EP0255039B1 - Under floor heating - Google Patents

Under floor heating Download PDF

Info

Publication number
EP0255039B1
EP0255039B1 EP87110655A EP87110655A EP0255039B1 EP 0255039 B1 EP0255039 B1 EP 0255039B1 EP 87110655 A EP87110655 A EP 87110655A EP 87110655 A EP87110655 A EP 87110655A EP 0255039 B1 EP0255039 B1 EP 0255039B1
Authority
EP
European Patent Office
Prior art keywords
floor
hot air
cavity
insulation layer
heat insulation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP87110655A
Other languages
German (de)
French (fr)
Other versions
EP0255039A2 (en
EP0255039A3 (en
Inventor
Dieter Dipl.-Ing.(Th) Thiel
Wolfgang Dipl.-Ing. Radtke
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Schmidt Reuter Ingenieurgesellschaft mbH and Co KG
Original Assignee
Schmidt Reuter Ingenieurgesellschaft mbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schmidt Reuter Ingenieurgesellschaft mbH and Co KG filed Critical Schmidt Reuter Ingenieurgesellschaft mbH and Co KG
Priority to AT87110655T priority Critical patent/ATE62337T1/en
Publication of EP0255039A2 publication Critical patent/EP0255039A2/en
Publication of EP0255039A3 publication Critical patent/EP0255039A3/en
Application granted granted Critical
Publication of EP0255039B1 publication Critical patent/EP0255039B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D5/00Hot-air central heating systems; Exhaust gas central heating systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D5/00Hot-air central heating systems; Exhaust gas central heating systems
    • F24D5/06Hot-air central heating systems; Exhaust gas central heating systems operating without discharge of hot air into the space or area to be heated
    • F24D5/10Hot-air central heating systems; Exhaust gas central heating systems operating without discharge of hot air into the space or area to be heated with hot air led through heat-exchange ducts in the walls, floor or ceiling

