EP0254828B1 - Einrichtung zur Fernablesung elektronischer Geräte - Google Patents

Einrichtung zur Fernablesung elektronischer Geräte Download PDF

Info

Publication number
EP0254828B1
EP0254828B1 EP87106971A EP87106971A EP0254828B1 EP 0254828 B1 EP0254828 B1 EP 0254828B1 EP 87106971 A EP87106971 A EP 87106971A EP 87106971 A EP87106971 A EP 87106971A EP 0254828 B1 EP0254828 B1 EP 0254828B1
Authority
EP
European Patent Office
Prior art keywords
transmitter
receiver
transformer
sender
oscillator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP87106971A
Other languages
English (en)
French (fr)
Other versions
EP0254828A1 (de
Inventor
Niels-Thorup Andersen
Walter Trächslin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Electrowatt Technology Innovation AG
Original Assignee
Landis and Gyr Betriebs AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Landis and Gyr Betriebs AG filed Critical Landis and Gyr Betriebs AG
Priority to AT87106971T priority Critical patent/ATE60683T1/de
Publication of EP0254828A1 publication Critical patent/EP0254828A1/de
Application granted granted Critical
Publication of EP0254828B1 publication Critical patent/EP0254828B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08CTRANSMISSION SYSTEMS FOR MEASURED VALUES, CONTROL OR SIMILAR SIGNALS
    • G08C17/00Arrangements for transmitting signals characterised by the use of a wireless electrical link
    • G08C17/04Arrangements for transmitting signals characterised by the use of a wireless electrical link using magnetically coupled devices

