zum demodulierten Stereo-Haupt-Signal L+R zu groß und ist entsprechend um den Faktor 3, das entspricht -10,44 dB, zu reduzieren. Ist die Unterdrückung des Stereo-Zusatz-Signals L-R durch den dritten Tiefpaß t3 unvollständig, dann findet durch das Gegenkopplungssignal g auch eine Hubgegenkopplung im Bereich des frequenzmodulierten Stereo-Zusatz-Signals fz statt, und um diesen Betrag muß die mittlere Amplitude des frequenzmodulierten Stereo-Zusatz-Signals fz weniger abgesenkt werden. Damit verschlechtert sich natürlich die Frequenzselektion der Nachbarkanäle. Diese Schwierigkeit tritt durch den beschriebenen Anschluß des Digital-Analog-Wandlers dw an die Stereo-Demodulatorschaltung sd nicht auf. Dabei muß jedoch die Signalverarbeitungszeit innerhalb der Stereo-Demodulatorschaltung sd ausreichend kurz sein, damit bei dieser Rückführung keine nicht mehr kontrollierbaren Schwingungen auftreten.
  • Auf der Analogseite können die beiden Signalwege Unsymmetrien enthalten, z.B. durch Ungleichheiten der beiden Mischer m1, m2, der beiden Tiefpässe t1, t2 oder der beiden Regelverstärker v1, v2. Unsymmetrien können sich auf die Amplituden, aber auch auf die Phasen des ersten und des zweiten Signals s1, s2 auswirken. Hierzu kann beispielsweise die Regel- oder Kompensationsschaltung nach der eigenen, nicht vorveröffentlichten europäischen Anmeldung 86 10 3522.8 (ITT-case S.Mehrgardt 18), diese Amplituden- oder Phasenfehler feststellen und ausgleichen. Die Rückfaltung, die Frequenzdemodulation und die Stereo-Demodulation finden dann unter nahezu idealen Bedingungen statt.
  • In Fig. 2a ist das schematische Spektrum des frequenzmodulierten Stereo-Multiplex-Signals hf im Bereich des Hochfrequenzträgers ft dargestellt. Der auch als Kanal bezeichnete Frequenzbereich liegt symmetrisch zur Frequenz des Hochfrequenzträgers ft. Die Bandbreite des frequenzmodulierten Stereo-Multiplex-Signals hf ist bekanntlich etwa gleich der doppelten Summe von maximalem Frequenzhub und maximaler Signalfrequenz.
  • Der Nachbarkanal im Bereich des Nachbar-Hochfrequenzträges fn, dessen Frequenzabstand zum Hochfrequenzträger ft z.B. gleich dem vierfachen maximalen Frequenzhub ist, ist gestrichelt gezeichnet. Das der Heruntermischung dienende Oszillatorsignal fo liegt mitten im Hochfrequenzkanal.
  • Fig. 2b zeigt ein charakteristisches Spektrum des hubgegengekoppelten ersten bzw. zweiten Mischungssignals z1, z2 in der Null-ZF-Bandlage. Das frequenzmodulierte Stereo-Haupt-Signal fh erstreckt sich dabei gefaltet, von etwa 0 bis +17,5 kHz und das frequenzmodulierte Stereo-Zusatz-Signal fz, ebenfalls gefaltet, etwa von 23 kHz bis 53 kHz. Die gekreuzte Schraffur soll andeuten, daß in den angegebenen Bereichen die gefalteten oberen und unteren Seitenbänder frequenzmäßig aufeinander liegen.
  • Die Bandbreitenberechnung geht davon aus, daß senderseitig sowohl das Stereo-Haupt-Signal als auch das Stereo-Zusatz-Signal jeweils mit einem Hub von +/-37,5 kHz ausgesendet wird. Diese Abschätzung erfolgt aus der Überlegung, daß, wenn z.B. nur im rechten Tonkanal ein Sinuston mit maximaler Lautstärke übertragen werden soll, der maximale Frequenzhub für das Gesamtsignal dessen normgemäßen Frequenzhub von +/- 75 kHz nicht übersteigen darf. Für das Stereo-Haupt-Signal-Frequenzband von 30 Hz bis 15 kHz ergibt sich mit dem Hubgegenkopplungsfaktor 3 damit der angegebene Frequenzbereich des gefalteten frequenzmodulierten Stereo-Haupt-Signals fh aus folgender Beziehung: (37,5 kHz + 15 kHz)/3 = 17,5 kHz.
  • Das Stereo-Zusatz-Signal L-R liegt in Form einer Amplitudenmodulation mit Trägerunterdrückung vor, wobei der unterdrückte Stereo-Hilfsträger sh eine Frequenz von 38 kHz hat. Die Bandbreite dieses Signals innerhalb des Stereo-Multiplex-Signals erstreckt sich von 23 kHz bis 53 kHz. Für dieses Signal ist die Hubgegenkopplung nicht mehr wirksam; es behält somit den angenommenen Frequenzhub von +/-37,5 kHz unverändert bei.
  • Dieses kann aber auch noch anders gedeutet werden, denn eine Abschätzung, wie groß bei dem angenommenen Frequenzhub von +/- 37,5 kHz der zugehörige Phasenhub bezogen auf die Frequenz des Stereo-Hilfsträgers von 38 kHz ist, ergibt nach der bekannten Formel für den Phasenhub:
    Figure imgb0001