Definitions

  • the invention relates to underfloor heating according to the preamble of patent claim 1.
  • a hollow floor in which the upper floor rests with numerous support feet on a thermal insulation layer covering the sub-floor, so that a cavity is created between the thermal insulation layer and the upper floor.
  • This cavity is traversed by tubular warm air ducts, which direct warm air from a distributor to the vicinity of the outer walls of the building, where the warm air exits into the cavity. The warm air flows back to the distributor in the cavity, giving off its heat to the top floor, and is then discharged from the distributor.
  • the height of the cavity ie the height of the support feet, must be matched to the cross section of the hot air pipes used, since the Cavity must be able to accommodate the hot air pipes.
  • the volume of air supplied through the hot air lines is equal to the volume of air flowing through the cavity. If high air velocities are to be achieved in the cavity floor in order to achieve good heat dissipation to the top floor, large amounts of air have to be circulated and the hot air ducts have to have large cross sections. Large cross sections of the hot air pipes, however, in turn mean that the height of the cavity floor must be increased. High air velocities can only be achieved if a corresponding number of hot air pipes are installed. This is due to the fact that the cross-section of the hot air pipes influences the height of the cavity floor. Another disadvantage of the known heating system is that the hot air lines have to be laid between the feet of the cavity floor, so that the laying options are severely restricted or the distance between the feet has to be chosen to be relatively large
  • the invention has for its object to provide a floor heating according to the preamble of claim 1, which makes it possible to use air lines with a relatively large cross-section and a floor cavity with a relatively low height and good heat transfer.
  • the hot air lines are not laid in the cavity of the cavity floor, but in the Thermal insulation layer.
  • a cavity floor with a relatively low height of the support feet or with a small cavity volume can be used and that there is no dependency between the cross section of the hot air pipes and the cross section of the cavity.
  • the number of support feet can be chosen to be larger, with at least more than 30, better with more than 50 feet. This often means that there is no need for a pressure distribution plate above the insulation.
  • the shape of the feet can be optimized for improved heat transfer with additional ribs.
  • high air velocities, even air distribution and thus better heat dissipation to the top floor result in the cavity. Due to the high air velocities, a temperature reduction of approximately 20 ° C. between the inlet and the outlet of the cavity can be achieved.
  • a major advantage of the invention is that the hot air lines are laid in a lower level of the floor, while the heat is given off to the top floor in another level arranged above. This gives greater freedom with regard to the cross-sectional dimensions of the hot air pipes and also when laying the hot air pipes.
  • the hot air ducts can be laid regardless of the course of the rows of support legs and it is also not necessary to remove the support legs to make room for the warm air ducts.
  • the warm air line can be covered with a cover lying on the thermal insulation layer. Thereby an air cushion is created above the warm air pipe, which reduces the heat given off by the pipe in this area.
  • This cover is advantageously made of a sheet metal or rigid material, so that the floor load is distributed and support feet, which are arranged above the hot air pipe, are effectively supported. Furthermore, it is possible to arrange a pressure distribution layer over the entire thermal insulation layer, which also extends over the hot air ducts, so that the pressure of the support feet is transferred uniformly to the thermal insulation layer.
  • a hollow floor is shown in which the sub-floor 10 e.g. consists of a raw concrete ceiling on which the thermal insulation layer 11 rests.
  • the upper floor 12 rests on the thermal insulation layer 11 with numerous support feet 13.
  • the upper floor 12 is produced by placing a plastic film 14, which is profiled to form the support feet, on the thermal insulation layer 11 and covering it with a screed 15.
  • the screed 15 fills the downward bulges of the film 14 and forms a continuous wear layer over the support feet 13.
  • the floor cavity 16 which extends continuously through the entire floor and in the cable and the like. can be relocated.
  • the floor cavity 16 also serves for air routing and heating in a manner still to be explained.
  • the hot air line 18 preferably consists of a flexible hose, but rigid pipes can also be used.
  • the warm air line 18 rests directly on the underbody 10, but can also be separated from it by a thinner insulating layer (not shown).
  • FIG. 2 shows a top view of the sub-floor 10, on which a plurality of warm air lines 18 are laid, the thermal insulation layer 11 having just been produced from heat-insulating shaped plates 19.
  • the form plates 19 have the shape of an isosceles right triangle, so that two form plates form a square complete.
  • the areas between two hot air lines 18 are filled with the form plates 19. For this purpose, it is necessary in some cases to cut the shaped plate 19 to size. Due to the possibility of moving the triangles against each other, only their tips need to be cut off; there is less waste.
  • the hot air lines 18 are connected to the distributor 20, which is located, for example, in the middle of the building and extends vertically over several floors.
  • the hot air lines 18 extend laterally from the distributor 20.
  • the hot air lines 18 end at a distance from the outer wall 21 of the building.
  • Adjacent to the outer wall 21, air distributors 22 are let into the floor.
  • a distribution space 23 extends in front of the air distributors 22, into which the outlets of a plurality of hot air lines 18 open.
  • the distribution space 23 is free of the material of the thermal insulation layer 11, so that it is delimited at the bottom by the raw ceiling of the subfloor 10 and at the top by the top floor 12 (FIG. 4).
  • the end of the top floor 12 is supported by a support strip 24 of the air passage 22.
  • the air passage 22 consists of a box, the top 25 of which is flush with the top of the top 12 and which rests on the bottom 10 with supports 26. On the side of the air passage 22 facing the distribution space 13 there is an opening with a regulating flap 27. A part of the air which leaves the warm air line 18 passes from the distribution space 23 into the passage 22 and another part of this air reaches the cavity 16 From the passage 22 leads Outlet 28 into the room to be heated, so that 13 warm air is supplied to this room in the vicinity of the outer wall. The other part of the warm air spreads in the cavity 16 in order to flow back to the distributor 20. Since the cavity 16 has only a small height, high air speeds result, so that the warm air releases a large part of its heat to the top floor 12. Due to the small cavity height, which is considerably smaller than the diameter of the warm air lines 18, there is also a large lower surface of this upper floor, based on the volume of the upper floor, which also favors the heat emission.
  • the distributor 20 has a vertical tube 29 which, at the level of the heat insulation layer 11, has a plurality of radially outgoing connecting pieces 30, to each of which a warm air line 18 can be connected.
  • the tube 29 is used to supply warm air to the hot air lines 18.
  • This tube 29 is coaxially surrounded by a jacket tube 31.
  • the casing tube 31 extends through the underbody 10.
  • the casing tube 31 has a radially projecting rectangular flange 32 below which there are lateral inlet openings 33 through which the air can flow downward from the cavity 16 in the casing tube 31.
  • the flange 32 can be covered with a plate 34 which is flush with the top of the top floor 12. Supports 35, which rest on the underbody 10, support the peripheral region of the flange 32.
  • hot air is supplied to the hot air lines 18 through the distributor 20.
  • the air flows into the distribution space 23 and from there to Part through the air passage 22 into the room and partly into the bottom cavity 16.
  • the air gives off some of its heat to the top floor 12 as it flows back to the manifold 20 to be in the annulus between the tube 29 and the jacket tube 31 to be suctioned off.
  • An impact sound insulation layer (not shown) can be arranged under the heat insulation layer 11. Furthermore, a pressure distribution layer is expediently arranged above the heat insulation layer 11 so that the support feet 13 do not press into the heat insulation layer 11. 1, the channel 17, in which the warm air line 18 is laid, is covered with a plate-shaped cover 36, which is supported on the top of the thermal insulation layer 11. This prevents the support feet from being hollow over the hot air line 18.
  • the support feet 13 are part of the heat insulation layer 11, to which they are integrally molded.
  • the support feet 13 thus project upward from the thermal insulation layer 11 and their upper ends are covered with a cover plate 37 which delimits the cavity 16 at the top.
  • Above the cover plate 37 is the screed layer 38, which together with the cover plate forms the top floor 12.
  • the hot air lines 18, which are located in the channels 17 of the heat insulation layer 11, have a rectangular cross section.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Central Heating Systems (AREA)
  • Floor Finish (AREA)
  • Steam Or Hot-Water Central Heating Systems (AREA)
  • Duct Arrangements (AREA)

Abstract

A cavity floor comprises the underfloor (10), covered by a heat insulating layer (11), on which the upper floor (12) rests with supporting feet (13). Provided in the heat insulating layer (11) are channels (17), in which there are hot air ducts (18). The hot air fed in flows through the hot air duct (18) into a distributing space and from there into the cavity floor (16), which is arranged on a different level than the hot air ducts (18). The cross-section of the hot air ducts (18) is independent of the height of the supporting feet (13). The supporting feet (13) can be of a small height, thereby increasing the air velocity in the floor cavity (16) and improving heat transfer. <IMAGE>

Description

Fußboden-FlächenheizungFloor heating

Die Erfindung betrifft eine Fußboden-Flächenheizung nach dem Oberbegriff des Patentanspruchs 1.The invention relates to underfloor heating according to the preamble of patent claim 1.