Definitions

  • the invention relates to a device for remote reading of electronic measuring devices according to the preamble of claim 1.
  • Devices for remote wired reading of electronic measuring devices are generally known per se and are widespread.
  • equipment in permanently installed, calibratable measuring devices, e.g. kWh meter for thermal or electrical energy, required to obtain the information necessary for the above-mentioned activities from the measuring device, as described in FERNWAERME INTERNATIONAL Volume 9 (1980), No. 1, p. 58 ff. Is described.
  • Transmissions of the known type e.g. according to CH-PS 638 043 or DE-PS 34 28 344, have the decisive disadvantage for electronic measuring devices that a disproportionate amount of energy is required for an information transmission compared to the other functions of the measuring device. This is usually negligible for electronic measuring devices with a mains connection, but no longer, for example, for measuring devices powered by batteries.
  • DE-A-31 07 928 which is equivalent to FR-A-2 500 944, describes a cyclic transmission type for the contactless transmission of a numerical value from an encoder to a receiver.
  • a single information bit is transmitted, the receiver during each transmission phase using a transmission burst to magnetically oscillate in a joint between the receiver and the transmitter Coupled LC resonant circuit generated, which is little or heavily damped by the encoder according to the bit to be transmitted.
  • the resonant circuit in the receiver oscillates like an echo during the reception phase only if the transmitter does not dampen the resonant circuit.
  • the receiver obtains an information bit "1" or "0" from the presence or absence of the echo.
  • the invention has for its object to provide an inexpensive device of the type mentioned in order to send serial, digital information potential-free from an electronic measuring device via a wire line to a receiver, without the measuring device requiring additional power for transmission.
  • a device for remote reading consists of a transmitter 1, a transmitter 2 for remote reading, a wire line 3 and a receiver 4.
  • the transmitter 1 which is part of a measuring instrument, processes measured values that come from one or more probes 5 .
  • Digital information obtained therefrom passes through short two-wire line 6 to the transmitter 2.
  • a transmitter 8 for potential isolation and an LC oscillator 9 in the transmitter 2 the information is sent to the receiver 4 by means of the wire line 3.
  • the twisted wire line 3 is advantageous.
  • the information transmitted by transmitter 1 is evaluated in receiver 4 and e.g. shown in a display 10.
  • the transmitter 2 is composed of an input-side part, the transmitter 8 for potential isolation between the transmitter 1 on the one hand and the receiver 4 and the output-side part of the transmitter 2 on the other hand.
  • FIG. 2 An embodiment of the input-side part with low-power control of the switch 7 is shown in FIG. 2.
  • the transmitter 1 is connected to the control input of the switch 7 via a signal output 11 via the short two-wire line 6.
  • the use of a field effect is advantageous transistor (FET) 12 as part of the switch 7.
  • the FET 12 is controlled without power via the GATE; however, the FET 12 requires a diode 13 which is connected in the direction of conduction between the start 14 of a secondary winding 15 of a first transformer 16 and the DRAIN connection of the FET 12.
  • the end 17 of the secondary winding 15 leads to the SOURCE connection of the FET 12 and at the same time back to the transmitter 1 as a reference potential.
  • a connection between the start 14 of the secondary winding 15 and a monitoring circuit 18 in the transmitter 1 is advantageous for triggering or releasing an information transmission.
  • a primary winding of the first transformer 16 is galvanically coupled to a secondary winding of a second transformer 20 in FIG. 3 via a connection 19.
  • the two transformers 16, 20 form the transmitter 8 and effect the potential separation between the transmitter 1 and the LC oscillator 9.
  • the primary winding 21 of the second transformer 20 is at the end of the winding to a reference point 22 and at the beginning of the winding to a point 23 of the LC oscillator 9 connected.
  • a design of the transmitter 8 for a frequency in the range of 800 kHz can be realized particularly inexpensively from commercially available RF interference suppression chokes with a ferrite core, the coupling of the RF chokes using an insulated wire which has three turns on each of the two chokes and via the connection 19 is self-contained, takes place with little capacity.
  • the part of the transmitter 2 on the input side is accommodated in the transmitter 1 (FIG. 4).
  • the secondary winding 15 sits on a first transformer core 16 ⁇ (for example an open U-shape or half a shell core), the pole faces of which are pressed against the inside of a housing wall 24 of the transmitter 1.
  • the housing wall 24, preferably made of plastic, serves as electrical isolation.
  • the primary winding 21 sits on a second transformer core 20 ⁇ of the same shape as the first transformer core 16 ⁇ and is located inside the housing of the transmitter 2.
  • the housing wall 24 and the corresponding housing part of the transmitter 2 advantageously have one by means of permanent magnetic forces, or otherwise fixing centering device so that the transformer cores 16 ⁇ , 20 ⁇ are aligned with each other so that the coupling of the secondary winding 15 with the primary winding 21 via the two transformer cores 16 ⁇ , 20 ⁇ through the housing wall 24 reaches a value that is sufficient for the transmission.
  • a centering device a cuboid projection 25 is placed on the housing wall 24 of the transmitter 1 in FIG. 4 and a corresponding recess 26 is let into the housing of the transmitter 2.
  • the transmitter 2 by placing the transmitter 2 on the housing wall 24 of the transmitter 1, ie the measuring device, guided by the centering device 25, 26, the information stored in a memory of the transmitter 1 can be called up from the measuring device and transmit to recipient 4.
  • the advantage of this design is the lack of a separable electrical connection to the transmitter 1 and the completely closed housing of the transmitter 1.
  • a resonant circuit capacitor 27 of the LC oscillator 9 is connected between the reference point 22 and the point 23 of the primary winding 21 of the second transformer 20 (FIG. 5).
  • active elements of the LC oscillator 9 are integrated in a commercially available module 28 for proximity switches, for example from the SIEMENS type TCA 355.
  • Reference point 22 is connected directly to the MASS connection of block 28 and point 23 to the OSCILLATOR connection of block 28. (The designation of the connections of module 28 follows the SIEMENS data book "Integrated Circuits for Industrial Applications" 1985/86).
  • a first resistor 29 connects the DISTANCE output of the module 28 and the reference point 22.