    Das ist aber nach allgemeiner Ansicht weniger eine Frequenzmodulation als eine Phasenmodulation, denn bei ihr kann man im Gegensatz zur reinen Frequenzmodulation durch Amplitudenreduktion des Modulationsspektrums den Phasenhub entsprechend reduzieren, vgl. auch Fig. 3a und b. Dieses Verhalten wird bei dem Empfangsverfahren nach der Erfindung verwendet.
  • Fig. 2c zeigt das schematische Spektrum des Stereo-Multiplex-Signals ds nach der europäischen Stereo-Rundfunk-Norm. Im Stereo-Hauptsignal L+R ist das Links-Rechts-Summensignal und im Stereo-Zusatz-Signal L-R ist das Links-Rechts-Differenzsignal enthalten. Dieses Signal liegt in Form einer Amplitudenmodulation mit Trägerunterdrückung vor, wobei der unterdrückte Stereo-Hilfsträger sh eine Frequenz von 38 kHz hat und für dessen Rückgewinnung das Pilot-Signal p bei 19 kHz mitübertragen wird. Die Bandbreiten erstrecken sich wie bereits beschrieben von 30 Hz bis 15 kHz für das Stereo-Haupt-Signal L+R und von 23 kHz bis 53 kHz für das Stereo-Zusatz-Signal L-R, wobei dieses Signal durch die Trägerunterdrückung bei 38 kHz eine Lücke aufweist.
  • In Fig. 3a und b ist das Vektorbild einer Phasenmodulation dargestellt. Reduziert man die Amplitude der beiden Seitenbänder entsprechend Fig. 3b so wird der Phasenhub dp, dp* und damit auch der Frequenzhub verkleinert. Dies ist bei der verwendeten Hubgegenkopplung wichtig. Geht man nämlich davon aus, daß die Hubgegenkopplung nur für das frequenzmodulierte Stereo-Haupt-Signal fh erfolgt und die Hubreduktion 3:1 sein soll, so wäre das auf 38 kHz modulierte Stereo-Zusatz-Signal L-R nach der FM-Demodulation um den Faktor 3 zu groß. Da es sich dabei aber, wie bereits beschrieben, weniger um eine Frequenzmodulation, sondern eher um eine Phasenmodulation handelt, kann man durch Amplitudenreduktion des frequenzmodulierten Stereo-Zusatz-Signals fz um den Faktor 3 das richtige Amplitudenverhältnis des demodulierten Stereo-Zusatz-Signals L-R gegenüber dem demodulierten Stereo-Haupt-Signal L+R zurückgewinnen. Denn das Spektrum der Phasenmodulation entspricht bei dem kleinen hier vorliegenden Modulationsindex etwa dem Spektrum einer Amplitudenmodulation mit unterem und oberem Seitenbandsignal.
  • In Fig. 4 sind im doppelt-logarithmischen Maßstab der Durchlaßbereich und die Selektionsflanke des ersten bzw. des zweiten Tiefpaßes t1, t2 gezeigt. Die Steilheit der Selektionsflanke beträgt 6 dB oder 12 dB pro Oktave; entsprechend liegt die Grenzfrequenz bei 12 kHz bzw. 22 kHz. Da für die Hubgegenkopplung ein Wert von 3 angenommen ist, hat die Dämpfung ao/a im Bereich der Stereo-Hilfsträgerfrequenz von 38 kHz einen Wert von -10,44 dB; dies entspricht einem Drittel der Ursprungsamplitude. Die zugehörigen Bereiche des frequenzmodulierten Stereo-Haupt-Signals fh und des frequenzmodulierten Stereo-Zusatz-Signals fz aus Fig. 2b sind zum Vergleich mit eingezeichnet.