Bei einer bekannten Flächenheizung dieser Art (DE-OS 33 12 189) ist ein Hohlboden vorgesehen, bei dem der Oberboden mit zahlreichen Tragfüßen auf einer den Unterboden bedeckenden Wärmedämmschicht ruht, so daß zwischen der Wärmedämmschicht und dem Oberboden ein Hohlraum entsteht. Dieser Hohlraum wird von rohrförmigen Warmluftleitungen durchzogen, die Warmluft von einem Verteiler bis in die Nähe der Außenwände des Gebäudes leiten, wo die Warmluft in den Hohlraum hinein austritt. Die Warmluft strömt im Hohlraum zum Verteiler zurück, wobei sie ihre Wärme an den Oberboden abgibt, und wird anschließend vom Verteiler aus abgeführt. Bei einer derartigen Flächenheizung muß die Höhe des Hohlraums, d.h. die Höhe der Tragfüße, auf den Querschnitt der benutzten Warmluftleitungen abgestimmt sein, da der Hohlraum in der Lage sein muß, die Warmluftleitungen aufzunehmen. Das durch die Warmluftleitungen zugeführte Luftvolumen ist gleich dem Luftvolumen, das den Hohlraum durchströmt. Wenn hohe Luftgeschwindigkeiten im Hohlraumboden erreicht werden sollen, um eine gute Wärmeabgabe an den Oberboden zu erreichen, müssen große Luftmengen umgewälzt werden und dazu die Warmluftleitungen große Querschnitte haben. Große Querschnitte der Warmluftleitungen führen aber wiederum dazu, daß die Höhe des Hohlraumbodens vergrößert werden muß. Hohe Luftgeschwindigkeiten lassen sich somit nur dann erzielen, wenn entsprechend viele Warmluftleitungen verlegt werden. Dies hängt damit zusammen, daß der Querschnitt der Warmluftleitungen die Höhe des Hohlraumbodens beeinflußt. Ein weiterer Nachteil des bekannten Heizungssystems besteht darin, daß die Warmluftleitungen zwischen den Füßen des Hohlraumbodens verlegt werden müssen, so daß die Verlegemöglichkeiten stark eingeschränkt sind bzw. der Abstand der Füße relativ groß gewählt werden müssenIn a known surface heating of this type (DE-OS 33 12 189) a hollow floor is provided, in which the upper floor rests with numerous support feet on a thermal insulation layer covering the sub-floor, so that a cavity is created between the thermal insulation layer and the upper floor. This cavity is traversed by tubular warm air ducts, which direct warm air from a distributor to the vicinity of the outer walls of the building, where the warm air exits into the cavity. The warm air flows back to the distributor in the cavity, giving off its heat to the top floor, and is then discharged from the distributor. In such a surface heating, the height of the cavity, ie the height of the support feet, must be matched to the cross section of the hot air pipes used, since the Cavity must be able to accommodate the hot air pipes. The volume of air supplied through the hot air lines is equal to the volume of air flowing through the cavity. If high air velocities are to be achieved in the cavity floor in order to achieve good heat dissipation to the top floor, large amounts of air have to be circulated and the hot air ducts have to have large cross sections. Large cross sections of the hot air pipes, however, in turn mean that the height of the cavity floor must be increased. High air velocities can only be achieved if a corresponding number of hot air pipes are installed. This is due to the fact that the cross-section of the hot air pipes influences the height of the cavity floor. Another disadvantage of the known heating system is that the hot air lines have to be laid between the feet of the cavity floor, so that the laying options are severely restricted or the distance between the feet has to be chosen to be relatively large

Der Erfindung liegt die Aufgabe zugrunde, eine Fußboden-Flächenheizung nach dem Oberbegriff des Patentanspruchs 1 zu schaffen, die es ermöglicht, Luftleitungen mit relativ großem Querschnitt und einen Bodenhohlraum mit relativ geringer Höhe und gutem Wärmeübergang zu verwenden.The invention has for its object to provide a floor heating according to the preamble of claim 1, which makes it possible to use air lines with a relatively large cross-section and a floor cavity with a relatively low height and good heat transfer.

Die Lösung dieser Aufgabe erfolgt erfindungsgemäß durch die Merkmale des kennzeichnenden Teils des Patentanspruchs 1.This object is achieved according to the invention by the features of the characterizing part of patent claim 1.