  • the wire line 3 comes via a second resistor 30 to the AC connections of the bridge rectifier.
  • One branch of the bridge rectifier consists of two diodes 31 and the second branch consists of diodes 32.
  • Zener diodes can advantageously be used as diodes 32 for voltage limitation.
  • the positive DC voltage output + of the bridge rectifier 31, 32 is connected to a smoothing capacitor 34 via a third resistor 33.
  • the other connection point of the smoothing capacitor 34 and the negative DC voltage voltage output of the bridge rectifier 31, 32 are connected to the reference point 22.
  • the voltage across the smoothing capacitor 34 is supplied to the module 28 by means of the U S connection.
  • the Q connection for the signal output (Q output) of the component 28 is connected to the positive DC voltage output + of the bridge rectifier 31, 32 when a two-wire line is used as the wire line 3 via a third Zener diode 35 in the direction of the guide.
  • the Q output of module 28 can also be routed to receiver 4 via a third connection (not shown).
  • the wire line 3 comes into the receiver 4 via connecting means. If a two-wire line is used as the wire line 3, as shown as an exemplary embodiment in FIG. 6, the supply voltage of the transmitter 2 and the received information must be separated in the receiver 4. One wire of the two-wire line is led as an OV reference to an earth point 36 in the receiver 4. The other wire of the two-wire line is connected via a fourth resistor 37 to the positive output of a DC voltage source 38 and to an input 39 of a threshold switch 40. An output 41 of the threshold switch 40 is connected to the display 10 by means of information processing parts of the receiver 4, not shown.
  • the DC voltage source 38 has an electrical voltage of 24 V.
  • the electrical voltage reaches the bridge rectifier 31, 32 via the fourth resistor 37, for example 1 k ⁇ , the wire line 3 and in FIG. 5 the second resistor 30, for example 50 ⁇ .
  • the diodes 32 form one with the second resistor 30 Overvoltage protection if 32 Zener diodes with a Zener voltage of 24 V are selected as diodes.
  • the bridge rectifier 31, 32 enables a polarity-independent connection of the wire line 3, that is to say a smooth supply capacitor for the smoothing capacitor 34 is independent of the connection of the wire line 3 through the third resistor 33 Module 28 created. This is advantageous for connecting the wire line 3 by means of terminals.
  • the LC oscillator 9 generates an RF frequency in the oscillating circuit 21, 27 as soon as the supply voltage is present at the U S connection of the module 28.
  • the permissible supply voltage is between 5 V and 30 V and a frequency of the LC oscillator 9 determined by the primary winding 21 and the resonant circuit capacitor 27 must be between 0.015 MHz and 1.5 MHz.
  • the current consumption of module 28 at the U S connection is max. 1 mA.
  • the RF frequency of 876 kHz is determined in the exemplary embodiment by the resonant circuit capacitor 27 of 330 pF and the primary winding 21 of 0.100 mH.
  • the RF amplitude of the LC oscillator 9 is approximately 1.1 V with an undamped resonant circuit 21, 27.
  • the transmitter 8 is designed such that it transforms the HF voltage to three times the value in the secondary winding 15 in order to compensate for the voltage drops across the FET 12 and the diode 13 (FIG. 2).
  • the switch 7 is now closed by preferably narrow pulses from the signal output 11, the secondary winding 15 of the transmitter 8 is short-circuited during a half-wave (in the case of an electromechanical switch during both half-waves) of each period of the HF voltage (FIG. 2).
  • Energy is withdrawn from the resonant circuit 21, 27 via the coupling to the primary winding 21 (FIG. 5) and the HF amplitude at point 23 drops to a value below 0.3 V.
  • the threshold switch contained in the module 28 speaks in such a drop in the HF -Amplitude and sets the signal of the Q output of the component 28 from logic "1" to "0" as long as the RF voltage has this small value.
  • the third zener diode 35 conducts one limited by the fourth resistor 37 (FIG. 6) and the second resistor 30 (FIG. 5) Current to the Q output of module 28 which is set to logic "0".
  • the voltage at the positive DC voltage output + of the bridge rectifier 31, 32 drops to the Zener voltage of the third Zener diode 35, for example 5.1 V.
  • the RC element 34 formed from the third resistor 33 and the smoothing capacitor 34 must have a sufficiently large time constant compared to the length of the pulses from the signal output 11 in FIG. 2, so that the supply voltage of the module 28 in FIG. 5 has a limit value of 5 V and the oscillations stop.
  • the voltage at the input 39 remains above the switch-on point of the threshold switch 40 and the output 41 is e.g. at logical "1".
  • the voltage at the input 39 falls below the switch-off point of the threshold switch 40 and the output 41 is set to logic "0".
  • the further processing of the pulse sequence from the output 41 depends on the task set. For certain purposes, it is sufficient to add up the pulses in a simple counter and display them. Instead of a simple sequence of a number of pulses determined by the measured variable, the transmission of the information e.g. in the manner of the known RS-232 interface.
  • the transmitter 2 according to FIG. 3 is designed with two separate transformers 16, 20, it is advantageous to provide a separable electrical connection between the transmitter 2 and the receiver 4 when temporarily creating the transmission path in FIG. 1 because the wire line 3 is compared to other conceivable disconnection points, for example in FIG. 2 the short two-wire line 6 or at the beginning 14 and end 17 of the secondary winding 15 is least susceptible to faults.
  • An embodiment of the transmitter 1 with a monitoring switch 18 is advantageous with a disconnectable connection to the receiver. Once an electrical connection as above 4, or the transmitter 2 in the version with magnetic coupling according to FIG. 4 is placed on the predetermined location of the housing wall 24 of the transmitter 1, an RF voltage is generated in the secondary winding 15 (FIG. 2).
  • the monitoring circuit 18 detects the HF voltage across the secondary winding 15 and causes the transmitter 1 to transmit the information via the signal output 11.
  • Measuring devices equipped with devices for remote reading of the type described do not require any additional power for reading out information; this is the case with measuring devices with power-limited energy supply, e.g. with battery operation, particularly advantageous.
  • Information can be obtained from the measuring devices via one or more channels, each consisting of a transmitter 1, a transmitter 2, a wire line 3 and a receiver 4, e.g. transmit the meter reading, or include ongoing measurement and control values, to the corresponding receiver 4.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Arrangements For Transmission Of Measured Signals (AREA)
  • Selective Calling Equipment (AREA)
  • Communication Control (AREA)