  • Ist die Bandbreite des frequenzmodulierten Stereo-Haupt-Signals fh größer als der im Beispiel angenommene Wert von 17,5 kHz, z.B. durch ein entsprechendes Tonsignal im rechten und linken Tonkanal bedingt, hat dies auf die Schaltungsfunktion praktisch keinen Einfluß, selbst wenn die Amplituden an der Bandgrenze durch die Selektionsflanke bereits etwas abgesenkt sind, denn bekanntlich ist die nachfolgende Frequenzdemodulation als solche oberhalb einer Minimalsignalamplitude in einem großen Bereich von der Amplitude des frequenzmodulierten Signals, hier dem frequenzmodulierten Stereo-Haupt-Signal fh, unabhängig. Der Faktor der Frequenzhubgegenkopplung sollte vorteilhafterweise dabei aber stets so groß gewählt werden, daß im Normalbetrieb das frequenzmodulierte Stereo-Haupt-Signal fh und das frequenzmodulierte Stereo-Zusatz-Signal fz in ihrem Frequenzbereich deutlich voneinander getrennt sind.
  • Fig. 5 zeigt die Vektordarstellung der Demodulation eines amplitudenmodulierten Signals mit unterschiedlichen Seitenbändern entsprechend dem frequenzmodulierten Stereo-Zusatz-Signal nach der Tiefpaßfilterung mit der flachen Selektionsflanke. Der lange Zeiger ist das zugesetzte Trägersignal tr, das dem Ausgangssignal des digitalen Oszillators do entspricht. Die beiden Seitenbandvektoren der angenommenen Sinusmodulation sind der linke weniger abgesenkte Seitenbandvektor lv und der rechte stärker abgesenkte Seitenbandvektor rv, deren Resultierende cv zusammen mit dem Trägersignal tr eine Gesamtresultierende gr ergibt, die gegenüber dem Trägersignal tr eine kleine Phasendifferenz pd aufweist. Die Gesamtresultierende gr ist der für die Amplitude des demodulierten Stereo-Zusatz-Signals verantwortliche Vektor. Bei einer anderen Phasenlage des zugesetzten Trägersignals tr ist die Amplitude des demodulierten Stereo-Zusatz-Signals entsprechend kleiner.
  • Die Phasenlage des zugesetzten Trägersignals tr hängt von der Phasenlage des Pilot-Signals p ab. Auch dessen Phase kann durch die dort eventuell schon beginnende Selektionsflanke verfälscht werden. Dies bringt aber keine Verzerrungen, sondern, wie gerade eben beschrieben, eine eventuell weitere Reduzierung der Amplituden des demodulierten Stereo-Zusatz-Signals, was aber in Grenzen zulässig ist, wenn man darauf achtet, daß alle Reduzierungen zusammengenommen die zulässige Gesamtreduzierung nicht übersteigen.