Nach der Erfindung sind die Warmluftleitungen nicht im Hohlraum des Hohlraumbodens verlegt, sondern in der Wärmedämmschicht. Dies hat zur Folge, daß ein Hohlraumboden mit relativ geringer Höhe der Stützfüße bzw. mit kleinem Hohlraumvolumen benutzt werden kann und daß keine Abhängigkeit zwischen dem Querschnitt der Warmluftleitungen und dem Querschnitt des Hohlraums besteht. Dadurch kann die Zahl der Stützfüße größer gewählt werden, mit mindestens mehr als 30, besser mit mehr als 50 Füßen. Häufig kann dadurch auf ein Druckverteilblech oberhalb der Isolierung verzichtet werden. Die Form der Füße kann für einen verbesserten Wärmeübergang mit zusätzlichen Rippen optimiert werden. Infolge des geringen Hohlraumquerschnittes ergeben sich in dem Hohlraum hohe Luftgeschwindigkeiten, eine gleichmäßige Luftverteilung und somit eine bessere Wärmeabgabe an den Oberboden. Durch die hohen Luftgeschwindigkeiten kann man eine Temperaturabsenkung zwischen dem Einlaß und dem Auslaß des Hohlraums von etwa 20°C erreichen.According to the invention, the hot air lines are not laid in the cavity of the cavity floor, but in the Thermal insulation layer. This has the consequence that a cavity floor with a relatively low height of the support feet or with a small cavity volume can be used and that there is no dependency between the cross section of the hot air pipes and the cross section of the cavity. As a result, the number of support feet can be chosen to be larger, with at least more than 30, better with more than 50 feet. This often means that there is no need for a pressure distribution plate above the insulation. The shape of the feet can be optimized for improved heat transfer with additional ribs. As a result of the small cross-section of the cavity, high air velocities, even air distribution and thus better heat dissipation to the top floor result in the cavity. Due to the high air velocities, a temperature reduction of approximately 20 ° C. between the inlet and the outlet of the cavity can be achieved.

Ein wesentlicher Vorteil der Erfindung besteht darin, daß die Warmluftleitungen in einer unteren Ebene des Fußbodens verlegt sind, während die Wärmeabgabe an den Oberboden in einer darüber angeordneten anderen Ebene erfolgt. Dadurch besteht eine größere Freiheit bezüglich der Querschnittsabmessungen der Warmluftleitungen und auch bei der Verlegung der Warmluftleitungen. Die Warmluftleitungen können unabhängig von dem Verlauf der Stützfußreihen verlegt werden und es ist auch nicht erforderlich, Stützfüße zu entfernen, um Platz für die Warmluftleitungen zu schaffen.A major advantage of the invention is that the hot air lines are laid in a lower level of the floor, while the heat is given off to the top floor in another level arranged above. This gives greater freedom with regard to the cross-sectional dimensions of the hot air pipes and also when laying the hot air pipes. The hot air ducts can be laid regardless of the course of the rows of support legs and it is also not necessary to remove the support legs to make room for the warm air ducts.

Die Warmluftleitung kann mit einer auf der Wärmedämmschicht aufliegenden Abdeckung bedeckt sein. Dadurch entsteht über der Warmluftleitung ein Luftpolster, welches die Wärmeabgabe der Leitung in diesem Bereich reduziert. Vorteilhaft besteht diese Abdeckung aus einem Blech oder steifem Material, so daß sich die Fußbodenbelastung verteilt und Tragfüße, die oberhalb der Warmluftleitung angeordnet sind, wirksam abgestützt werden. Ferner ist es möglich, über der gesamten Wärmedämmschicht eine Druckverteilschicht anzuordnen, die sich auch über die Warmluftleitungen erstreckt, so daß der Druck der Tragfüße gleichmäßig auf die Wärmedämmschicht übertragen wird.The warm air line can be covered with a cover lying on the thermal insulation layer. Thereby an air cushion is created above the warm air pipe, which reduces the heat given off by the pipe in this area. This cover is advantageously made of a sheet metal or rigid material, so that the floor load is distributed and support feet, which are arranged above the hot air pipe, are effectively supported. Furthermore, it is possible to arrange a pressure distribution layer over the entire thermal insulation layer, which also extends over the hot air ducts, so that the pressure of the support feet is transferred uniformly to the thermal insulation layer.

Im folgenden werden unter Bezugnahme auf die Zeichnungen Ausführungsbeispiele der Erfindung näher erläutert.Exemplary embodiments of the invention are explained in more detail below with reference to the drawings.

Es zeigen:

Fig. 1
einen schematischen Vertikalschnitt durch eine Fußboden-Flächenheizung,
Fig. 2
eine Draufsicht der Flächenheizung,
Fig. 3
einen Vertikalschnitt im Bereich des Luftverteilers,
Fig. 4
einen Schnitt entlang der Linie IV-IV von Fig. 2 zur Veranschaulichung der Luftaufteilung am Auslaß einer Warmluftleitung, und
Fig. 5
einen Vertikalschnitt durch ein Ausführungsbeispiel, bei dem die Tragfüße Bestandteil der Wärmedämmschicht sind.
Show it:
Fig. 1
a schematic vertical section through a floor heating,
Fig. 2
a top view of the surface heating,
Fig. 3
a vertical section in the area of the air distributor,
Fig. 4
a section along the line IV-IV of Fig. 2 to illustrate the air distribution at the outlet of a hot air line, and
Fig. 5
a vertical section through an embodiment in which the support feet are part of the thermal barrier coating.