Description

  • Die Erfindung bezieht sich auf eine Einrichtung zum Fernablesen elektroni­scher Messgeräte nach dem Oberbegriff des Anspruchs 1.
  • Einrichtungen zur drahtgebundenen Fernablesung elektronischer Messgeräte sind an sich allgemein bekannt und weit verbreitet. Insbesondere werden für ein Fernablesen der Anzeige und von Kontrollwerten bei z.B. Nacheich­ungen, Funktionskontrollen usw. Einrichtungen in festinstallierten, eichfähigen Messgeräten, z.B. kWh-Zähler für thermische oder elektrische Energie, benötigt, um die zu den genannten Tätigkeiten notwendigen Informa­tionen aus dem Messgerät zu erhalten, wie dies in FERNWAERME INTERNATIONAL Jahrgang 9 (1980), Heft 1, p. 58 ff. beschrieben ist.
  • Uebertragungen der bekannten Art, z.B. nach CH-PS 638 043 oder DE-PS 34 28 344, haben für elektronische Messgeräte den entscheidenden Nachteil, dass für eine Informationsübertragung im Vergleich zu den übrigen Funktio­nen des Messgerätes unverhältnismässig viel Energie benötigt wird. Für elektronische Messgeräte mit einem Netzanschluss ist dies meist vernachläs­sigbar, jedoch beispielsweise nicht mehr bei aus Batterien gespeisten Messgeräten.
  • In der DE-A-31 07 928, die zu der FR-A-2 500 944 äquivalent ist, wird eine zyklische Übertragungsart zum berührungslosen Übertragen eines Zahlenwertes von einem Geber zu einem Empfänger beschrieben. In jedem vom Empfänger gesteuerten Zyklus, der sich in eine Warte-, Sende- und Empfangsphase aufteilt, wird ein einziges Informations- bit übertragen, wobei der Empfänger während jeder Sende-phase mittels eines Sendebursts eine Schwingung in einem dem Empfänger und dem Geber gemeinsamen magnetisch gekoppelten LC-Schwingkreis erzeugt, die entsprechend dem zu übertragenden Bit vom Geber wenig oder stark bedämpft ist. Im Empfänger schwingt der Schwingkreis während der Empfangsphase wie ein Echo nur nach, wenn der Geber nicht den Schwingkreis dämpft. Aus dem Vorhandensein oder Fehlen des Echos gewinnt der Empfänger ein Informationsbit "1" oder "0".
  • Der Erfindung liegt die Aufgabe zugrunde, eine kostengünstige Einrichtung der eingangs genannten Art zu schaffen, um serielle, digitale Informatio­nen potentialfrei aus einem elektronischen Messgerät über eine Drahtlei­tung zu einem Empfänger zu schicken, ohne dass das Messgerät zum Senden eine zusätzliche Leistung benötigt.
  • Diese Aufgabe wird erfindungsgemäss durch die kennzeichnenden Merkmale des Anspruchs 1 gelöst.
  • Nachfolgend werden einige Ausführungsbeispiele der Erfindung anhand der Zeichnungen näher beschrieben.
  • Es zeigen:
    • Fig. 1 einen Uebertragungsweg zwischen einem Sender und einem Empfänger (Schema),
    • Fig. 2 eine Ausführung des eingangsseitigen Teils eines Uebermittlers mit einem FET als Schalter (Schema),
    • Fig. 3 eine erste Ausführung eines Uebertragers (Schema),
    • Fig. 4 einen Schnitt durch eine zweite Ausführung des Uebertragers,
    • Fig. 5 eine Ausführung des ausgangsseitigen Teils des Uebermittlers (Schema) und
    • Fig. 6 eine Ausführung des eingangsseitigen Teils des Empfängers (Schema).
  • Eine Einrichtung zur Fernablesung besteht gemäss der Fig. 1 aus einem Sender 1, einem Uebermittler 2 zur Fernablesung, einer Drahtleitung 3 und einem Empfänger 4. Der Sender 1, der Teil eines Messinstrumentes ist, verarbeitet Messwerte, die aus einer oder mehreren Sonden 5 stammen. Daraus gewonnene, digitale Informationen gelangen durch kurze Zwei­drahtleitung 6 zum Uebermittler 2. Ueber einen Schalter 7, einen Uebertra­ger 8 zur Potentialtrennung und einen LC- Oszillator 9 im Uebermittler 2 werden die Informationen mittels der Drahtleitung 3 zum Empfänger 4 geleitet. Aus Gründen der Störsicherheit der Fernablesung ist die Drahtlei­tung 3 in verdrillter Ausführung vorteilhaft. Die vom Sender 1 übertra­genen Informationen werden im Empfänger 4 ausgewertet und z.B. in einer Anzeige 10 dargestellt.
  • Der Uebermittler 2 setzt sich aus einem eingangsseitigen Teil, dem Ueber­trager 8 zur Potentialtrennung zwischen dem Sender 1 einerseits und dem Empfänger 4 und dem ausgangsseitigen Teil des Uebermittlers 2 anderseits zusammen.
  • Eine Ausführung des eingangsseitigen Teils mit leistungsarmer Steuerung des Schalters 7 zeigt die Fig. 2. Der Sender 1 ist über einen Signalaus­gang 11 über die kurze Zweidrahtleitung 6 mit dem Steuereingang des Schalters 7 verbunden. Vorteilhaft ist die Verwendung eines Feldeffekt­ transistors (FET) 12 als Teil des Schalters 7. Ueber das GATE erfolgt die Steuerung des FET 12 leistungslos; der FET 12 benötigt jedoch eine Diode 13, die in Leitrichtung zwischen dem Anfang 14 einer Sekundärwicklung 15 eines ersten Transformators 16 und dem DRAIN-Anschluss des FET 12 geschal­tet ist. Das Ende 17 der Sekundärwicklung 15 ist zum SOURCE-Anschluss des FET 12 und gleichzeitig als Referenzpotential zurück zum Sender 1 geführt. Vorteilhaft ist eine Verbindung zwischen dem Anfang 14 der Sekundärwick­lung 15 und einer Ueberwachungsschaltung 18 im Sender 1 zum Auslösen oder Freigeben einer Informationsübertragung.