Claims (5)

  1. Empfangsverfahren für hochfrequent übertragene frequenzmodulierte Stereo-Multiplex-Signale, bei dem die Frequenzumsetzung in ein ZF-Band mittels einer Quadraturmischung erfolgt, die aus dem frequenzmodulierten Stereo-Multiplex-Signal ein erstes und ein zweites Signal (s1, s2) bildet, bei dem die Mittenfrequenz des ZF-Bandes etwa gleich Null ist und bei dem die Kanalselektion mittels Tiefpaßfilterung nach der ZF-Mischung erfolgt,
    gekennzeichnet durch folgende Merkmale:
    - der Frequenzhub im ZF-Band wird mittels einer Frequenzhubgegenkopplung reduziert, wobei das demodulierte Stereo-Haupt-Signal (L+R) als Gegenkopplungssignal (g) dient, und
    - die Selektionsflanken der Tiefpaßfilterung liegen derart innerhalb des ZF-Bandes, daß die momentanen Amplituden des frequenzmodulierten Stereo-Zusatz-Signals (fz) im Mittel um den Betrag der Frequenzhubgegenkopplung des frequenzmodulierten Stereo-Haupt-Signals (fh) reduziert werden.
  2. Empfangsverfahren nach Anspruch 1, dadurch gekennzeichnet, daß das erste und zweite Signal (s1, s2) im ZF-Band digitalisiert und digital weiterverarbeitet werden und daß das erste und zweite Signal (s1, s2) vor der Digitalisierung jeweils verstärkt wird.
  3. Schaltungsanordnung zur Durchführung des Empfangsverfahrens gemäß einem der Ansprüche 1 oder 2 mit einem Frequenzumsetzer nach der Einseitenband-Phasenmethode, der ein hochfrequent übertragenes frequenzmoduliertes Stereo-Multiplex-Signal in ein ZF-Band umsetzt, dessen Mittenfrequenz etwa gleich Null ist, und wobei die Kanalselektion mittels eines im ersten bzw. im zweiten Quadratursignalpfad liegenden ersten bzw. zweiten Tiefpasses (t1, t2) erfolgt, deren Ausgangssignale ein erstes bzw. ein zweites Signal (s1, s2) sind, mit einem Frequenzdemodulator (fd) und einer Stereo-Demodulatorschaltung (sd), wobei die Schaltungsanordnung mindestens teilweise als monolithisch integrierte Schaltung ausgebildet ist,
    gekennzeichnet durch folgende Merkmale:
    - eine Frequenzhubgegenkopplungsschaltung, die mit dem Frequenzumsetzer gekoppelt ist, reduziert den Frequenzhub des ersten und zweiten Signals (s1, s2), wozu aus dem demodulierten Stereo-Haupt-Signal (L+R) mittels eines dritten Tiefpasses (t3) ein Gegenkopplungssignal (g) gebildet ist, das einem ersten Quadraturmischer (q1) im Frequenzumsetzer zugeführt ist, und
    - die Selektionsflanken des ersten und zweiten Tiefpasses (t1, t2) liegen derart innerhalb des ZF-Bandes, daß die momentanen Amplituden des frequenzmodulierten Stereo-Zusatz-Signals (fz) im Mittel um den Betrag der Frequenzhubgegenkopplung des frequenzmodulierten Stereo-Haupt-Signals (fh) reduziert sind.
  4. Schaltungsanordnung nach Anspruch 4, dadurch gekennzeichnet, daß der erste und zweite Tiefpaß (t1, t2) als frequenzbestimmende Elemente Metall-Oxid-Kondensatoren, Widerstände oder Stromquellen enthalten.
  5. Schaltungsanordnung nach Anspruch 3 oder 4, dadurch gekennzeichnet, daß sie eine Regel- oder eine Kompensationsschaltung zur Amplituden- oder Phasenfehlerkorrektur des ersten und zweiten Signals (s1, s2) enthält.
EP86110931A 1986-08-07 1986-08-07 Empfangsverfahren für frequenzmodulierte Stereo-Multiplex-Signale Expired - Lifetime EP0255553B1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE8686110931T DE3686156D1 (de) 1986-08-07 1986-08-07 Empfangsverfahren fuer frequenzmodulierte stereo-multiplex-signale.
EP86110931A EP0255553B1 (de) 1986-08-07 1986-08-07 Empfangsverfahren für frequenzmodulierte Stereo-Multiplex-Signale
US07/073,613 US4817167A (en) 1986-08-07 1987-07-15 Method of receiving frequency-modulated stereo multiplex signals
JP62195403A JPS6346023A (ja) 1986-08-07 1987-08-06 周波数変調ステレオ多重信号の受信方法および装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP86110931A EP0255553B1 (de) 1986-08-07 1986-08-07 Empfangsverfahren für frequenzmodulierte Stereo-Multiplex-Signale

Publications (2)

Publication Number Publication Date
EP0255553A1 EP0255553A1 (de) 1988-02-10
EP0255553B1 true EP0255553B1 (de) 1992-07-22

Family

ID=8195324

Family Applications (1)

Application Number Title Priority Date Filing Date
EP86110931A Expired - Lifetime EP0255553B1 (de) 1986-08-07 1986-08-07 Empfangsverfahren für frequenzmodulierte Stereo-Multiplex-Signale

Country Status (4)

Country Link
US (1) US4817167A (de)
EP (1) EP0255553B1 (de)
JP (1) JPS6346023A (de)
DE (1) DE3686156D1 (de)