In Fig. 1 ist ein Hohlboden dargestellt, bei dem der Unterboden 10 z.B. aus einer Rohbetondecke besteht, auf der die Wärmedämmschicht 11 aufliegt. Der Oberboden 12 ruht mit zahlreichen Tragfüßen 13 auf der Wärmedämmschicht 11. Der Oberboden 12 wird hergestellt, indem eine Kunststoffolie 14, die zur Bildung der Tragfüße profiliert ist, auf die Wärmedämmschicht 11 gestellt und mit einem Estrich 15 bedeckt wird. Der Estrich 15 füllt die nach unten gerichteten Ausbauchungen der Folie 14 aus und bildet über den Tragfüßen 13 eine durchgehende Trittschicht. Zwischen der Wärmedämmschicht 11 und dem Oberboden 12 befindet sich der Bodenhohlraum 16, der sich durchgehend durch den gesamten Fußboden erstreckt und in dem Kabel u.dgl. verlegt werden können. Andererseits dient der Bodenhohlraum 16 in noch zu erläuternder Weise auch der Luftführung und Beheizung.In Fig. 1 a hollow floor is shown in which the sub-floor 10 e.g. consists of a raw concrete ceiling on which the thermal insulation layer 11 rests. The upper floor 12 rests on the thermal insulation layer 11 with numerous support feet 13. The upper floor 12 is produced by placing a plastic film 14, which is profiled to form the support feet, on the thermal insulation layer 11 and covering it with a screed 15. The screed 15 fills the downward bulges of the film 14 and forms a continuous wear layer over the support feet 13. Between the thermal insulation layer 11 and the top floor 12 there is the floor cavity 16, which extends continuously through the entire floor and in the cable and the like. can be relocated. On the other hand, the floor cavity 16 also serves for air routing and heating in a manner still to be explained.

In der Wärmedämmschicht 11 sind Kanäle 17 freigelassen, in denen die rohrförmigen Warmluftleitungen 18 verlegt sind. Die Warmluftleitung 18 besteht vorzugsweise aus einem flexiblen Schlauch, jedoch können auch starre Rohre benutzt werden. Die Warmluftleitung 18 ruht unmittelbar auf dem Unterboden 10, kann von diesem jedoch auch durch eine (nicht dargestellte) dünnere Isolierschicht getrennt sein.Channels 17 in which the tubular warm air lines 18 are laid are left free in the thermal insulation layer 11. The hot air line 18 preferably consists of a flexible hose, but rigid pipes can also be used. The warm air line 18 rests directly on the underbody 10, but can also be separated from it by a thinner insulating layer (not shown).

Fig. 2 zeigt eine Draufsicht auf den Unterboden 10, auf dem mehrere Warmluftleitungen 18 verlegt sind, wobei soeben die Wärmedämmschicht 11 aus wärmedämmenden Formplatten 19 hergestellt wird. Die Formplatten 19 haben die Form eines gleichschenkligen rechtwinkligen Dreiecks, so daß sich zwei Formplatten zu einem Quadrat ergänzen. Mit den Formplatten 19 werden die Flächen zwischen zwei Warmluftleitungen 18 ausgefüllt. Hierzu ist es in einigen Fällen erforderlich, die Formplatte 19 auf Maß abzuschneiden. Durch die Möglichkeit des Gegeneinanderverschiebens der Dreiecke brauchen nur deren Spitzen abgeschnitten zu werden; es tritt weniger Verschnitt auf.FIG. 2 shows a top view of the sub-floor 10, on which a plurality of warm air lines 18 are laid, the thermal insulation layer 11 having just been produced from heat-insulating shaped plates 19. The form plates 19 have the shape of an isosceles right triangle, so that two form plates form a square complete. The areas between two hot air lines 18 are filled with the form plates 19. For this purpose, it is necessary in some cases to cut the shaped plate 19 to size. Due to the possibility of moving the triangles against each other, only their tips need to be cut off; there is less waste.

Die Warmluftleitungen 18 sind an den Verteiler 20 angeschlossen, der sich beispielsweise in der Mitte des Gebäudes befindet und sich vertikal über mehrere Etagen erstreckt. Von dem Verteiler 20 gehen die Warmluftleitungen 18 seitlich ab. Die Warmluftleitungen 18 enden im Abstand von der Außenwand 21 des Gebäudes. Angrenzend an die Außenwand 21 sind in den Boden Luftverteiler 22 eingelassen. Vor den Luftverteilern 22 erstreckt sich ein Verteilerraum 23, in den die Auslässe mehrerer Warmluftleitungen 18 münden. Der Verteilerraum 23 ist von dem Material der Wärmedämmschicht 11 frei, so daß er nach unten durch die Rohdecke des Unterbodens 10 und nach oben durch den Oberboden 12 begrenzt wird (Fig. 4). Das Ende des Oberbodens 12 wird durch eine Stützleiste 24 des Luftdurchlasses 22 abgestützt.The hot air lines 18 are connected to the distributor 20, which is located, for example, in the middle of the building and extends vertically over several floors. The hot air lines 18 extend laterally from the distributor 20. The hot air lines 18 end at a distance from the outer wall 21 of the building. Adjacent to the outer wall 21, air distributors 22 are let into the floor. A distribution space 23 extends in front of the air distributors 22, into which the outlets of a plurality of hot air lines 18 open. The distribution space 23 is free of the material of the thermal insulation layer 11, so that it is delimited at the bottom by the raw ceiling of the subfloor 10 and at the top by the top floor 12 (FIG. 4). The end of the top floor 12 is supported by a support strip 24 of the air passage 22.