  • Eine Primärwicklung des ersten Transformators 16 ist über eine Verbin­dung 19 galvanisch an eine Sekundärwicklung eines zweiten Transforma­tors 20 in der Fig. 3 gekoppelt. Die beiden Transformatoren 16, 20 bilden den Uebertrager 8 und bewirken die Potentialtrennung zwischen Sender 1 und LC-Oszillator 9. Die Primärwicklung 21 des zweiten Transformators 20 ist mit dem Wickelende zu einem Referenzpunkt 22 und mit dem Wickelanfang zu einem Punkt 23 des LC-Oszillators 9 verbunden. Eine Ausführung des Ueber­tragers 8 für eine Frequenz im Bereich 800 kHz lässt sich besonders kostengünstig aus handelsüblichen HF-Entstördrosseln mit Ferritkern realisieren, wobei die Kopplung der HF-Drosseln mittels eines isolierten Drahtes, der auf jeder der beiden Drosseln drei Windungen aufweist und über die Verbindung 19 in sich geschlossen ist, kapazitätsarm erfolgt.
  • In einer anderen Ausführung ist der eingangsseitige Teil des Uebermittlers 2 im Sender 1 untergebracht (Fig. 4). Die Sekundärwicklung 15 sitzt auf einem ersten Transformatorkern 16ʹ (z.B. offene U-Form oder halber Schalen­kern), dessen Polflächen gegen die Innenseite einer Gehäusewand 24 des Senders 1 gepresst ist. Die Gehäusewand 24, vorzugsweise aus Kunststoff, dient als Potentialtrennung. Die Primärwicklung 21 sitzt auf einem zweiten Transformatorkern 20ʹ von ver gleichen Form wie der erste Transformator­kern 16ʹ und befindet sich innerhalb Gehäuses des Uebermittlers 2. Die Gehäusewand 24 und der entsprechende Gehäuseteil des Uebermittlers 2 weisen vorteilhaft eine mittels permanenten Magnetkräften, oder sonstwie fixierende Zentriervorrichtung auf, damit die Transformatorkerne 16ʹ, 20ʹ so gegeneinander ausgerichtet sind, dass die Kopplung der Sekundärwick­lung 15 mit der Primärwicklung 21 über die beiden Transformatorkerne 16ʹ, 20ʹ durch die Gehäusewand 24 einen für die Uebermittlung genügen­den Wert erreicht. Als Beispiel einer Zentriervorrichtung ist in der Fig. 4 auf Gehäusewand 24 des Senders 1 ein quaderförmiger Vorsprung 25 aufgesetzt und in das Gehäuse des Uebertragers 2 eine entsprechende Vertiefung 26 eingelassen. Mit einer Einrichtung gemäss der Fig. 4 lässt sich durch ein mit der Zentriervorrichtung 25, 26 geführtes Aufsetzen des Uebermittlers 2 auf die Gehäusewand 24 des Senders 1, d.h. des Messgerä­tes, die z.B. in einem Speicher des Senders 1 abgelegten Informationen aus dem Messgerät abrufen und zum Empfänger 4 übermitteln. Der Vorteil dieser Ausführung ist das Fehlen einer trennbaren elektrischen Verbin­dung zum Sender 1 und das völlig geschlossene Gehäuse des Senders 1.
  • Zwischen dem Referenzpunkt 22 und dem Punkt 23 der Primärwicklung 21 des zweiten Transformators 20 ist ein Schwingkreiskondensator 27 des LC-Oszil­lators 9 geschaltet (Fig. 5). In diesem Ausführungsbeispiel sind aktive Elemente des LC-Oszillators 9 in einem handelsüblichen Baustein 28 für Näherungsschalter, z.B. von der Firma SIEMENS Typ TCA 355, integriert. Der Referenzpunkt 22 ist direkt mit dem MASSE-Anschluss des Bausteins 28 und der Punkt 23 mit dem OSZILLATOR-Anschluss des Bausteins 28 verbunden. (Die Bezeichnung der Anschlüsse des Bausteins 28 folgt dem SIEMENS-Daten­buch "Integierte Schaltungen für industrielle Anwendungen" 1985/86). Ein erster Widerstand 29 verbindet den ABSTAND-Ausgang des Bausteins 28 und den Referenzpunkt 22. Die Drahtleitung 3 kommt über einen zweiten Wider­stand 30 zu den Wechselstromanschlüssen des Brückengleichrichters. Der eine Zweig des Brückengleichrichters besteht aus zwei Dioden 31 und der zweite Zweig aus Dioden 32. Als Dioden 32 können zur Spannungsbegrenzung vorteilhaft Zenerdioden eingesetzt werden. Der positive Gleichspannungs­ausgang + des Brückengleichrichters 31, 32 ist über einen dritten Wider­stand 33 an einen Glättungskondensator 34 angeschlossen. Der andere Anschlusspunkt des Glättungskondensators 34 und der negative Gleichspan­ nungsausgang des Brückengleichrichters 31, 32 sind mit dem Referenzpunkt 22 verbunden. Die Spannung über dem Glättungskondensator 34 ist mittels des US-Anschlusses dem Baustein 28 zugeführt.
  • Der Q-Anschluss für den Signalausgang (Q-Ausgang) des Bausteins 28 ist bei Verwendung einer zweiadrigen Leitung als Drahtleitung 3 über eine dritte Zenerdiode 35 in Leitrichtung mit dem positiven Gleichspannungsausgang + des Brückengleichrichters 31, 32 verbunden. An sich kann der Q-Ausgang des Bausteins 28 auch über eine dritte, nicht eingezeichnete Verbindung zum Empfänger 4 geführt werden.
  • Ueber Verbindungsmittel kommt die Drahtleitung 3 in den Empfänger 4. Wird als Drahtleitung 3 eine Zweidrahtleitung benützt, wie dies in der Fig. 6 als Ausführungsbeispiel dargestellt ist, müssen im Empfänger 4 die Speise­spannung des Uebermittlers 2 und die empfangenen Informationen getrennt werden. Die eine Ader der Zweidrahtleitung wird als OV-Referenz an einen Erdpunkt 36 im Empfänger 4 geführt. Die andere Ader der Zweidrahtleitung ist über einen vierten Widerstand 37 mit dem positiven Ausgang einer Gleichspannungsquelle 38 und mit einem Eingang 39 eines Schwellwertschal­ters 40 verbunden. Ein Ausgang 41 des Schwellwertschalters 40 ist mittels nicht gezeichneten informationsverarbeitenden Teilen des Empfängers 4 mit der Anzeige 10 in Verbindung.
  • Im Ausführungsbeispiel weist die Gleichspannungsquelle 38 eine elektrische Spannung von 24 V auf. Ueber den vierten Widerstand 37, z.B. 1 k Ω, die Drahtleitung 3 und in der Fig. 5 dem zweiten Widerstand 30, z.B. 50 Ω, gelangt die elektrische Spannung zum Brückengleichrichter 31, 32. Die Dioden 32 bilden mit dem zweiten Widerstand 30, einen Ueberspannungs­schutz, falls als Dioden 32 Zenerdioden mit einer Zenerspannung von 24 V gewählt sind. Der Brückengleichrichter 31, 32 ermöglicht ein polaritätsun­abhängiges Anschliessen der Drahtleitung 3, d.h. am Glättungskondensator 34 ist durch den dritten Widerstand 33 unabhängig vom Anschliessen der Drahtleitung 3 eine positive, auf 24 V begrenzte Speisespannung für den Baustein 28 angelegt. Dies ist für ein Verbinden der Drahtleitung 3 mittels Klemmen vorteilhaft.
  • Der LC-Oszillator 9 erzeugt eine HF-Frequenz im Schwingkreis 21, 27, sobald die Speisespannung am US-Anschluss des Bausteins 28 anliegt. Laut SIEMENS-Datenbuch, Seite 525, liegt die zulässige Speisespannung zwischen 5 V und 30 V und eine durch die Primärwicklung 21 und dem Schwingkreiskon­densator 27 bestimmte Frequenz des LC-Oszillators 9 muss zwischen 0,015 MHz und 1,5 MHz liegen. Die Stromaufnahme des Bausteins 28 am US-An­schluss ist max. 1 mA.
  • Die HF-Frequenz von 876 kHz ist im Ausführungsbeispiel durch den Schwing­kreiskondensator 27 von 330 pF und der Primärwicklung 21 von 0,100 mH bestimmt. Die HF-Amplitude des LC-Oszillators 9 beträgt etwa 1,1 V bei unbedämpftem Schwingkreis 21, 27.
  • Der Uebertrager 8 ist so ausgelegt, dass er die HF-Spannung auf den dreifachen Wert in die Sekundärwicklung 15 transformiert zur Kompensation der Spannungsabfälle über dem FET 12 und der Diode 13 (Fig. 2).
  • Wird nun der Schalter 7 durch vorzugsweise schmale Impulse aus dem Signal­ausgang 11 geschlossen, so ist die Sekundärwicklung 15 des Uebertragers 8 während einer Halbwelle (im Falle eines elektromechanischen Schalters während beider Halbwellen) jeder Periode der HF-Spannung kurzgeschlos­sen (Fig. 2). Ueber die Kopplung zur Primärwicklung 21 (Fig. 5) wird dem Schwingkreis 21, 27 Energie entzogen und die HF-Amplitude am Punkt 23 fällt auf einen Wert unter 0,3 V. Der im Baustein 28 enthaltene Schwell­wertschalter spricht bei einem derartigen Abfall der HF-Amplitude an und legt das Signal des Q-Ausgangs des Bausteins 28 von logisch "1" auf "0", solange die HF-Spannung diesen kleinen Wert aufweist.
  • Die dritte Zenerdiode 35 leitet im Zenerbetrieb einen durch den vierten Widerstand 37 (Fig. 6) und den zweiten Widerstand 30 (Fig. 5) begrenzten Strom zum auf logisch "0" gelegten Q-Ausgang des Bausteins 28 ab. Die Spannung am positiven Gleichspannungsausgang + des Brückengleichrichters 31, 32 sinkt auf die Zenerspannung der dritten Zenerdiode 35, z.B. 5,1 V. Mit den 1050 Ohm der beiden Widerstände 30, 37 bleibt der Strom mit etwa 20 mA gerade unterhalb des für den Q-Ausgang des Bausteins 28 zulässigen Maximalwertes. Das aus dem dritten Widerstand 33 und dem Glättungskonden­sator 34 gebildete RC-Glied 34 muss eine genügend grosse Zeitkonstante aufweisen im Vergleich zur Länge der Impulse aus dem Signalausgang 11 in der Fig. 2, damit die Speisespannung des Bausteins 28 in der Fig. 5 einen Grenzwert von 5 V nicht unterschreitet und die Oszillationen abbrechen.
  • In der Fig. 6 bleibt, solange der Strom in der Drahtleitung 3 etwa 1 mA beträgt, die Spannung am Eingang 39 über dem Einschaltpunkt des Schwell­wertschalters 40 und der Ausgang 41 ist z.B. auf logisch "1". Sobald der Strom in der Drahtleitung 3 auf etwa 20 mA ansteigt, fällt die Spannung am Eingang 39 unter den Ausschaltpunkt des Schwellwertschalters 40 und der Ausgang 41 wird auf logisch "0" gesetzt. Die Weiterverarbeitung der Impulsfolge aus dem Ausgang 41 hängt von der gestellten Aufgabe ab. Für bestimmte Zwecke genügt es, die Impulse in einem einfachen Zählwerk aufzuaddieren und zur Anzeige 10 zu bringen. Anstelle einer einfachen Folge einer durch die Messgrösse bestimmten Zahl von Impulsen kann die Uebertragung der Information z.B. in der Art der bekannten RS-232-Schnitt­stelle erfolgen.
  • Ist der Uebermittler 2 gemäss der Fig. 3 mit zwei getrennten Transforma­toren 16, 20 ausgeführt, ist bei temporärem Erstellen des Uebertragungs­weges in der Fig. 1 vorteilhaft eine trennbare elektrische Verbindung zwischen dem Uebermittler 2 und dem Empfänger 4 vorzusehen, weil die Drahtleitung 3 im Vergleich zu anderen denkbaren Trennstellen, z.B. in der Fig. 2 die kurze Zweidrahtleitung 6 oder am Anfang 14 und Ende 17 der Sekundärwicklung 15, am wenigsten störanfällig ist. Eine Ausführung des Senders 1 mit einem Ueberwachungsschalter 18 ist bei trennbarer Verbindung zum Empfänger vorteilhaft. Sobald eine elektrische Verbindung wie oben beschrieben hergestellt ist, oder der Uebermittler 2 in der Ausführung mit magnetischer Kopplung gemäss der Fig. 4 auf die vorbestimmte Stelle der Gehäusewand 24 des Senders 1 aufgesetzt ist, wird eine HF-Spannung in der Sekundärwicklung 15 (Fig. 2) erzeugt. Die Ueberwachungsschaltung 18 stellt die HF-Spannung über der Sekundärwicklung 15 fest und veranlasst den Sender 1 zum Aussenden der Informationen über den Signalausgang 11.
  • Mit Einrichtungen zur Fernablesung der beschriebenen Art ausgerüstete Messgeräte benötigen zum Auslesen von Informationen keine zusätzliche Leistung; dies ist bei Messgeräten mit leistungsbegrenzter Energieversor­gung wie z.B. bei Batteriebetrieb, besonders vorteilhaft. Aus den Mess­geräten lassen sich über einen oder mehrere aus je einem Sender 1, einem Uebermittler 2, einer Drahtleitung 3 und einem Empfänger 4 bestehenden Kanäle Informationen, die z.B. den Zählerstand, oder laufende Mess- und Kontrollwerte umfassen, zum entsprechenden Empfänger 4 übermitteln. Dies erweist sich als vorteilhaft für das Ablesen des Zählerstandes, für die Funktionskontrolle oder die Nacheichung eines eichfähigen, elektronischen Messgerätes wie z.B. eines Durchflussvolumenzählers oder eines kWh-Zählers für thermische oder elektrische Energie, ohne dass das Messgerät am Einbauort ausgebaut werden muss.