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2219899A (en) * 1988-06-17 1989-12-20 Philips Electronic Associated A zero if receiver
IT1230401B (it) * 1989-06-15 1991-10-21 Italtel Spa Ricevitore a conversione diretta per segnali numerici e metodo per la demodulazione di tali segnali.
US5003621A (en) * 1989-11-02 1991-03-26 Motorola, Inc. Direct conversion FM receiver
DE4139525A1 (de) * 1991-11-30 1993-06-03 Blaupunkt Werke Gmbh Einrichtung zum empfang eines fm-signals
DE4206476A1 (de) * 1992-03-02 1993-09-09 Blaupunkt Werke Gmbh Schaltungsanordnung zur beseitigung von stoerungen bei stereo-rundfunk-signalen
US5642463A (en) * 1992-12-21 1997-06-24 Sharp Kabushiki Kaisha Stereophonic voice recording and playback device
EP0629040A1 (de) * 1993-06-10 1994-12-14 THOMSON multimedia Demodulator und Verfahren zur Demodulation mit einer Null-Zwischenfrequenz eines Hochfrequenzsignales
JP3281466B2 (ja) * 1993-11-10 2002-05-13 ローム株式会社 Fm受信機
US5606731A (en) * 1995-03-07 1997-02-25 Motorola, Inc. Zerox-IF receiver with tracking second local oscillator and demodulator phase locked loop oscillator
JPH11205172A (ja) * 1998-01-12 1999-07-30 Alps Electric Co Ltd 衛星放送受信機用チュ−ナ
JP3608936B2 (ja) * 1998-03-20 2005-01-12 富士通株式会社 多重無線送信装置,多重無線受信装置,多重無線送受信装置及び多重無線送受信システム
US6271780B1 (en) * 1998-10-08 2001-08-07 Cirrus Logic, Inc. Gain ranging analog-to-digital converter with error correction
GB9921811D0 (en) * 1999-09-16 1999-11-17 Mitel Semiconductor Ltd Digital tuner
US7072424B2 (en) * 2002-04-23 2006-07-04 Kyocera Wireless Corp. Adaptive direct conversion receiver
KR20050115258A (ko) * 2003-02-28 2005-12-07 실리콘 래버래토리즈 , 인코포레이티드 라디오 주파수 수신기를 위한 튜너 및 그와 관련된 방법
US7425995B2 (en) * 2003-02-28 2008-09-16 Silicon Laboratories, Inc. Tuner using a direct digital frequency synthesizer, television receiver using such a tuner, and method therefor
US7447493B2 (en) * 2003-02-28 2008-11-04 Silicon Laboratories, Inc. Tuner suitable for integration and method for tuning a radio frequency signal
US7358885B2 (en) 2003-02-28 2008-04-15 Silicon Laboratories, Inc. Mixing DAC architectures for a radio frequency receiver
US7676210B2 (en) * 2003-09-29 2010-03-09 Tod Paulus Method for performing dual mode image rejection calibration in a receiver
JP2006107584A (ja) 2004-10-01 2006-04-20 Konica Minolta Opto Inc 光学素子及び光スポット位置調整方法
US7977991B2 (en) * 2006-06-28 2011-07-12 Panasonic Corporation Adjacent channel interference detection apparatus and method
US8139771B1 (en) * 2006-10-12 2012-03-20 Marvell International Ltd. System and method for switching a mode of a receiver using block estimation
US7773968B2 (en) * 2006-11-30 2010-08-10 Silicon Laboratories, Inc. Interface/synchronization circuits for radio frequency receivers with mixing DAC architectures
US7599676B2 (en) * 2007-01-31 2009-10-06 Silicon Laboratories, Inc. Power consumption reduction techniques for an RF receiver implementing a mixing DAC architecture
US20080181337A1 (en) * 2007-01-31 2008-07-31 Silicon Laboratories, Inc. Spur and Distortion Management Techniques for an RF Receiver
US20080181340A1 (en) * 2007-01-31 2008-07-31 Silicon Laboratories, Inc. Spur Rejection Techniques for an RF Receiver
US20080180579A1 (en) * 2007-01-31 2008-07-31 Silicon Laboratories, Inc. Techniques for Improving Harmonic and Image Rejection Performance of an RF Receiver Mixing DAC