Der Luftdurchlaß 22 besteht aus einem Kasten, dessen Oberseite 25 bündig mit der Oberseite des Oberbodens 12 verläuft und der mit Stützen 26 auf dem Unterboden 10 ruht. An der dem Verteilerraum 13 zugewandten Seite des Luftdurchlasses 22 befindet sich eine Öffnung mit einer Regulierklappe 27. Ein Teil der Luft, die die Warmluftleitung 18 verläßt, gelangt aus dem Verteilerraum 23 in den Durchlaß 22 und ein anderer Teil dieser Luft gelangt in den Hohlraum 16. Vom Durchlaß 22 führt ein Auslaß 28 in den zu beheizenden Raum, so daß diesem Raum in der Nähe des Außenwand 13 Warmluft zugeführt wird. Der andere Teil der Warmluft verbreitet sich im Hohlraum 16, um zum Verteiler 20 zurückzuströmen. Da der Hohlraum 16 eine nur geringe Höhe hat, ergeben sich hohe Luftgeschwindigkeiten, so daß die Warmluft einen großen Teil ihrer Wärme an den Oberboden 12 abgibt. Durch die geringe Hohlraumhöhe, die wesentlich kleiner ist als der Durchmesser der Warmluftleitungen 18, ergibt sich auch eine - bezogen auf das Volumen des Oberbodens - große Unterfläche dieses Oberbodens, wodurch die Wärmeabgabe ebenfalls begünstigt wird.The air passage 22 consists of a box, the top 25 of which is flush with the top of the top 12 and which rests on the bottom 10 with supports 26. On the side of the air passage 22 facing the distribution space 13 there is an opening with a regulating flap 27. A part of the air which leaves the warm air line 18 passes from the distribution space 23 into the passage 22 and another part of this air reaches the cavity 16 From the passage 22 leads Outlet 28 into the room to be heated, so that 13 warm air is supplied to this room in the vicinity of the outer wall. The other part of the warm air spreads in the cavity 16 in order to flow back to the distributor 20. Since the cavity 16 has only a small height, high air speeds result, so that the warm air releases a large part of its heat to the top floor 12. Due to the small cavity height, which is considerably smaller than the diameter of the warm air lines 18, there is also a large lower surface of this upper floor, based on the volume of the upper floor, which also favors the heat emission.

Wie Fig. 3 zeigt, weist der Verteiler 20 ein vertikales Rohr 29 auf, das in der Höhe der Wärmedämmschicht 11 mehrere radial abgehende Stutzen 30 aufweist, an die jeweils eine Warmluftleitung 18 angeschlossen werden kann. Das Rohr 29 dient zur Zufuhr von Warmluft zu den Warmluftleitungen 18. Dieses Rohr 29 ist von einem Mantelrohr 31 koaxial umgeben. Das Mantelrohr 31 erstreckt sich durch den Unterboden 10 hindurch. Das Mantelrohr 31 weist einen radial abstehenden rechteckigen Flansch 32 auf unter dem sich seitliche Einlaßöffnungen 33 befinden, durch welche die Luft aus dem Hohlraum 16 im Mantelrohr 31 nach unten abströmen kann. Der Flansch 32 kann mit einer Platte 34 bedeckt werden, die bündig mit der Oberseite des Oberbodens 12 abschließt. Stützen 35, die auf dem Unterboden 10 ruhen, stützen den Umfangsbereich des Flansches 32 ab.As shown in FIG. 3, the distributor 20 has a vertical tube 29 which, at the level of the heat insulation layer 11, has a plurality of radially outgoing connecting pieces 30, to each of which a warm air line 18 can be connected. The tube 29 is used to supply warm air to the hot air lines 18. This tube 29 is coaxially surrounded by a jacket tube 31. The casing tube 31 extends through the underbody 10. The casing tube 31 has a radially projecting rectangular flange 32 below which there are lateral inlet openings 33 through which the air can flow downward from the cavity 16 in the casing tube 31. The flange 32 can be covered with a plate 34 which is flush with the top of the top floor 12. Supports 35, which rest on the underbody 10, support the peripheral region of the flange 32.

Beim Betrieb der Flächenheizung wird Warmluft durch den Verteiler 20 den Warmluftleitungen 18 zugeführt. Die Luft strömt in den Verteilerraum 23 und von dort zum Teil durch den Luftdurchlaß 22 in den Raum und zum Teil in den Bodenhohlraum 16. Im Bodenhohlraum 16 gibt die Luft einen Teil ihrer Wärme an den Oberboden 12 ab, während sie zum Verteiler 20 zurückströmt, um in dem Ringraum zwischen dem Rohr 29 und dem Mantelrohr 31 abgesaugt zu werden.When the surface heating is operating, hot air is supplied to the hot air lines 18 through the distributor 20. The air flows into the distribution space 23 and from there to Part through the air passage 22 into the room and partly into the bottom cavity 16. In the bottom cavity 16, the air gives off some of its heat to the top floor 12 as it flows back to the manifold 20 to be in the annulus between the tube 29 and the jacket tube 31 to be suctioned off.

Unter der Wärmedämmschicht 11 kann eine (nicht dargestellte) Trittschall-Dämmschicht angeordnet sein. Ferner ist zweckmäßigerweise über der Wärmedämmschicht 11 eine Druckverteilschicht angeordnet, damit die Tragfüße 13 sich nicht in die Wärmedämmschicht 11 eindrücken. Gemäß Fig. 1 ist der Kanal 17, in dem die Warmluftleitung 18 verlegt ist, mit einer plattenförmigen Abdeckung 36 bedeckt, die sich auf der Oberseite der Wärmedämmschicht 11 abstützt. Dadurch wird verhindert, daß die Tragfüße über der Warmluftleitung 18 hohl stehen.An impact sound insulation layer (not shown) can be arranged under the heat insulation layer 11. Furthermore, a pressure distribution layer is expediently arranged above the heat insulation layer 11 so that the support feet 13 do not press into the heat insulation layer 11. 1, the channel 17, in which the warm air line 18 is laid, is covered with a plate-shaped cover 36, which is supported on the top of the thermal insulation layer 11. This prevents the support feet from being hollow over the hot air line 18.

Bei dem Ausführungsbeispiel von Fig. 5 sind die Tragfüße 13 Bestandteil der Wärmedämmschicht 11, der sie einstückig angeformt sind. Die Tragfüße 13 ragen also von der Wärmedämmschicht 11 nach oben auf und ihre oberen Enden sind mit einer Abdeckplatte 37 bedeckt, die den Hohlraum 16 nach oben begrenzt. Über der Abdeckplatte 37 befindet sich die Estrichschicht 38, die zusammen mit der Abdeckplatte den Oberboden 12 bildet. Bei diesem Ausführungsbeispiel haben die Warmluftleitungen 18, die sich in den Kanälen 17 der Wärmedämmschicht 11 befinden, rechteckigen Querschnitt.In the embodiment of Fig. 5, the support feet 13 are part of the heat insulation layer 11, to which they are integrally molded. The support feet 13 thus project upward from the thermal insulation layer 11 and their upper ends are covered with a cover plate 37 which delimits the cavity 16 at the top. Above the cover plate 37 is the screed layer 38, which together with the cover plate forms the top floor 12. In this embodiment, the hot air lines 18, which are located in the channels 17 of the heat insulation layer 11, have a rectangular cross section.

Claims (7)

  1. A floor panel heating comprising
    - a heat insulation layer (11) laid on an even lower floor (10),
    - an upper floor (12) laid on said heat insulating layer (11), resting on a plurality of support feet (13) to form a floor cavity (16) extending over the entire floor surface,
    - and at least one tubular hot air conduit (18) consisting of a hose or a pipe which is laid between the even lower floor (10) and the upper floor (12) and which has its outlet connected to the floor cavity (16),
    characterized in that
    said hot air conduit (18) is laid within a channel (17) of said heat insulation layer (11).
  2. The floor panel heating according to claim 1, characterized in that said hot air conduit (18) is covered with a cover (36) lying on said heat insulation layer (11).
  3. The floor panel heating according to claim 1 or 2, characterized in that the number of said support feet (13) is at least 30 per m².
  4. The floor panel heating according to one of claims 1 - 3, characterized in that said support feet (13) are provided with ridges.
  5. The floor panel heating according to one of claims 1 - 4, characterized in that the outlet of said hot air conduit (18) opens to a distributor chamber (23) free of said heat insulation layer (11), which is connected to said floor cavity (16) and to an air passage (22) leading into the room to be heated, said air passage (22) having a regulating member for changing the quantity of air flowing into the room.
  6. The floor panel heating according to one of claims 1 - 5, characterized in that said heat insulation layer (11) consists of triangular shaped bodies.
  7. The floor panel heating according to one of claims 1 - 6, characterized in that said heat insulation layer (11) consists of shaped bodies (19) having air guiding members.
EP87110655A 1986-07-31 1987-07-23 Under floor heating Expired - Lifetime EP0255039B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT87110655T ATE62337T1 (en) 1986-07-31 1987-07-23 UNDERFLOOR HEATING.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3625851A DE3625851C1 (en) 1986-07-31 1986-07-31 Underfloor heating with a thermal insulation layer laid on a sub-floor
DE3625851 1986-07-31

Publications (3)

Publication Number Publication Date
EP0255039A2 EP0255039A2 (en) 1988-02-03
EP0255039A3 EP0255039A3 (en) 1988-08-17
EP0255039B1 true EP0255039B1 (en) 1991-04-03

Family

ID=6306356

Family Applications (1)

Application Number Title Priority Date Filing Date
EP87110655A Expired - Lifetime EP0255039B1 (en) 1986-07-31 1987-07-23 Under floor heating

Country Status (3)

Country Link
EP (1) EP0255039B1 (en)
AT (1) ATE62337T1 (en)
DE (2) DE3625851C1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0506678A1 (en) * 1989-11-08 1992-10-07 Legalett Svenska Ab Flow distribution conduit means
EP0543129B1 (en) * 1991-11-20 1995-12-27 Claude Desvouas Installation for heating or cooling of a building
DE4433664A1 (en) * 1994-09-21 1996-03-28 Buna Sow Leuna Olefinverb Gmbh Thermoplastic molding compounds with gas barrier properties
DE19738172C1 (en) * 1997-09-01 1999-01-21 D D C Planungs Entwicklungs Un Temperature control for building
DE102010048939A1 (en) * 2010-10-19 2012-04-19 Bernd Griesinger Air distribution system for buildings

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1299389B (en) * 1965-06-02 1969-09-18 Pfau Kg A Warm air heating system for churches
DE2241836A1 (en) * 1972-08-25 1974-03-07 Mahr Soehne Gmbh Theo PIPE BATTERIES FOR UNDERFLOOR HOT AIR HEATING
AT358773B (en) * 1977-10-25 1980-09-25 Kruegler Emil Dipl Ing WALL HEATING SYSTEM
DE2930426C2 (en) * 1979-07-26 1986-08-14 Betonwerk Kleinwallstadt Richard Weitz GmbH, 8751 Kleinwallstadt Floor element for underfloor heating
DE3108106A1 (en) * 1981-03-04 1982-12-09 Carl Martin 7800 Freiburg Hansen Heat storage plate
DE3312189A1 (en) * 1982-07-22 1984-01-26 Schmidt Reuter Ingenieurgesellschaft mbH & Co KG, 5000 Köln Surface heating appliance

Also Published As

Publication number Publication date
ATE62337T1 (en) 1991-04-15
DE3625851C1 (en) 1988-01-21
DE3769029D1 (en) 1991-05-08
EP0255039A2 (en) 1988-02-03
EP0255039A3 (en) 1988-08-17

Similar Documents

Publication Publication Date Title
EP1521935A1 (en) Method for producing heat exchanger elements, heat exchanger elements and method for assembling such elements
DE2402807A1 (en) COOLING TOWER WITH INCLINED THIN FILM BED
EP0113477B1 (en) Under floor heating
DE3241842A1 (en) PLATE-SHAPED HEAT EXCHANGER
EP0255039B1 (en) Under floor heating
EP0038490B1 (en) Apparatus for the transfer of heat or cold to a transport fluid flowing through the apparatus
EP0046972B1 (en) Heating panel
DE3616733C2 (en)
EP0273191B1 (en) Liquid distributor for mass and heat transfer columns
WO1983000544A1 (en) Installation for tempering a room
DE3047034C2 (en) Flexible film web with molded channels for pipes or cables
DE3322075C2 (en) Device for temperature control of the air within a room
DE2517611A1 (en) Twin plate type panel radiator - has front and back plates forming air flow channels and interlinking hot water supply pipes
DE2641245A1 (en) Underfloor heating tube retaining sheet - is of foam plastics with pattern of grooves for guiding feed and return tubes
DE3113641C2 (en) Heating or cooling mats with a heating or cooling medium flowing through them for use as ceiling, floor or wall heating
DE2222986A1 (en) Air distribution device
DE3010932C2 (en) Underfloor heating
EP0126932A2 (en) Hot air floor heating system
DE3443214A1 (en) Surface heating system
DE1679539A1 (en) Distribution channel for excess air from a ventilation and air conditioning system
DE3347973C2 (en) Air floor-heating system
EP1808646A2 (en) Air conditioning device for rooms and for buildings
CH652193A5 (en) Radiant heating arrangement
AT235530B (en) Building ceiling
DE3531117A1 (en) Slab-laying system

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH DE ES FR GB GR IT LI LU NL SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH DE ES FR GB GR IT LI LU NL SE

17P Request for examination filed

Effective date: 19881228

17Q First examination report despatched

Effective date: 19891214

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE ES FR GB GR IT LI LU NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRE;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.SCRIBED TIME-LIMIT

Effective date: 19910403

Ref country code: NL

Effective date: 19910403

Ref country code: SE

Effective date: 19910403

Ref country code: BE

Effective date: 19910403

Ref country code: GB

Effective date: 19910403

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19910403

Ref country code: FR

Effective date: 19910403

REF Corresponds to:

Ref document number: 62337

Country of ref document: AT

Date of ref document: 19910415

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3769029

Country of ref document: DE

Date of ref document: 19910508

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19910714

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Effective date: 19910723

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19910731

EN Fr: translation not filed
NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19910925

Year of fee payment: 5

GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19920731

Ref country code: CH

Effective date: 19920731

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19930818

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19950401