Claims (10)

1. Einrichtung zur potentialfreien Fernablesung elektro­nischer Meßgeräte, mit einem im Meßgerät angeordneten Sender (1), einem an den Sender (1) gekoppelten Übermitt­ler (2) für serielle, drahtgebundene Informationen und einem Empfänger (4), der über eine Drahtleitung (3) mit einem Übermittler (2) verbunden ist, wobei der Übermittler (2) einen aus mindestens einem Schwingkreiskondensator (27) und einer Primärwicklung (21) eines Übertragers (8) bestehenden Schwingkreis und einen vom Sender (1) be­tätigten Schalter (7) zum Kurzschließen einer Sekundär­wicklung (15) des Übertragerss (8) enthält, dadurch gekennzeichnet, daß der Übermittler (2) einen LC-Oszillator (9) mit dem Schwingkreis (21, 27) aufweist, dessen Stromauf­nahme von der Bedämpfung des Schwingkreises (21, 27) durch den Schalter (7) abhängig ist, daß der Empfän­ger (4) zum Messen des Stromverbrauchs des LC-Oszilla­tors (9) eingerichtet ist und daß die vom Übermittler (2) zum Empfänger (4) gesendeten Informationen im Wech­ sel von hohen und niederen Werten der Stromaufnahme des Übermittlers (2) enthalten sind.
2. Einrichtung nach Anspruch 1, dadurch gekennzeichnet, daß der LC-Oszillator (9) einen Baustein (28) mit einem Schwellwertschalter zum Messen der HF-Amplitude des LC-Oszillators (9) enthält, daß der Q-Ausgang des Bau­steins (28) den logischen Zustand "O" aufweist, solange die HF-Amplitude des LC-Oszillators (9) einen vorbestimm­ten Wert unterschreitet, und daß der Q-Ausgang des Bau­steins (28) nur im Zustand "O" niederohmig mit dem Masse-Anschluß des Bausteins (28) zur Erhöhung der Stromaufnahme des Übermittlers (2) verbunden ist.
3. Einrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die vom Empfänger (4) mittels der Drahtleitung (3) geführte Spannungsver­sorgung des Uebermittlers (2) polaritätsunabhängig ist.
4. Einrichtung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass der Uebertrager (8) aus mindestens zwei über Verbindungen (19) gekoppelte Transformatoren (16; 20) gebildet ist.
5. Einrichtung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Kopplung einer Sekundärwicklung (15) mit der Primärwicklung (21) über Transformatorkerne (16ʹ; 20ʹ) erfolgt.
6. Einrichtung nach Anspruch 5, dadurch gekennzeichnet, daß der eingangsseitige Teil (7, 15, 16ʹ) des Übermitt­lers (2) in einem Gehäuse (24) des Senders (1) unter­gebracht ist, daß die Transformatorkerne (16ʹ; 20ʹ) des Übertragers (8) mechanisch trennbar sind und daß beim Zusammenfügen ein Ausrichten der beiden Transfor­matorkerne (16ʹ; 20ʹ) erfolgt.
7. Einrichtung nach einem der vorstehenden Ansprüche, dadurch gekennzeich­net, dass der Beginn der Informationsübertragung im Sender (1) durch eine die Spannung über der Sekundärwicklung (15) messende Ueberwachungs­schaltung (18) auslösbar ist.
8. Einrichtung nach einem der vorstehenden Ansprüche, dadurch gekennzeich­net, dass der Schalter (7) aus einem Feldeffekttransistor (12) und einer Diode (13) gebildet ist.
9. Einrichtung nach einem der vorhergehenden Ansprüche, dadurch gekenn­zeichnet, dass der Sender (1) mit dem Empfänger (4) potentialfrei verbun­den ist.
10. Einrichtung nach einem der vorhergehenden Ansprüche, dadurch gekenn­zeichnet, dass mindestens ein Sender (1) in einem elektronischen Durch­flussvolumenzähler oder in einem kWh-Zähler für thermische oder elektri­sche Energie enthalten ist.
EP87106971A 1986-07-24 1987-05-14 Einrichtung zur Fernablesung elektronischer Geräte Expired - Lifetime EP0254828B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT87106971T ATE60683T1 (de) 1986-07-24 1987-05-14 Einrichtung zur fernablesung elektronischer geraete.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH2967/86A CH670168A5 (de) 1986-07-24 1986-07-24
CH2967/86 1986-07-24

Publications (2)

Publication Number Publication Date
EP0254828A1 EP0254828A1 (de) 1988-02-03
EP0254828B1 true EP0254828B1 (de) 1991-01-30

Family

ID=4245672

Family Applications (1)

Application Number Title Priority Date Filing Date
EP87106971A Expired - Lifetime EP0254828B1 (de) 1986-07-24 1987-05-14 Einrichtung zur Fernablesung elektronischer Geräte

Country Status (4)

Country Link
EP (1) EP0254828B1 (de)
AT (1) ATE60683T1 (de)
CH (1) CH670168A5 (de)
DE (1) DE3767801D1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108981772A (zh) * 2018-06-12 2018-12-11 杭州绿鲸科技有限公司 一种用于计量表的非接触式无磁防拆检测装置及方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0451445A3 (en) * 1990-04-12 1993-02-24 Richard Hirschmann Gmbh & Co. Contactless inductive transmission method of electrical energy and/or signals and contactless inductive transmission device
GB9205977D0 (en) * 1992-03-19 1992-04-29 Brown Boveri Kent Ltd Remote meter reading

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1139055B (de) * 1958-04-25 1962-10-31 Licentia Gmbh Geber fuer eine Fernzaehl- und Fernmesseinrichtung
DE2701184A1 (de) * 1977-01-13 1978-07-27 Endress Hauser Gmbh Co Schaltungsanordnung zur uebertragung von messwertsignalen
US4292633A (en) * 1978-11-24 1981-09-29 Robertshaw Controls Company Two-wire isolated signal transmitter
DE2854199A1 (de) * 1978-12-15 1980-06-26 Vdo Schindling Einrichtung zum uebertragen von messwerten
DE3107928A1 (de) * 1981-03-02 1982-09-16 Vdo Adolf Schindling Ag, 6000 Frankfurt Einrichtung zum beruehrungslosen uebertragen eines zahlenwertes
US4463354A (en) * 1981-12-09 1984-07-31 Sears Lawrence M Apparatus for communicating utility usage related information from a utility usage location to a portable utility usage registering device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108981772A (zh) * 2018-06-12 2018-12-11 杭州绿鲸科技有限公司 一种用于计量表的非接触式无磁防拆检测装置及方法

Also Published As

Publication number Publication date
CH670168A5 (de) 1989-05-12
ATE60683T1 (de) 1991-02-15
EP0254828A1 (de) 1988-02-03
DE3767801D1 (de) 1991-03-07

Similar Documents

Publication Publication Date Title
DE3615463A1 (de) Anordnung zur signaluebertragung in einer messanordnung
DE3741734A1 (de) Vorrichtung zur messung der elektromagnetischen werte einer spule, insbesondere zur messung der ankerstellung eines spulen/anker-magnetsystems
EP0033508A1 (de) Schaltung für wechselweises Aussenden und Empfangen mit nur einem Schallgeber-Wandler
DE3632840C2 (de)
DE3513926A1 (de) Rauchdetektor
EP0254828B1 (de) Einrichtung zur Fernablesung elektronischer Geräte
DE1050835B (de)
EP0995081B1 (de) Verfahren und anordnung zur übertragung von nutzsignalen bei magnetostriktiven positionssensoren
DE2409883B2 (de) Schaltungsanordnung für einen elektronischen Rundsteuerempfänger
DE3016287A1 (de) Interfaceschaltung zur verwendung bei elektronischen regeleinrichtungen
DE4425250C1 (de) Anordnung zur potentialgetrennten Energie- und Datenübertragung über eine Zweidrahtbusleitung
EP0133570B1 (de) Anregeschaltung für piezoelektrische Schallgeber
DE2504785B2 (de) Schaltungsanordnung zur erdfreien Übertragung von Signalen über Trennstellen in Fernmeldeanlagen
DE2634112C2 (de)
EP3380852B1 (de) Induktiver strommesswandler
EP1626609B1 (de) Verfahren und Vorrichtung zum Ermitteln eines Zustands einer Gebereinrichtung
EP0033470B1 (de) Schaltungsanordnung zur Bildung eines Schleifenschlusses in einem Zwischenregenerator eines PCM-Systems
EP2665195B1 (de) Vorrichtung zur Bereitstellung einer eigensicheren Versorgungsspannung und zur Übertragung von Kommunikationssignalen
DE19524755A1 (de) Einrichtung zur Hubüberwachung von Schaltmagneten
DE937219C (de) Vorrichtung zum Impulsbetrieb von Elektromagneten, insbesondere von Magnetostriktionsschwingern zur Erzeugung von Schallimpulsen
AT389166B (de) Messwertwandler
EP0638786B1 (de) Ausgangsschaltung für einen Zähler, insbesondere einen Wärmezähler
DE2947841A1 (de) Schaltungsanordnung mit einem parallelschwingkreis
EP1890393A1 (de) Verfahren zur Impulsübertragung und Schaltungsanordnung zur Durchführung dieses Verfahrens
DE2128750A1 (de) Verfahren und vorrichtung zur durchflussmessung von fluessigen medien

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT CH DE FR GB LI

17P Request for examination filed

Effective date: 19880303

17Q First examination report despatched

Effective date: 19900216

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: LANDIS & GYR BETRIEBS AG

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT CH DE FR GB LI

REF Corresponds to:

Ref document number: 60683

Country of ref document: AT

Date of ref document: 19910215

Kind code of ref document: T

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
REF Corresponds to:

Ref document number: 3767801

Country of ref document: DE

Date of ref document: 19910307

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19920428

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19940131

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19970818

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19980424

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19980427

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980531

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980531

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19980702

Year of fee payment: 12

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990514

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990514

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19990514

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000301