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1263113B (de) * 1965-12-31 1968-03-14 Standard Elektrik Lorenz Ag Empfaenger fuer frequenzmodulierte Signale
FR92198E (fr) * 1965-12-31 1968-10-04 Int Standard Electric Corp Récepteur pour signaux modulés en fréquence
US3701948A (en) * 1970-09-17 1972-10-31 North American Rockwell System for phase locking on a virtual carrier
DE2902952C2 (de) * 1979-01-26 1986-10-09 ANT Nachrichtentechnik GmbH, 7150 Backnang Direktmischendes Empfangssystem
DE3114063A1 (de) * 1981-04-07 1982-10-21 Licentia Patent-Verwaltungs-Gmbh, 6000 Frankfurt Empfangssystem
NL8200959A (nl) * 1982-03-09 1983-10-03 Philips Nv Fm-ontvanger voorzien van een frequentie gesleutelde lus.
GB2166324A (en) * 1984-10-25 1986-04-30 Stc Plc A multi-mode radio transceiver

Also Published As

Publication number Publication date
JPS6346023A (ja) 1988-02-26
US4817167A (en) 1989-03-28
DE3686156D1 (de) 1992-08-27
EP0255553A1 (de) 1988-02-10

Similar Documents

Publication Publication Date Title
EP0255553B1 (de) Empfangsverfahren für frequenzmodulierte Stereo-Multiplex-Signale
DE19964611B4 (de) Messgeräteempfänger für digital modulierte Radiofrequenzsignale
DE3341430C2 (de)
DE2902952C2 (de) Direktmischendes Empfangssystem
EP0084876A2 (de) Demodulatoranordnung zur Demodulation von in Frequenzmodulation auf einer Trägerfrequenzwelle enthaltener Signale
DE19639237A1 (de) Doppel-Fernsehtuner
DE2358288A1 (de) Empfaenger fuer frequenzmodulierte hf-signale
EP1657917B1 (de) Verfahren und Schaltungsanordnung zur Kanalfilterung analog oder digital modulierter TV-Signale
EP0213222B1 (de) Fernsehtonempfangsschaltung für mindestens einen in einem HF-signal enthaltenen Tonkanal
EP0385974B1 (de) Tonkanalschaltung für digitale fernsehempfänger
DE1591315A1 (de) Rundfunkuebertragungssystem und in diesem System anzuwendende Sender und Empfaenger zur UEbertragung stereophonischer Signale
DE2334650C3 (de) Trägerfrequenzmultiplexsystem
EP0122538B1 (de) Überlagerungsempfänger
DE3338993A1 (de) Anordnung zur demodulation des fernsehtons
DE2238246A1 (de) Fernsehempfaenger mit synchrondetektor
DE2837796A1 (de) Verfahren und schaltungsanordnung zur beseitigung von farbtraegerschwingungen aus dem ausgangssignal des helligkeitskanals
EP0602394B1 (de) Verfahren und Vorrichtung zur Korrektur der Phasen- und Amplitudenfehler bei direktmischenden Empfangseinrichtungen
EP0349660B1 (de) Frequenzumsetzungsschaltung für einen Farbfernsehkanal
DE3230606A1 (de) Huellkurvendetektor
EP0505867B1 (de) Verfahren zur Nachbarkanalunterdrückung beim Empfang frequenzmodulierter Sender
EP2070189A1 (de) Funkempfänger
DE69937018T2 (de) RDS Demodulator für den Empfang von Rundfunkprogrammen die Radiodatensignalen und Autofahrer Rundfunkinformationsignalen (ARI) enthalten, mit einer digitalen Filtervorrichtung die eine hohe Dämpfung des ARI Signals bewirkt
DE19523433C2 (de) Schaltungsanordnung zur Frequenzumsetzung
EP1192709B1 (de) Vorrichtung und verfahren zum demodulieren frequenzmodulierter signale
DE19525844C2 (de) Verfahren zur Frequenzumsetzung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT NL

RBV Designated contracting states (corrected)

Designated state(s): DE FR NL

17P Request for examination filed

Effective date: 19880725

17Q First examination report despatched

Effective date: 19910516

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR NL

REF Corresponds to:

Ref document number: 3686156

Country of ref document: DE

Date of ref document: 19920827

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: FR

Ref legal event code: D6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19980720

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19980728

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19980731

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000428

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20000301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000601

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST