EP0254815B1 - Control for shutters and blower for cooling air in a motor vehicle - Google Patents

Control for shutters and blower for cooling air in a motor vehicle Download PDF

Info

Publication number
EP0254815B1
EP0254815B1 EP87105938A EP87105938A EP0254815B1 EP 0254815 B1 EP0254815 B1 EP 0254815B1 EP 87105938 A EP87105938 A EP 87105938A EP 87105938 A EP87105938 A EP 87105938A EP 0254815 B1 EP0254815 B1 EP 0254815B1
Authority
EP
European Patent Office
Prior art keywords
cooling air
temperature
threshold value
value
fan
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP87105938A
Other languages
German (de)
French (fr)
Other versions
EP0254815A3 (en
EP0254815A2 (en
Inventor
Ulrich Dipl.-Ing. Fh Schempp
Hermann Dipl.-Ing. Burst
Bernhard Dipl.-Ing.Fh Ritter
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dr Ing HCF Porsche AG
Original Assignee
Dr Ing HCF Porsche AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dr Ing HCF Porsche AG filed Critical Dr Ing HCF Porsche AG
Publication of EP0254815A2 publication Critical patent/EP0254815A2/en
Publication of EP0254815A3 publication Critical patent/EP0254815A3/en
Application granted granted Critical
Publication of EP0254815B1 publication Critical patent/EP0254815B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/02Controlling of coolant flow the coolant being cooling-air
    • F01P7/10Controlling of coolant flow the coolant being cooling-air by throttling amount of air flowing through liquid-to-air heat exchangers
    • F01P7/12Controlling of coolant flow the coolant being cooling-air by throttling amount of air flowing through liquid-to-air heat exchangers by thermostatic control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/02Controlling of coolant flow the coolant being cooling-air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/02Controlling of coolant flow the coolant being cooling-air
    • F01P7/04Controlling of coolant flow the coolant being cooling-air by varying pump speed, e.g. by changing pump-drive gear ratio
    • F01P7/048Controlling of coolant flow the coolant being cooling-air by varying pump speed, e.g. by changing pump-drive gear ratio using electrical drives
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2025/00Measuring
    • F01P2025/04Pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2025/00Measuring
    • F01P2025/08Temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2025/00Measuring
    • F01P2025/08Temperature
    • F01P2025/13Ambient temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2025/00Measuring
    • F01P2025/08Temperature
    • F01P2025/31Cylinder temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2025/00Measuring
    • F01P2025/08Temperature
    • F01P2025/33Cylinder head temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2025/00Measuring
    • F01P2025/08Temperature
    • F01P2025/40Oil temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2031/00Fail safe
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2031/00Fail safe
    • F01P2031/20Warning devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/02Controlling of coolant flow the coolant being cooling-air
    • F01P7/08Controlling of coolant flow the coolant being cooling-air by cutting in or out of pumps

Definitions

  • the invention relates to a cooling air flap and blower control for motor vehicles according to the preamble of the main claim.
  • a coolant temperature control system for a motor vehicle internal combustion engine which in addition to the usual coolant temperature control by means of a thermostat in the short circuit of the cooling water of the internal combustion engine and the thermostatic cooling air blower switched on and off additionally a bulkhead in an opening in which the cooling air flows Controlling the car body thermostatically.
  • control elements used all have more or less two-point characteristics, so that the operating temperature of the internal combustion engine can hardly be kept constant at a required level.
  • the resulting constant fluctuations around a target operating point result in poor control quality and thus stress and wear and tear on the internal combustion engine, including all units and parts through which cooling water flows.
  • Executed adjusting element of the bulkhead which is only influenced by the coolant, can only be inadequately tuned and does not allow any further influencing variables for adapting the cooling air flow to the cooling air requirement of the internal combustion engine and auxiliary or auxiliary units.
  • EP-A-0 084 378 discloses a control device for an engine cooling system in which cooling air flaps are controlled from the closed to the open position when the coolant of the internal combustion engine rises and a fan blower is switched on when the temperature rises further. The speed of the fan blower is increased with increasing temperature. An adjustment of the cooling air flaps in stages is indicated, but not how the associated control is to be carried out.
  • a temperature control system for internal combustion engines can be found in EP-A-0 156 078.
  • a fan blower speed is controlled according to a temperature signal. Cooling air flaps and blower drive are controlled sequentially so that the cooling air flaps are always open before the blower is driven.
  • the object of the invention is therefore to provide a coolant and blower control for motor vehicles, which optimally regulates a heat balance of an internal combustion engine including its auxiliary and auxiliary units at a reasonable cost and which also fully meets the aerodynamic aspects of the motor vehicle.
  • the advantages of the invention are primarily to be seen in the fact that a cooling air flap and blower control for motor vehicles is created, which controls a cooling air requirement of an internal combustion engine of the motor vehicle, including all auxiliary and auxiliary units with excellent control quality.
  • a cooling air flap and blower control for motor vehicles is created, which controls a cooling air requirement of an internal combustion engine of the motor vehicle, including all auxiliary and auxiliary units with excellent control quality.
  • it is easily adaptable to different circumstances of different types of motor vehicles and internal combustion engines, requires little installation space and is inexpensive to manufacture and install.
  • Fig. 1, 1 shows a motor vehicle, in whose front end or engine compartment 2 an internal combustion engine 3 is arranged. This is connected via coolant lines (flow 4, return 5) to a heat exchanger (liquid cooler 6), which can be acted upon by a wind through a body opening 7 on a car front 8 and a cooling air duct 9.
  • coolant lines flow 4, return 5
  • heat exchanger liquid cooler 6
  • the cooling air duct 9 can be opened or closed by means of cooling air flaps 10 which are controllable in their position.
  • the cooling air flaps 10 are controlled via a control linkage 11 (crank mechanism) by an electric motor 12 with a flanged gear 13.
  • control disk 14 and electric motor 12 are connected to a control unit 15 via a relay, which will be discussed later.
  • dashed connections shown in FIG. 1 between the individual units merely represent symbolic active connections that say nothing about the type and number of installed electrical lines (signal lines, power supply lines). These arise naturally for the relevant specialist due to the structural peculiarities of the devices used.
  • a conventional thermostatic valve 16 is also shown, which short-circuits the cooling circuit in the warming-up phase of the internal combustion engine 3 via a bypass line 17.
  • an electric motor-driven fan 18 is arranged, via which the heat exchanger 6, the internal combustion engine 3 and a condenser 19 of an air conditioning system 20 (shown schematically) in front of the heat exchanger (shown schematically) can be forced-ventilated (of course, in Cooling air flow also other heat exchangers, for example a charge air cooler or a cooler for a liquid circuit of an automatic transmission _ next to, one above the other or one behind the other).
  • a speed of the blower 18 is infinitely variable in its speed via the control unit 15 and an electronic output stage shown later.
  • An influencing variable for controlling the fan speed and the cooling air flap position is a temperature tm (coolant temperature) of the internal combustion engine 3, which is detected by means of a coolant temperature sensor 21 in the return 5 of the coolant circuit 4 to 6.
  • control unit 15 receives signals from an ignition switch 22 (ignition on or off), an air conditioning switch 23 (air conditioning on / off), a temperature sensor 24 (temperature switch) in the fluid circuit of the automatic transmission, and a pressure sensor 25 in one Kättstoffnikank the air conditioning system 20, a temperature sensor 26 (temperature switch) in or on the intake pipe 27 of the burner 3 and a hood contact switch 28, which monitors a closed position of a flap (hood 29) for closing the engine compartment 2.
  • an excess temperature switch 30 can also be connected to the control unit 15, which monitors the temperature of the burner machine on its cylinder block or head and, if necessary, a warning lamp in a dashboard of the motor vehicle directly and / or indirectly via a central information unit (for indicating dangerous states; not here shown).
  • the electrical connection of the individual elements can be seen in the circuit diagram according to FIG. 2.
  • the control unit 15 is connected via an input 31 directly and via an input 32 via the ignition switch 22 indirectly to the positive pole (+) of a battery 33, the negative pole (-) of which is connected to the vehicle ground 34; the control unit 15 is connected to this via an input 35.
  • An NTC resistor 36 is connected to inputs 35 and 37 as coolant temperature sensor 21. Signals from the air conditioning switch 23, the temperature sensor 26 on the intake manifold (temperature limit switch) and the temperature sensor 24 in the fluid circuit of the automatic transmission (temperature limit switch) reach the control unit 15 via inputs 38 to 40.
  • a signal from the pressure sensor 25 is present at an input 41 in the refrigerant circuit of the air conditioning system; this is designed as a continuously operating pressure sensor. Finally, an input 42 is also connected to the hood contact switch 28.
  • the electric motor-driven fan blower is designed in the circuit diagram as a double electric fan, each with two drive motors 43, 44 and electronic output stages 45, 46, which can be done for reasons of redundancy, for reasons of a better spatial arrangement with regard to the output stages.
  • the functionality of the circuit is guaranteed even with a simple design.
  • a drive motor 43, 44 and an electronic output stage 45, 46 are connected in series, connected in parallel to the load power supply; the output stages 45, 46 are also connected in parallel on the control side.
  • the electronic output stages 45, 46 receive an enable signal, which may possibly also be omitted.
  • the electronic output stages 45, 46 which are designed as semiconductor switches, receive a pulse duty factor in the form of a pulse-width-modulated square-wave signal via an output 48 of the control device 15.
  • the fan control can also be designed so that the duty cycle is generated in the electronic output stages 45, 46 and the control unit 15 only outputs a corresponding analog or digital signal.
  • a feedback line leads from the electronic output stages 45, 46 to an input 49 of the stencil device 15, via which it can be signaled whether there is an error in the power circuit of the output stage (short circuit, line break) or whether it is defective.
  • the electronic output stages also have connections for an operating power supply (positive pole 50, 51, ground 52, 53) for the electronics, ground 54, 55 for the power circuit (semiconductor switch) and one output 56, 57 for one integrated in the output stage, not shown freewheeling diode.
  • the electric motor 12 which is used to drive the cooling air flaps and is provided with the gearbox, is controlled by the control unit 15 via a relay 58 and the control disk 14, which is connected in a rotationally fixed manner to an (schematically shown) input shaft 59 of the gearbox 13.
  • the electric motor 12 is connected to earth with its one connecting terminal; the other terminal is supplied via a changeover contact 60 of the relay 58 in the activated state with the positive pole (+) and thus with the operating voltage.
  • the changeover contact 60 is grounded, as a result of which the armature winding of the motor 12 is short-circuited and a braking effect is achieved.
  • the control disk 14 With the circularly designed control disk 14 there are stationary sliding contacts 61 to 64 in a frictional operative connection; the control disk 14 has an annular contact track 65 with which the first sliding contact 61 on an inner 66, the second sliding contact 62 on a middle 67, and the third and fourth sliding contact 63, 64 on an outer, 68, circular track in electrically conductive connection is.
  • an insulating surface 69, 70 which becomes effective in a limited range of rotation angles and which provides the electrical operative connection between the contact path 65 and the first, 61, third, 63 , or fourth, 64, cancels sliding contact.
  • the second sliding contact 62 is in the excitation circuit of the relay 58, the excitation winding 74 of which is permanently on one side at the positive pole (+) of the battery 33.
  • the control device 15 sets the output 72 to ground potential, which is transmitted from the third sliding contact 63 via the contact track 65 to the second sliding contact 62, so that the excitation winding 74 of the relay 58 is connected to ground on the one hand and to the positive pole (+) on the other hand.
  • the relay 58 picks up, whereupon the electric motor 12, and with it the control disk 14 (and of course also the cooling air flaps) set in motion (counterclockwise rotation).
  • the rotary movement is now continued until the insulating surface 70 enters an angular position in which the fixed third sliding contact 63 is located; there it disconnects the conductive connection between the third sliding contact 63 and the contact track 65, so that the relay 74 drops out and the motor is braked to a standstill.
  • the fully open position and the closed position are approached by controlling the first, 61, or fourth, 64, sliding contact in an adequate manner.
  • An adjustment from one position to another takes place _ by the specified single direction of rotation _ always in the order closed _ partially open _ fully open _ closed.
  • the control of the individual positions is subject to a time limit; it is designed so that it is just sufficient for a particular adjustment process under the most difficult conditions. Overloading of the drive is avoided and position feedback is not required.
  • the control device 15 which is preferably constructed in known microcomputer technology, can also be self-diagnosable and include an electrically erasable memory area in which error messages can be stored by the microcomputer; these can, as described for example in DE-OS 35 40 599, be called up by a diagnostic system during a diagnostic process.
  • control device is connected to a communication line K and an excitation line L via the inputs / outputs 75, 76.
  • a warning light 77 in the dashboard of the motor vehicle is controlled by a central information unit 78, which receives a signal for this purpose via an output 79 of the control unit.
  • the flaps are fully opened and the blower is operated at maximum speed.
  • position feedback can take place via the sliding contacts 61 to 64 and, if necessary, the warning light 77 can be activated.
  • the motor temperature is given here in ° C.
  • the cooling air flaps For increasing values of the engine temperature tm, the cooling air flaps initially remain closed until a first temperature threshold tmg1 is reached, which is assumed to be 79 ° C here. From this threshold value, the flaps 10 are moved into the partially open position xk1 for further increasing values of the engine temperature tm, which remains in position until a second temperature threshold value tmg2 is reached. From this second temperature threshold tmg2, which is assumed to be 85 °, the flaps are opened completely. If the engine temperature tm drops again, the cooling air dampers remain in their fully open position xk2 down to the first temperature threshold value tmg1 and then move to their partially open position xk1. This in turn is maintained up to a third temperature threshold tmg3 (assumed to be 74 ° C), and the closed position xk0 is activated for further falling temperatures.
  • a third temperature threshold tmg3 assumed to be 74 ° C
  • This lowering of the blower voltage ⁇ g and the associated lowering of the blower speed mean that in the temperature interval between the first temperature threshold value tmg1 and the fourth temperature threshold value tmg4, despite the intervening opening of the cooling air flaps by approx. 70% in the cooling air duct, a continuously increasing with the engine temperature tm Cooling air flow sets.
  • the fan blower is initially not activated up to the first pressure threshold value pg1.
  • the fan is switched off again below a fourth pressure threshold value pg4 at approx. 3 bar.
  • 5 and 6 also show the hysteresis properties which serve primarily to calm the flap control. It should also be mentioned here that the control curves according to FIGS. 3 to 6 are only effective when the ignition is switched on; 5 or 6 is only activated as a function of pressure p only when the air conditioning switch is actuated.
  • FIGS. 7 to 10 show further additional control curves for the flap position or the fan blower.
  • the control curves according to FIGS. 7 and 8 are only active here when the ignition is switched on, while the control curves according to FIGS. 9 and 10 are only effective when the internal combustion engine 2 is switched off; 10, however, the fan blower is only activated when the bonnet 29 is closed.
  • a temperature threshold value tmg6 of 80 ° C increases.
  • FIG. 10 shows examples of a duty cycle signal in the voltage-time diagram as it is used to control the electronic output stages 45, 46.
  • a minimum and a maximum duty cycle signal are shown, each of which corresponds to an equivalent DC voltage drop at the fan connection terminals of 6 volts or 12 volts (the maximum vehicle electrical system voltage is assumed to be 12 volts, but can also be used for vehicles equipped with lead accumulators at 13 , 2 volts are).
  • the two output stages 45, 46 are clocked offset by half a pulse period, so that the interference voltage load is additionally kept low.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Cooling, Air Intake And Gas Exhaust, And Fuel Tank Arrangements In Propulsion Units (AREA)

Description

Die Erfindung betrifft eine Kühlluftklappen- und Gebläsesteuerung für Kraftfahrzeuge nach der Gattung des Hauptanspruchs.The invention relates to a cooling air flap and blower control for motor vehicles according to the preamble of the main claim.

Die Neuentwicklung von Kraftfahrzeugen, insbesondere von Personenkraftwagen, steht in der jüngsten Zeit immer mehr unter dem Gesichtspunkt einer optimalen aerodynamischen Gestaltung, nicht zuletzt, um die Fahrleistungen zu erhöhen und den Verbrauch von Betriebsstoffen zu vermindern. Ein wesentlicher Faktor ist hierbei die für die Kühlung der Antriebs(Brennkraft-)maschine notwendige Durchströmung des Brennkraftmaschinenraums, die sich negativ auf den sogenannten Luftwiderstandsbeiwert auswirkt. Ebenso ist es erwünscht, daß sich die Brennkraftmaschine nach einem Startvorgang aus dem kalten Zustand heraus schnell auf eine Betriebstemperatur, bei der sie mit optimaler Wirtschaftlichkeit und Lebensdauer arbeiten kann, erwärmt und diese während des Betriebs möglichst konstant einhält.The recent development of motor vehicles, in particular passenger cars, has recently become more and more important in terms of optimal aerodynamic design, not least in order to increase driving performance and reduce the consumption of operating materials. An essential factor here is the flow through the engine compartment necessary for cooling the drive (internal combustion engine), which has a negative effect on the so-called air resistance coefficient. It is also desirable that the internal combustion engine warms up quickly after a starting operation from the cold state to an operating temperature at which it can operate with optimum economy and service life and maintains this as constant as possible during operation.

Aus der DE-OS 32 11 793 ist eine Kühlmitteltemperaturregelungsanlage für einen Kraftfahrzeug-Verbrennungsmotor bekannt, der neben der üblichen Kühlmitteltemperaturregelung mittels Thermostat im Kurzschlußkreislauf des Kühlwassers der Brennkraftmaschine und dem thermostatisch ein- und ausgeschalteten Kühlluftgebläse zusätzlich ein Schott in einer von der Kühlluft durchströmten Öffnung im Wagenaufbau thermostatisch steuert.From DE-OS 32 11 793 a coolant temperature control system for a motor vehicle internal combustion engine is known, which in addition to the usual coolant temperature control by means of a thermostat in the short circuit of the cooling water of the internal combustion engine and the thermostatic cooling air blower switched on and off additionally a bulkhead in an opening in which the cooling air flows Controlling the car body thermostatically.

Dadurch wird zwar die Forderung nach Verbesserung der Aerodynamik Rechnung getragen. Die verwendeten Regelorgane weisen jedoch alle mehr oder weniger Zweipunkt-Charakteristik auf, so daß sich damit die Betriebstemperatur der Brennkraftmaschine kaum konstant auf einem erforderlichen Niveau halten läßt. Durch die dadurch bedingten ständigen Schwankungen um einen Sollbetriebspunkt ergibt sich eine schlechte Regelgüte und damit eine Belastung und Abnützung der Brennkraftmaschine einschließlich aller vom Kühlwasser durchströmten Aggregate und Teile. Zudem ist das als Dehnstoffelement ausgeführte, lediglich vom Kühlmittel beeinflußte Verstellorgan des Schotts nur unzureichend abstimmbar und läßt keine weiteren Einflußgrößen zur Anpassung des Kühlluftströms an den Kühlluftbedarf von Verbrennungsmotor und Neben- bzw. Zusatzaggregaten zu.This does indeed take into account the need to improve aerodynamics. However, the control elements used all have more or less two-point characteristics, so that the operating temperature of the internal combustion engine can hardly be kept constant at a required level. The resulting constant fluctuations around a target operating point result in poor control quality and thus stress and wear and tear on the internal combustion engine, including all units and parts through which cooling water flows. It is also an expansion element Executed adjusting element of the bulkhead, which is only influenced by the coolant, can only be inadequately tuned and does not allow any further influencing variables for adapting the cooling air flow to the cooling air requirement of the internal combustion engine and auxiliary or auxiliary units.

Zur Verbesserung der Regelgüte wurden auch schon kombinierte Regelsysteme mit kontinuierlich arbeitenden Verstellorganen vorgeschlagen, "Motortechnische Zeitschrift", Jahrgang 20, Heft 5, Mai 1959, Seite 141 bis 142. Diese hydraulisch oder hydrostatisch arbeitenden System sind jedoch äußerst aufwendig und teuer; ihr Einsatz ist nur dann vertretbar, wenn die Brennkraftmaschine bereits eine Druckölversorgung aufweist. Ein weiteres Problem sind die bei hydraulischen oder hydrostatischen Systemen immer vorhandenen Drucköl-Leckagen.In order to improve the control quality, combined control systems with continuously operating adjusting elements have also been proposed, "Motortechnische Zeitschrift", Volume 20, Issue 5, May 1959, pages 141 to 142. However, these hydraulic or hydrostatic systems are extremely complex and expensive; Their use is only justifiable if the internal combustion engine already has a pressure oil supply. Another problem is the pressure oil leakage that is always present in hydraulic or hydrostatic systems.

Mit der EP-A-0 084 378 ist eine Steuereinrichtung für ein Motorkühlsystem bekannt geworden, bei welchem bei steigender Temperatur des Kühlmittels der Brennkraftmaschine Kühlluftklappen von der geschlossenen in die geöffnete Stellung gesteuert werden und bei weiter steigender Temperatur ein Lüftergebläse zugeschaltet wird. Die Drehzahl des Lüftergebläses wird hierbei mit wachsender Temperatur erhöht. Eine Verstellung der Kühlluftklappen in Stufen ist zwar angedeutet, nicht jedoch, wie die zugehörige Ansteuerung vorgenommen werden soll.EP-A-0 084 378 discloses a control device for an engine cooling system in which cooling air flaps are controlled from the closed to the open position when the coolant of the internal combustion engine rises and a fan blower is switched on when the temperature rises further. The speed of the fan blower is increased with increasing temperature. An adjustment of the cooling air flaps in stages is indicated, but not how the associated control is to be carried out.

Ein Temperaturregelsystem für Brennkraftmaschinen geht aus der EP-A-0 156 078 hervor. Bei diesem Temperaturregelsystem wird eine Drehzahl eines Lüftergebläses entsprechend einem Temperatursignal gesteuert. Kühlluftklappen und Gebläseantrieb werden sequentiell derart angesteuert, so daß die Kühlluftklappen stets offen sind, bevor das Gebläse angetrieben wird.A temperature control system for internal combustion engines can be found in EP-A-0 156 078. In this temperature control system, a fan blower speed is controlled according to a temperature signal. Cooling air flaps and blower drive are controlled sequentially so that the cooling air flaps are always open before the blower is driven.

Aufgabe der Erfindung ist es daher, eine kühlmittel- und Gebläsesteuerung für Kraftfahrzeuge zu schaffen, die einen Wärmehaushalt einer Brennkraftmaschine einschließlich ihrer Neben- und Zusatzaggregate bei vertretbarem Aufwand optimal regelt und zudem aerodynamischen Gesichtspunkten des Kraftfahrzeugs voll gerecht wird.The object of the invention is therefore to provide a coolant and blower control for motor vehicles, which optimally regulates a heat balance of an internal combustion engine including its auxiliary and auxiliary units at a reasonable cost and which also fully meets the aerodynamic aspects of the motor vehicle.

Die Vorteile der Erfindung sind in erster Linie darin zu sehen, daß eine Kühlluftklappen- und Gebläsesteuerung für Kraftfahrzeuge geschaffen ist, die einen Kühlluftbedarf einer Brennkraftmaschine des Kraftfahrzeugs einschließlich aller Neben- und Zusatzaggregate mit hervorragender Regelgüte steuert. Sie ist darüber hinaus leicht an unterschiedliche Gegebenheiten verschiedener Kraftfahrzeug- und Brennkraftmaschinentypen anpaßbar, benötigt wenig Einbauraum und ist kostengünstig in Herstellung und Einbau.The advantages of the invention are primarily to be seen in the fact that a cooling air flap and blower control for motor vehicles is created, which controls a cooling air requirement of an internal combustion engine of the motor vehicle, including all auxiliary and auxiliary units with excellent control quality. In addition, it is easily adaptable to different circumstances of different types of motor vehicles and internal combustion engines, requires little installation space and is inexpensive to manufacture and install.

Weitere, die Erfindung in vorteilhafter Weise ausgestaltende Merkmale sind in den Unteransprüchen enthalten.Further features which advantageously configure the invention are contained in the subclaims.

Die Erfindung wird nachstehend anhand von in den Zeichnungen dargestellten Beispielen näher erläutert. Es zeigt

  • Fig. 1 ein Schnittbild eines Brennkraftmachinenraums eines Kraftfahrzeugs,
  • Fig. 2 ein Schaltbild einer Kühlluftklappen- und Gebläsesteuerung nach der Erfindung,
  • Fig. 3 ein Diagramm, das eine Ansteuerfunktion für die Stellung von Kühlluftklappen in Abhängigkeit von einer Temperatur im Kühlmittelkreislauf einer Brennkraftmaschine wiedergibt,
  • Fig. 4 ein Diagramm nach Fig. 3, jedoch für ein Gebläse,
  • Fig. 5 ein Diagramm nach Fig. 3, jedoch für eine Ansteuerfunktion für die Stellung der Kühlluftklappen in Abhängigkeit vom Druck in einem Kältemittelkreislauf einer Klimaanlage,
  • Fig. 6 ein Diagramm nach Fig. 5, jedoch für ein Gebläse,
  • Fig. 7 ein Diagramm nach Fig. 3, jedoch für die Stellung der Külluftklappen in Abhängigkeit von der Temperatur eines Schmiermittels eines Getriebes,
  • Fig. 8 ein Diagramm nach Fig. 3, jedoch für das Gebläse,
  • Fig. 9 ein Diagramm nach Fig. 3, jedoch für die Stellung der Kühlluftklappen in Abhängigkeit von der Temperatur eines Saugrohrs bzw. des Kühlmittelkreislaufs bei abgestellter Brennkraftmaschine,
  • Fig. 10 ein Diagramm nach Fig. 9, jedoch für das Gebläse,
  • Fig. 11 ein Spannungs-Zeit-Diagramm eines Tastverhältnisses.
The invention is explained below with reference to examples shown in the drawings. It shows
  • 1 is a sectional view of an engine compartment of a motor vehicle,
  • 2 is a circuit diagram of a cooling air flap and fan control according to the invention,
  • 3 shows a diagram which represents a control function for the position of cooling air flaps as a function of a temperature in the coolant circuit of an internal combustion engine,
  • 4 shows a diagram according to FIG. 3, but for a blower,
  • 5 shows a diagram according to FIG. 3, but for a control function for the position of the cooling air flaps as a function of the pressure in a refrigerant circuit of an air conditioning system,
  • 6 shows a diagram according to FIG. 5, but for a blower,
  • 7 shows a diagram according to FIG. 3, but for the position of the cooling air flaps as a function of the temperature of a lubricant of a transmission,
  • 8 is a diagram of FIG. 3, but for the blower,
  • 9 shows a diagram according to FIG. 3, but for the position of the cooling air flaps as a function of the temperature of an intake manifold or the coolant circuit when the internal combustion engine is switched off,
  • 10 is a diagram of FIG. 9, but for the fan,
  • 11 is a voltage-time diagram of a duty cycle.

In Fig. 1 ist mit 1 ein Kraftfahrzeug gezeigt, in dessen Vordebau bzw. Brennkraftmaschinenraum 2 eine Brennkraftmaschine 3 angeordnet ist. Diese ist über Kühlmittelleitungen (Vorlauf 4, Rücklauf 5) mit einem Wärmetauscher (Flüssigkeitskühler 6) verbunden, der über eine Karosserieöffnung 7 an einem Wagenbug 8 und einen Kühlluftkanal 9 mit Fahrtwind beaufschlagbar ist.In Fig. 1, 1 shows a motor vehicle, in whose front end or engine compartment 2 an internal combustion engine 3 is arranged. This is connected via coolant lines (flow 4, return 5) to a heat exchanger (liquid cooler 6), which can be acted upon by a wind through a body opening 7 on a car front 8 and a cooling air duct 9.

Der Kühlluftkanal 9 ist mittels in ihrer Stellung steuerbarer Külluftklappen 10 öffen- bzw. verschließbar. Die Külluftklappen 10 werden über ein Steuergestänge 11 (Kurbeltrieb) von einem Elektromotor 12 mit angeflanschtem Getriebe 13 gesteuert. Auf einer (nicht gezeigten) Getriebeausgangswelle ist eine Steuerscheibe 14 drehfest angeordnet, über die die Kühlluftklappen 10 in eine geschlossene xk = 0%, eine teilweise xk = 30% und eine vollständig geöffnete xk = 100% Stellung gesteuert werden können. Steuerscheibe 14 und Elektromotor 12 sind hierzu über ein Relais, auf das später noch eingegangen wird, mit einem Steuergerät 15 verbunden.The cooling air duct 9 can be opened or closed by means of cooling air flaps 10 which are controllable in their position. The cooling air flaps 10 are controlled via a control linkage 11 (crank mechanism) by an electric motor 12 with a flanged gear 13. On a transmission output shaft (not shown), a control disk 14 is arranged in a rotationally fixed manner, via which the cooling air flaps 10 can be controlled into a closed xk = 0%, a partially xk = 30% and a fully open xk = 100% position. For this purpose, control disk 14 and electric motor 12 are connected to a control unit 15 via a relay, which will be discussed later.

Es sei hier erwähnt, daß die in Fig. 1 gezeigten gestrichelten Verbindungen zwischen den einzelnen Aggregaten lediglich symbolische Wirkverbindungen darstellen, die nichts über Art und Anzahl verlegter elektrischer Leitungen (Signalleitungen, Energieversorgungsleitungen) aussagen. Diese ergeben sich dem einschlägigen Fachmann von selbst aufgrund der baulichen Eigenheiten der verwendeten Geräte.It should be mentioned here that the dashed connections shown in FIG. 1 between the individual units merely represent symbolic active connections that say nothing about the type and number of installed electrical lines (signal lines, power supply lines). These arise naturally for the relevant specialist due to the structural peculiarities of the devices used.

Im Kühlmittelkreislauf 4, 5, 6 der Brennkraftmaschine 3 ist ferner noch ein übliches Thermostatventil 16 gezeigt, das den Kühlkreislauf in der Anwärmphase der Brennkraftmaschine 3 über eine Bypassleitung 17 kurzschließt.In the coolant circuit 4, 5, 6 of the internal combustion engine 3, a conventional thermostatic valve 16 is also shown, which short-circuits the cooling circuit in the warming-up phase of the internal combustion engine 3 via a bypass line 17.

Zwischen Wärmetauscher 6 und Brennkraftmaschine 3 ist ein elektromotorisch angetriebenes Gebläse 18 angeordnet, über das der Wärmetauscher 6, die Brennkraftmaschine 3 und ein _ in Fahrichtung gesehen _ vor dem Wärmetauscher angeordneter Kondensator 19 einer Klimaanlage 20 (schematisch dargestellt) zwangsbelüftet werden können (selbstverständlich können im Kühlluftstrom auch noch weitere Wärmestauscher, beispielsweise ein Ladeluftkühler oder ein Kühler für einen Flüssigkeitskreislauf eines Automatikgetriebes _ neben, über- oder hintereinander _ angeordnet sein).Between the heat exchanger 6 and the internal combustion engine 3, an electric motor-driven fan 18 is arranged, via which the heat exchanger 6, the internal combustion engine 3 and a condenser 19 of an air conditioning system 20 (shown schematically) in front of the heat exchanger (shown schematically) can be forced-ventilated (of course, in Cooling air flow also other heat exchangers, for example a charge air cooler or a cooler for a liquid circuit of an automatic transmission _ next to, one above the other or one behind the other).

Eine Drehzahl des Gebläses 18 ist über das Steuergerät 15 und eine später gezeigte elektronische Endstufe stufenlos in seiner Drehzahl verstellbar. Eine Einflußgröße für die Steuerung von Gebläsedrehzahl und Kühlluftklappenstellung ist hierbei eine Temperatur tm (Kühlmitteltemperatur) der Brennkraftmaschine 3, die mittels eines Kühlmitteltemperaturfühlers 21 im Rücklauf 5 des Kühlmittelkreislaufs 4 bis 6 erfaßt wird.A speed of the blower 18 is infinitely variable in its speed via the control unit 15 and an electronic output stage shown later. An influencing variable for controlling the fan speed and the cooling air flap position is a temperature tm (coolant temperature) of the internal combustion engine 3, which is detected by means of a coolant temperature sensor 21 in the return 5 of the coolant circuit 4 to 6.

Neben der Kühlmitteltemperatur tm gehen noch weitere Einflußgrößen in die Steuerung ein. Dazu erhält das Steuergerät 15 Signale von einem Zündschalter 22 (Zündung ein- bzw. ausgeschaltet), einem Klimaanlagenschalter 23 (Klimaanlage ein/aus), einem Temperaturfühler 24 (Temperaturschalter) im Flüssigkeitskreislauf des Automatikgetriebes, einem Druckfühler 25 in einem kähtemittelkreislauf der Klimaanlage 20, einem Temperaturfühler 26 (Temperaturschalter) in oder am Ansaugrohr 27 der Brennkratmaschine 3 und einem Haubenkontaktschalter 28, der eine Schließstellung einer Klappe (Motorhaube 29) zum Verschließen des Brennkraftmaschinenraums 2 überwacht. Schließlich kann an des Steuergerät 15 noch ein Übertemperaturschalter 30 angeschlossen sein, der die Temperatur der Brennkratmaschine an ihrem Zylinderblock oder -kopf überwacht und gegebenenfalls eine Warnlampe in einem Armaturnbrett des Kraftfahrzeugs direkt und/oder indirekt über einen Zentralinformator (zum Anzeigen von Gefahrenzuständen; hier nicht gezeigt) ansteuert.In addition to the coolant temperature tm, other influencing variables are also included in the control. For this purpose, control unit 15 receives signals from an ignition switch 22 (ignition on or off), an air conditioning switch 23 (air conditioning on / off), a temperature sensor 24 (temperature switch) in the fluid circuit of the automatic transmission, and a pressure sensor 25 in one Kättmittelkreislauf the air conditioning system 20, a temperature sensor 26 (temperature switch) in or on the intake pipe 27 of the burner 3 and a hood contact switch 28, which monitors a closed position of a flap (hood 29) for closing the engine compartment 2. Finally, an excess temperature switch 30 can also be connected to the control unit 15, which monitors the temperature of the burner machine on its cylinder block or head and, if necessary, a warning lamp in a dashboard of the motor vehicle directly and / or indirectly via a central information unit (for indicating dangerous states; not here shown).

Im Schaltbild nach Fig. 2 is die elektrische Verschaltung der einzelnen Elemente zu erkennen. Das Steuergerät 15 ist über einen Eingang 31 direkt und über einen Eingang 32 über den Zündschalter 22 indirekt mit dem Pluspol (+) einer Batterie 33 verbunden, deren Minuspol (-) an Fahrzeugmasse 34 liegt; an dieser ist das Steuergerät 15 über einen Eingang 35 angeschlossen.The electrical connection of the individual elements can be seen in the circuit diagram according to FIG. 2. The control unit 15 is connected via an input 31 directly and via an input 32 via the ignition switch 22 indirectly to the positive pole (+) of a battery 33, the negative pole (-) of which is connected to the vehicle ground 34; the control unit 15 is connected to this via an input 35.

Als Kühlmitteltemperaturfühler 21 ist ein NTC-Widerstand 36 an Eingänge 35 und 37 angeschlossen. Signale vom Klimaanlagenschalter 23, dem Temperaturfühler 26 am Saugrohr (Temperaturgrenzwertschalter) und dem Temperaturfühler 24 im Flüssigkeitskreislauf des Automatikgetriebes (Temperaturgrenzwertschalter) erreichen das Steuergerät 15 über Eingänge 38 bis 40.An NTC resistor 36 is connected to inputs 35 and 37 as coolant temperature sensor 21. Signals from the air conditioning switch 23, the temperature sensor 26 on the intake manifold (temperature limit switch) and the temperature sensor 24 in the fluid circuit of the automatic transmission (temperature limit switch) reach the control unit 15 via inputs 38 to 40.

An einem Eingang 41 liegt ein Signal vom Druckfühler 25 im Kältemittelkreislauf der Klimaanlage an; dieser ist als kontinuierlich arbeitender Druckfühler ausgeführt. Schließlich ist ein Eingang 42 noch mit dem Haubenkontaktschalter 28 verbunden.A signal from the pressure sensor 25 is present at an input 41 in the refrigerant circuit of the air conditioning system; this is designed as a continuously operating pressure sensor. Finally, an input 42 is also connected to the hood contact switch 28.

Das elektromotorisch angetribene Lüftergebläse ist im Schaltplan als Doppelelektrolüfter mit je zwei Antriebsmotoren 43, 44 und elektronischen Endstufen 45, 46 ausgeführt, was bezüglich der Endstufen aus Redanzgrüden, bezüglich der Elektrolüfter auch aus Gründen den einer besseren räumlichen Anordnung erfolgen kann. Selbstverständlich ist die Funktionstüchtigkeit der Schaltung auch bei einfacher Ausführung gewährleistet.The electric motor-driven fan blower is designed in the circuit diagram as a double electric fan, each with two drive motors 43, 44 and electronic output stages 45, 46, which can be done for reasons of redundancy, for reasons of a better spatial arrangement with regard to the output stages. Of course, the functionality of the circuit is guaranteed even with a simple design.

Jeweils ein Antriebsmotor 43, 44 und eine elektronische Endstufe 45, 46 sind in Reihe liegend, parallel an die Laststromversorgung angeschlossen; die Endstufen 45, 46 sind ansteuerseitig ebenfalls parallel geschaltet.In each case a drive motor 43, 44 and an electronic output stage 45, 46 are connected in series, connected in parallel to the load power supply; the output stages 45, 46 are also connected in parallel on the control side.

Über einen Ausgang 47 des Steuergeräts 15 erhalten die elektronischen Endstufen 45, 46 ein Freigabesignal, das eventuell auch entfallen kann.Via an output 47 of the control unit 15, the electronic output stages 45, 46 receive an enable signal, which may possibly also be omitted.

Die elektronischen Endstufen 45, 46, die als Halbleiterschalter ausgeführt sind, erhalten über einen Ausgang 48 des Steuergeräts 15 ein Tastverhältnis in Form eines pulsbreitenmodulierten Rechtecksignals. Selbstverständlich kann die Gebläsesteuerung auch so ausgelegt sein, daß das Tastverhältnis in den elektronischen Endstufen 45, 46 erzeugt wird und das Steuergerät 15 lediglich ein entsprechendes analoges oder digitales Signal ausgibt.The electronic output stages 45, 46, which are designed as semiconductor switches, receive a pulse duty factor in the form of a pulse-width-modulated square-wave signal via an output 48 of the control device 15. Of course, the fan control can also be designed so that the duty cycle is generated in the electronic output stages 45, 46 and the control unit 15 only outputs a corresponding analog or digital signal.

Schließlich führt von den elektronischen Endstufen 45, 46 noch eine Rückmeldeleitung zu einem Eingang 49 des Stenergeräts 15, über die diesem signalisiert werden kann, ob im Leistungskreis der Endstufe ein Fehler vorliegt (Kurzschluß, Leitungsunterbrechung) oder ob sie defekt ist. Die elektronischen Endstufen weisen schließlich noch Anschlüsse für eine Betriebsstromversorgug (Pluspol 50, 51, Masse 52, 53) für die Elektronik, Masse 54, 55 für den Leistungskreis (Halbleiterschalter) und je einen Ausgang 56, 57 für eine in der Endstufe integrierte, nicht gezeigte Freilaufdiode auf.Finally, a feedback line leads from the electronic output stages 45, 46 to an input 49 of the stencil device 15, via which it can be signaled whether there is an error in the power circuit of the output stage (short circuit, line break) or whether it is defective. Finally, the electronic output stages also have connections for an operating power supply (positive pole 50, 51, ground 52, 53) for the electronics, ground 54, 55 for the power circuit (semiconductor switch) and one output 56, 57 for one integrated in the output stage, not shown freewheeling diode.

Der zum Antrieb der Kühlluftklappen dienende, mit dem Getriebe versehene Elektromotor 12 wird vom Steuergerät 15 über ein Relais 58 und die Steuerscheibe 14, die drehfest mit einer (symbolisch gezeigten) Awsgangswelle 59 des Getriebes 13 verbunden ist, gesteuert. Der Elektromotor 12 liegt hierzu mit seiner einen Anschlußklemme an Masse; die andere Anschlußklemme wird über einen Wechselkontakt 60 des Relais 58 im angesteuerten Zustand mit dem Pluspol (+) und damit mit Betrriebsspannung versorgt. Im nicht angesteuertem Zustand wird der Wechselkontakt 60 an Masse gelegt, wodurch die Ankerwicklung des Motors 12 kurzgeschlossen ist und eine Bremswirkung erzielt wird.The electric motor 12, which is used to drive the cooling air flaps and is provided with the gearbox, is controlled by the control unit 15 via a relay 58 and the control disk 14, which is connected in a rotationally fixed manner to an (schematically shown) input shaft 59 of the gearbox 13. For this purpose, the electric motor 12 is connected to earth with its one connecting terminal; the other terminal is supplied via a changeover contact 60 of the relay 58 in the activated state with the positive pole (+) and thus with the operating voltage. In the non-activated state, the changeover contact 60 is grounded, as a result of which the armature winding of the motor 12 is short-circuited and a braking effect is achieved.

Mit der kreisförmig ausgebildeten Steuerscheibe 14 stehen ortsfest gelagerte Schleifkontakte 61 bis 64 in reibschlüssiger Wirkverbindung; die Steuerscheibe 14 weist eine kreisringförmige Kontaktbahn 65 auf, mit der der erste Schleifkontakt 61 auf einer inneren 66, der zweite Schleifkontakt 62 auf einer mittleren 67, und der dritte und vierte Schleifkontakt 63, 64 auf einer äußeren, 68, Kreisbahn in elektrisch leitende Verbindung ist. Im bereich der inneren, 66, und der äußeren, 68, Kreisbahn der Kontaktbahn 65 ist jeweils eine, in einem begrenzten Drehwinkelbereich wirksam werdende Isolierfläche 69, 70 angeordnet, die die elektrische Wirkverbindung zwischen der Kontaktbahn 65 und dem ersten, 61, dritten, 63, bzw. vierten, 64, Schleifkontakt aufhebt.With the circularly designed control disk 14 there are stationary sliding contacts 61 to 64 in a frictional operative connection; the control disk 14 has an annular contact track 65 with which the first sliding contact 61 on an inner 66, the second sliding contact 62 on a middle 67, and the third and fourth sliding contact 63, 64 on an outer, 68, circular track in electrically conductive connection is. In the area of the inner, 66, and the outer, 68, circular path of the contact path 65 there is in each case an insulating surface 69, 70 which becomes effective in a limited range of rotation angles and which provides the electrical operative connection between the contact path 65 and the first, 61, third, 63 , or fourth, 64, cancels sliding contact.

Erster, dritter und vierter Schleifkontakt 61, 63 und 64 sind mit den Ausgängen 71, 72 und 73 des Steuergeräts 15 verbunden, mit denen die Kühlluftklappen in eine geschlossene xk0 = 0%, teilweise xk1 = 30% und vollständig geöffnete xk2 = 100% Stellung xk steuerbar sind. Der zweite Schleifkontakt 62 liegt im Erregerstromkreis des Relais 58, dessen Erregerwicklung 74 einseitig dauernd am Pluspol (+) der Batterie 33 liegt.First, third and fourth sliding contacts 61, 63 and 64 are connected to the outputs 71, 72 and 73 of the control device 15, with which the cooling air flaps are in a closed xk0 = 0%, partially xk1 = 30% and fully open xk2 = 100% position xk are controllable. The second sliding contact 62 is in the excitation circuit of the relay 58, the excitation winding 74 of which is permanently on one side at the positive pole (+) of the battery 33.

Die Funktion erklärt sich wie folgt: Ausgehend von der gezeigten Stellung, in der die Kühlluftklappen geschlossen sind, soll beispielweise die teilweise geöffnete Stellung angefahren werden. Das Steuergerät 15 legt dazu den Ausgang 72 auf Massepotential, welches vom dritten Schleifkontakt 63 über die Kontaktbahn 65 auf den zweiten Schleifkontakt 62 übertragen wird, so daß die Erregerwicklung 74 des Relais 58 einerseits an Masse und andererseits am Pluspol (+) liegt. Das Relais 58 zieht an, worauf sich der Elektromotor 12, und mit ihm die Steuerscheibe 14 (und selbstverständlich auch die Kühlluftklappen) in bewegung setzen (Drehbewegung im Gegenuhrzeigersinn). Die Drehbewegung wird nun solange fortgesetzt, bis die Isolierfläche 70 in eine Winkelposition eintritt, in der sich der ortsfest gelagerte dritte Schleifkontakt 63 befindet; sie trennt dort die leitende Verbindung zwischen dem dritten Schleifkontakt 63 und der Kontaktbahn 65 auf, so daß das Relais 74 abfällt und der Motor bis zum Stillstand abgebremst wird. Das Anfahren der vollständig geöffneten Stellung und der geschlossenen Stellung erfolgt durch die Ansteuerung des ersten, 61, bzw. vierten, 64, Schleifkontakts in adäquater Weise. Eine Verstellung von einer Lage in eine andere erfolgt dabei _ durch die festgelegte einzige Drehrichtung _ immer in der Reihenfolge geschlossen _ teilweise geöffnet _ vollständig geöffnet _geschlossen.The function is explained as follows: Starting from the position shown, in which the cooling air flaps are closed, the partially open position should be approached, for example. For this purpose, the control device 15 sets the output 72 to ground potential, which is transmitted from the third sliding contact 63 via the contact track 65 to the second sliding contact 62, so that the excitation winding 74 of the relay 58 is connected to ground on the one hand and to the positive pole (+) on the other hand. The relay 58 picks up, whereupon the electric motor 12, and with it the control disk 14 (and of course also the cooling air flaps) set in motion (counterclockwise rotation). The rotary movement is now continued until the insulating surface 70 enters an angular position in which the fixed third sliding contact 63 is located; there it disconnects the conductive connection between the third sliding contact 63 and the contact track 65, so that the relay 74 drops out and the motor is braked to a standstill. The fully open position and the closed position are approached by controlling the first, 61, or fourth, 64, sliding contact in an adequate manner. An adjustment from one position to another takes place _ by the specified single direction of rotation _ always in the order closed _ partially open _ fully open _ closed.

Die Ansteuerung der einzelnen Stellungen ist hierbei einer zeitlichen Begrenzung unterworfen; sie ist so ausgelegt, daß sie für einen jeweiligen Verstellvorgang unter schwierigsten Bedingungen gerade ausreicht. Damit werden Überlastungen des Antriebs vermieden und es kann zusätzlich auf eine Lagerückmeldung verzichtet werden.The control of the individual positions is subject to a time limit; it is designed so that it is just sufficient for a particular adjustment process under the most difficult conditions. Overloading of the drive is avoided and position feedback is not required.

Das vorzugsweise in an sich bekannter Mikrorechnertechnik aufgebaute Steuergerät 15 kann ferner selbstdiagnosefähig sein und einen elektrisch löschbaren Speicherbereich umfassen, in dem Fehlermeldungen vom Mikrorechner ablegbar sind; diese können, wie es beispielsweise in der DE-OS 35 40 599 beschrieben ist, bei einem Diagnosevorgang von einem Diagnosesystem abgerufen werden.The control device 15, which is preferably constructed in known microcomputer technology, can also be self-diagnosable and include an electrically erasable memory area in which error messages can be stored by the microcomputer; these can, as described for example in DE-OS 35 40 599, be called up by a diagnostic system during a diagnostic process.

Das Steuergerät ist zu diesem Zweck über die Ein- /Ausgänge 75, 76 mit einer Kommunikationsleitung K und einer Reizleitung L verbunden. Ebenso ist vorgesehen, daß bei Eintreten der, beispielsweise durch einen Ausfall eines Sensors ausgelösten Notfunktion eine Wamleuchte 77 im Armaturenbrett des Kraftfahrzeuges durch einen Zentralinformator 78 angesteuert wird, der hierzu ein Signal über einen Ausgang 79 des Steuergeräts erhält. Mit Eintreten der Notfunktion werden gleichzeitig die Klappen vollständig geöffnet und das Gebläse mit maximaler Drehzahl betrieben. Ebenso kann über die Schleifkontakte 61 bis 64 eine Stellungsrückmeldungg erfolgen und gegebenenfalls die Warnleuchte 77 angesteuert werden.For this purpose, the control device is connected to a communication line K and an excitation line L via the inputs / outputs 75, 76. It is also provided that when the emergency function is triggered, for example by a sensor failure, a warning light 77 in the dashboard of the motor vehicle is controlled by a central information unit 78, which receives a signal for this purpose via an output 79 of the control unit. When the emergency function occurs, the flaps are fully opened and the blower is operated at maximum speed. Likewise, position feedback can take place via the sliding contacts 61 to 64 and, if necessary, the warning light 77 can be activated.

Die funktion der Kühlluftklappen- und Gebläsesteuerung wird nun anhand der Diagramme nach den Fig. 3 bis 10 erläutert.The function of the cooling air flap and blower control will now be explained using the diagrams according to FIGS. 3 to 10.

Fig. 3 zeigt zunächst die Abhängigkeit xk = fkt(m) der Kühluftklappenstellung xk von der Motortemperatur tm. Die Klappenstellung xk ist hierbei in Prozentwerten angegeben, wobei der Wert xk0 = 0% der geschlossenen, der Wert xk1 = 30% der teilweise geöffneten und der Wert xk2 = 100% der vollständig geöffneten Stellung entspricht. Die Motortempeatur ist hier in °C angegeben.Fig. 3 shows the dependence xk = fkt (m) of the cooling air flap position xk on the engine temperature tm. The flap position xk is given in percentages, with the value xk0 = 0% of the closed and the value xk1 = 30% of the partially open and the value xk2 = 100% of the fully open position. The motor temperature is given here in ° C.

Für ansteigende Werte der Motortemperatur tm bleiben die Kühlluftklappen zunächst geschlossen, bis ein erster Temperaturschwellwert tmg1 erreicht ist, der hier zu 79°C angenommenn ist. Ab diesem Schwellwert werden die Klappen 10 für weiter steigende Werte der Mototemperatur tm in die teilweise geöffnete Stellung xk1 gefahen, welche bis zum Erreichen eines zweiten Temperaturschwellwertes tmg2 beibehalten bleibt. Ab diesem, zu 85° angenommennem zweiten Temperaturschwellwert tmg2 werden die Klappen vollständig geöffnet. Fällt die Motortemperatur tm wieder ab, so verharren die Kühlluftklappen bis zum ersten Temperaturschwellwert tmg1 herab in ihrer vollständig geöffneten Stellung xk2 und fahren dann in ihre teilweise geöffnete Stellung xk1. Diese wird wiederum bis zu einem dritten Temperaturschwellwert tmg3 (zu 74°C angenommen) beibehalten, und für weiter fallende Temperaturen wird die geschlossene Stellung xk0 angesteuert.For increasing values of the engine temperature tm, the cooling air flaps initially remain closed until a first temperature threshold tmg1 is reached, which is assumed to be 79 ° C here. From this threshold value, the flaps 10 are moved into the partially open position xk1 for further increasing values of the engine temperature tm, which remains in position until a second temperature threshold value tmg2 is reached. From this second temperature threshold tmg2, which is assumed to be 85 °, the flaps are opened completely. If the engine temperature tm drops again, the cooling air dampers remain in their fully open position xk2 down to the first temperature threshold value tmg1 and then move to their partially open position xk1. This in turn is maintained up to a third temperature threshold tmg3 (assumed to be 74 ° C), and the closed position xk0 is activated for further falling temperatures.

Fig. 4 zeigt die Abhängigkeit ug = fgt(tm) des Tastverhältnisses zur Ansteuerung der Lüftergebläse 18, 43, 44 in Abhängigkeit von der Motortemperatur tm. Auf der Ordinate der Diagramme ist als Ansteuerwert jedoch nicht das Tastverhältnis selbst aufgetragen, sondern die bei einem bestimmten Tastverhältnis an den Klemmen des Lüfters abfallende Spannung ug, skaliert in Volt. Bis zum ersten Temperaturschwellwert tmg1 werden die Gebläse nicht angesteuert. Ab dem ersten Temperaturshwellwert tmg1 werden die Gebläse für steigende Werte der Motortemperatur tm bis zum zweiten Temperaturschwellwert tmg2 mit einer von ug1 = 6 Volt bis ug2 = 9 Volt linear mit der Temperatur ansteigenden Spannung ug betrieben. Bei Erreichen des zweiten Temperaturschwellwertes tmg2 wird die Spannung ug von ug2 = 9 Volt auf ug3 = 7 Volt abgesenkt, um bei weiter steigenden Werten der Motortemperatur tm bis zu einem vierten Temperaturschwellwert tmg4 auf die volle Bordnetzspannung von ugmax = 12 Volt angehoben zu werden; oberhalb dieses Wertes bleibt die Ansteuerspannung von ugmax = 12 Volt erhalten.4 shows the dependency ug = fgt (tm) of the duty cycle for controlling the fan blowers 18, 43, 44 as a function of the engine temperature tm. However, the duty cycle itself is not plotted on the ordinate of the diagrams, but rather the one for a specific one Duty cycle at the terminals of the fan, falling voltage ug, scaled in volts. The blowers are not activated until the first temperature threshold tmg1. From the first temperature threshold tmg1, the fans for increasing values of the motor temperature tm up to the second temperature threshold tmg2 are operated with a voltage ug linearly with the temperature rising from ug1 = 6 volts to ug2 = 9 volts. When the second temperature threshold value tmg2 is reached, the voltage ug is reduced from ug2 = 9 volts to ug3 = 7 volts in order to be raised to the full on-board electrical system voltage of ugmax = 12 volts up to a fourth temperature threshold value tmg4 when the engine temperature tm continues to increase; above this value the control voltage of ugmax = 12 volts is retained.

Für fallende Temperaturen verläuft zunächst die Steuerkurve bis herab zum zweiten Temperaturschwellwert tmg2 äquivalent zu der für steigende Temperaturen. Unterhalb des zweiten Temperaturschwellwertes tmg2 wird bis herab zum ersten Temperaturschwellwert tmg1 die Spannung ug3 = 7 Volt beibehalten und bei Erreichen des ersten Temperaturschwellwerts auf ug1 = 6 Volt abgesenkt. Diese Ansteuerung bleibt bis herab zu einem fünften Temperaturschwellwert tmg5 (bei 77°C liegend) erhalten. Unterhalb des fünften Temperaturschwellwertes tmg5 werden die Gebläse dann nicht mehr angesteuert.For falling temperatures, the control curve initially runs down to the second temperature threshold tmg2 equivalent to that for rising temperatures. Below the second temperature threshold tmg2, the voltage ug3 = 7 volts is maintained down to the first temperature threshold tmg1 and is reduced to ug1 = 6 volts when the first temperature threshold value is reached. This control is maintained down to a fifth temperature threshold tmg5 (at 77 ° C). The fans are then no longer activated below the fifth temperature threshold value tmg5.

Die Besonderheit der Ansteuerkurve nach Fig. 4 liegt nun darin, daß die Spannung ug zur Ansteuerung der Gebläse gerade dann um ca. 2 Volt abgesenkt wird, wenn die Kühlluftklappen von ihrer teilweise geöffneten xk1 = 30% in ihre vollständig geöffnete Stellung xk2 = 100% gefahren werden. Durch diese Absenkung der Gebläsespannung ug und die damit einhergehende Absenkung der Gebläsedrehzahl wird erreicht, daß sich im Temperaturintervall zwischen dem ersten Temperaturschwellwert tmg1 und dem vierten Temperaturschwellwert tmg4 trotz des dazwischenliegenden Öffnens der Kühlluftklappen um ca. 70% im Kühlluftkanal ein kontinuierlich mit der Motortemperatur tm anwachsender Kühlluftstrom einstellt. Durch das Vermeiden eines sich sprunghaft ändernden Kühlluftstroms wird ein gutes Regelverhalten erreicht und ein ständiges Hin- und Herschalten zwischen der teilweise und der vollständig geöffneten Kühlluftklappenstellung vermieden.The special feature of the control curve according to FIG. 4 is that the voltage µg for controlling the blower is lowered by approximately 2 volts when the cooling air flaps move from their partially open xk1 = 30% to their fully open position xk2 = 100% be driven. This lowering of the blower voltage µg and the associated lowering of the blower speed mean that in the temperature interval between the first temperature threshold value tmg1 and the fourth temperature threshold value tmg4, despite the intervening opening of the cooling air flaps by approx. 70% in the cooling air duct, a continuously increasing with the engine temperature tm Cooling air flow sets. By avoiding an abruptly changing cooling air flow, good control behavior is achieved and constant switching back and forth between the partially and fully open cooling air flap position is avoided.

Fig. 5 zeigt schließlich eine Steuerkurve (xk = fkp(p)), welche die Kühlluftklappenstellung xk in Prozent in Abhängigkeit vom Druck p des Kältemittels in der Klimaanlage (gemessen in bar) angibt. Oberhalb eines ersten Druckschwellwerts pg1 von ca. 3,5 bar werden die Klappen in die teilweise geöffnete Stellung xk1 gefahren. Diese Stellung wird bis zu einem zweiten Druckschwellwert pg2 bei ca. 15 bar beibehalten und für weiter steigende Drücke p auf 100% angehoben. Fällt der Druck p wieder ab, so vert die Kühlluftklappenstellung xk bis zu einem dritten Druckschwellwert pg3 (12 bar) bei 100% und wird dann wieder, bis herab zu einem vierten Druckschwellwert pg4 (3 bar) auf 30% eingestellt. Unterhalb des vierten Druckschwellwerts, pg4, welcher bei ca. 3 bar liegt, bleiben die Klappen geschlossen.5 finally shows a control curve (xk = fkp (p)), which indicates the cooling air flap position xk in percent as a function of the pressure p of the refrigerant in the air conditioning system (measured in bar). Above a first pressure threshold pg1 of approximately 3.5 bar, the flaps are moved into the partially open position xk1. This position is maintained up to a second pressure threshold value pg2 at approx. 15 bar and raised to 100% for further increasing pressures p. If the pressure p drops again, the cooling air flap position xk moves to a third pressure threshold value pg3 (12 bar) at 100% and is then adjusted again down to a fourth pressure threshold value pg4 (3 bar) at 30%. The flaps remain closed below the fourth pressure threshold, pg4, which is approximately 3 bar.

Fig. 6 zeigt wiederum die Spannung ug (in Volt) des Lüftgebläses in Abhängigkeit ug = fgp(p) vom Druck p. Für steigende Drücke wird zunächst bis zum ersten Druckschwellwert pg1 das Lüftergebläse nicht angesteuert. Oberhalb des Druckschwellwerts pg1 bis zum zweiten Druckschwellwert pg2 erfolgt die Ansteuerung mit einer Spannung ug4 von ca. 8,5 Volt, welche oberhalb des zweiten Druckschwellwerts pg2 bis hinauf zu einem fünften Druckschwellwert pg5 (bei ca. 19 bar liegend) linear bis zur maximalen Bordnetzspannung von ugmax = 12 Volt angehoben wird; auf dieser verharrt sie für noch höhere Drücke p. Für fallende Drucke p verläuft die Ansteuerkurve ug = fgp(p) deckungsgleich mit der für steigende Drücke und verharrt bis unterhalb des ersten Druckschwellwertes pg1 auf der Spannung ug4 von 8,5 Volt. Unterhalb eines vierten Druckschwellwerts pg4 bei ca. 3 bar wird das Gebläse wiederum abgeschaltet.Fig. 6 again shows the voltage ug (in volts) of the ventilation fan as a function of ug = fgp (p) on the pressure p. For increasing pressures, the fan blower is initially not activated up to the first pressure threshold value pg1. Above the pressure threshold value pg1 to the second pressure threshold value pg2, the control takes place with a voltage ug4 of approximately 8.5 volts, which is linear above the second pressure threshold value pg2 up to a fifth pressure threshold value pg5 (at approximately 19 bar) up to the maximum vehicle electrical system voltage is raised from ugmax = 12 volts; it remains on this for even higher pressures p. For falling pressures p, the control curve ug = fgp (p) is congruent with that for increasing pressures and remains at voltage ug4 of 8.5 volts below the first pressure threshold value pg1. The fan is switched off again below a fourth pressure threshold value pg4 at approx. 3 bar.

Auch den Fig. 5 und 6 sind wiedr Hystereseeigenschaften zu entnehmen, die in erster Linie zur Beruhigung der Klappensteuerung dieenen. Es sei hier noch erwähnt, daß die Ansteuerkurven nach den Fig. 3 bis 6 nur bei eingeschalteter Zündung wirksam sind; ebenso erfolgt eine Ansteuerung nach Fig. 5 bzw. 6 in Abhängigkeit von Druck p nur dann, wenn der Klimaanlagenschalter betätigt ist.5 and 6 also show the hysteresis properties which serve primarily to calm the flap control. It should also be mentioned here that the control curves according to FIGS. 3 to 6 are only effective when the ignition is switched on; 5 or 6 is only activated as a function of pressure p only when the air conditioning switch is actuated.

Selbstverständlich erfolgt die Ansteuerung der Lüfterklappen bzw. des Gebläses immer durch diejenige Steuerkurve (nach Fig. 3 bis 6), welche augenblicklich den höchsten Ansteuerwert impliziert.Of course, the fan flaps or the fan are always controlled by the control curve (according to FIGS. 3 to 6) which currently implies the highest control value.

Die Fig. 7 bis 10 zeigen weitere zusätzliche Ansteuerkurven für die Klappenstellung bzw. das Lüftergebläse. Die Ansteuerkurven nach Fig. 7 und 8 sind hierbeinur bei eingeschalteter Zündung aktiv, während die Ansteuerkurven nach Fig. 9 und 10 nur bei abgestellter Brennkraftmaschine 2 wirksam sind; eine Ansteuerung des Lüftergebläses nach Fig. 10 erfolgt hierbei jedoch nur bei geschlossener Motorhaube 29.7 to 10 show further additional control curves for the flap position or the fan blower. The control curves according to FIGS. 7 and 8 are only active here when the ignition is switched on, while the control curves according to FIGS. 9 and 10 are only effective when the internal combustion engine 2 is switched off; 10, however, the fan blower is only activated when the bonnet 29 is closed.

In Fig. 7 und 8 ist die Abhängigkeit der Kühlluftklappenstellung xk und der Gebläsespannung ug in Abhängigkeit von der Temperatur tg des Schmiermittels des Getriebes gezeigt. Unterhalb einer Temperatur tgg von 105° erfolgt keine Ansteuerung der Lüfterklappen bzw. des Gebläses. Für Werte der Temperatur tg größer oder gleich tgg = 105°C werden die Kühlluftklappen in ihrer teilweise geöffneten Stellung xk1 gesteuert und das Gebläse mit einer Spannung ug4 von ca. 8,5 Volt betrieben. Entsprechend Fig. 9 werden die Kühlluftklappen bei abgetellter Brennkraftmaschine nur dann vollständig xk2 = 100% geöffnet, wenn entwedr die Temperatur ts am Saugrohr der Brennkraftmaschine oberhalb eines Temperaturschwellwertes tsg von 82,5°C liegt oder die Temperatur der Brennkraftmaschine über einem Temperaturschwellwert tmg6 von 80°C steigt. Zusätzlich wird, entsprechend Fig. 10, oberhalb dieser Temperaturschwellwerte tsg, tmg6 von ts bzw. tm bei geschlossener Motorhaube 29 das Lüftergebläse mit einer Spannung ug von ug1 = 6 Volt betrieben. Selbstverständlich ist es jedoch möglich, die Kühlluftklappen 10 bei abgestellter Brennkraftmaschine 3 nicht entsprechend Fig. 9 anzusteuern, sondern immer vollständig geöffnet zu halten.7 and 8, the dependence of the cooling air flap position xk and the blower voltage ug is dependent on the temperature tg of the lubricant of the transmission shown. Below a temperature tgg of 105 ° there is no activation of the fan flaps or the fan. For values of temperature tg greater than or equal to tgg = 105 ° C, the cooling air flaps are controlled in their partially open position xk1 and the blower is operated with a voltage ug4 of approximately 8.5 volts. According to FIG. 9, the cooling air flaps are only fully opened xk2 = 100% when the internal combustion engine is switched off if either the temperature ts at the intake manifold of the internal combustion engine is above a temperature threshold value tsg of 82.5 ° C. or the temperature of the internal combustion engine is above a temperature threshold value tmg6 of 80 ° C increases. In addition, according to FIG. 10, above these temperature threshold values tsg, tmg6 of ts and tm, with the engine hood 29 closed, the fan blower is operated with a voltage ug of ug1 = 6 volts. Of course, it is possible, however, not to actuate the cooling air flaps 10 when the internal combustion engine 3 is switched off, as shown in FIG. 9, but to always keep it fully open.

Schließlich sind in Fig. 10 Beispiele eines Tastverhältnissignals im Spannungszeit-Diagramm gezeigt, wie es zur Ansteuerung der elektronischen Endstufen 45, 46 Verwendung findet. Es ist ein minimales und ein maximales Tastverhältnissignal dargestellt, das jeweils einem äquivalenten Gleichspannungsabfall an den Anschluffklemmen des Gebläses von 6 Volt bzw. 12 Volt entspricht (die maximale Bordnetzspannung ist hierbei zu 12 Volt angenommen, sie kann jedoch bei mit Bleiakkumulatoren ausgerüsteten Fahrzeugen auch bei 13,2 Volt liegen). Es sei hier noch erwähnt, daß die beiden Endstufen 45, 46 um eine halbe Tastperiode versetzt getaktet werden, so daß zusätzlich die Störspannungsbelastung gering gehalten wird.Finally, FIG. 10 shows examples of a duty cycle signal in the voltage-time diagram as it is used to control the electronic output stages 45, 46. A minimum and a maximum duty cycle signal are shown, each of which corresponds to an equivalent DC voltage drop at the fan connection terminals of 6 volts or 12 volts (the maximum vehicle electrical system voltage is assumed to be 12 volts, but can also be used for vehicles equipped with lead accumulators at 13 , 2 volts are). It should also be mentioned here that the two output stages 45, 46 are clocked offset by half a pulse period, so that the interference voltage load is additionally kept low.

Claims (27)

1. A cooling air shutter and fan control for motor vehicles, having an internal combustion engine chamber (2) actable upon by a cooling air flow via at least one opening (7) in the vehicle body opening into a cooling air duct (9), the cooling air duct (9) being openable and closable by means of cooling air shutters (10) which are adjustable in their position (xk), and at least one heat exchanger (6, 19) and at least one fan (18, 43, 44) with a controllable rotational speed being arranged in the cooling air duct (9), and as the cooling required by aggregates of the motor vehicle increases, a control device (15) opens the cooling air shutters (10) in stages (xk = xk0, xk = xk1 and xk = xk2) and increases the rotational speed of the fan (18, 43, 44) starting from zero once the cooling air shutters are at least partially open (xk = xk1), characterised in that with the opening of the cooling air shutters (10) by a further stage (xk = xk2), the control device (15) reduces a control valve (ug) for the rotational speed of the fan (18, 43, 44) by a certain amount (ug2-ug3) and, as the cooling demand increases further, increases the control valve (ug) reduced by the amount (ug2-ug3) again in such a manner that, proceeding from the partially open position (xk =  xk1), a cooling air flow is generated in the cooling air duct (9), which flow increases approximately continuously with the cooling demand.
2. A cooling air shutter and fan control according to claim 1, characterised in that the cooling demand is determined by at least one of the following values:
- temperature (tm) of a cooling medium of the internal combustion engine (3),
- pressure (p) in a cooling agent circuit of an air conditioning system (20),
- temperature (tg) of a lubricant of a gearing,
- temperature (ts) of a suction pipe (27) of the internal combustion engine (3),

wherein, when measuring the cooling demand using more than one value, that value is used for the control which implies the highest control value (xk, ug) for the adjustment of the cooling air shutters (10) or the fan (18, 43, 44),
3. A cooling air shutter and fan control according to claim 2, characterised in that control curves
- (xk = fkt(tm)) for the cooling air shutter position (xk) as a function of the temperature (tm),
- (xk = fkp(p)) for the cooling air shutter position (xk) as a function of the pressure (p),
- (ug = fgt (tm)) for a voltage value (ug) adjusted via a keying ratio for controlling the fan (18, 43, 44) as a function of the temperature (tm) and
- (ug = fgp(p)) for the voltage value (ug) adjusted via a keying ratio for controlling the fan (18, 43, 44) as a function of the pressure (p)

are subject to hysteresis.
4. A cooling air shutter and fan control according to claim 4, characterised in that the control curves (xk = fkt(tm), xk = fkp(p), ug = fgt(tm), ug = fgp(p)) are only effective when the ignition (22) is switched on and the control curves xk = fkp(p), ug = fgp(p)) only when the air conditioning system (23) is switched on.
5. A cooling air shutter and fan control according to claim 4, characterised in that the cooling air shutters (10) are fully open when the ignition (22) is switched off.
6. A cooling air shutter and tan control according to claim 5, characterised in that the control curve (xk =fkt(tm))
- when the temperature increases:
adopts a value (xk = xk0) for the closed position (xk0) of the cooling air shutters (10) so long as the temperature (tm) is below a first temperature threshold value (tmg1),
adopts a value (xk = xk1) for the partially open position, so long as the temperature (tm) is greater than or equal to the first temperature threshold value (tmg1), but is still below a second temperature threshold value (tmg2)
and adopts a value (xk = xk2) for the fully open position (xk2) when the temperature (tm) is greater than or equal to the second temperature threshold value (tmg2) and
- when the temperature (tm) decreases:
remains at this control value (xk = xk2) so long as the temperature (tm) has not yet fallen to the first temperature threshold value (tmg1)
and from this value (tmg1) adopts the value (xk =xk1) for the partially open position (xk1), so long as the temperature has not yet fallen to a third temperature threshold value (tmg3),
and from this value (tmg3) adopts the value (xk = xk0) for the closed position.
7. A cooling air shutter and fan control according to claim 6, characterised in that the control curve (ug = fgt (tm))
- when the temperature (tm) increases:
does not actuate the fan (18, 43, 44) so long as the temperature (tm) lies below the first temperature threshold value (tmg1),
adopts a voltage value (ug) increasing linearly between the first voltage value (ug1) and a second voltage value (ug2), so long as the temperature (tm) is greater than or equal to the first threshold value (tmg1), but is still less than the second temperature threshold value (tmg2),
when the second temperature threshold value (tmg2) is reached, whereupon the cooling air shutters (10) pivot from the partially open position into the fully open position, the voltage (ug) falls to a third voltage value (ug3), the voltage (ug) being increased linearly as the temperature (tm) continues to increase, until, when a fourth temperature threshold value (tmg4) is reached, the voltage (ug) reaches a value (ugmax) for the maximum mains voltage and maintains this value
- when the temperature (tm) decreases
proceeding from a value of the temperature (tm) above the fourth temperature threshold value (tmg4),
firstly follows the same curve down to the second temperature threshold value (tmg2),
in order to then remain at the third voltage value (ug3) between the second temperature threshold value (tmg2) and the first temperature threshold value (tmg1),
and when the first temperature threshold value (tmg1) is reached, reduces the voltage value (ug) to the first voltage value (ug1), where it remains until the temperature (tm) falls to a fifth temperature threshold value (tmg5), from which point the control curve no longer actuates the fan (18, 43, 44),
8. A cooling air shutter and fan control according to claim 7, characterised in that the control curve (xk = fkp(p))
- as the pressure (p) increases,
for pressure values (p) below a first pressure threshold value (pg1) proceeds to the value (xk0) for the closed position of the cooling air shutters,
for pressure values (p) greater than or equal to the first pressure threshold value (pg1), but below a second pressure threshold value (pg2), proceeds to the value (xk1) for the partially open position of the cooling air shutters and for pressure values (p) greater than the second pressure threshold value (pg2) proceeds to the value (xk2) for the fully open position of the cooling air shutters (10) and
- when the pressure values (p) decrease:
proceeding from a value above the second pressure threshold value (pg2) down to a third pressure threshold value (pg3) lying below the second pressure threshold value (pg2), remains at the value (xk2),
for pressure values (p) smaller than or equal to the third pressure threshold value (pg3), but greater than a fourth pressure threshold value (pg4) lying below the first pressure threshold value (pg1), proceeds to the value (xk1) and for pressure values (p) smaller than or equal to the fourth pressure threshold value (pg4) proceeds to the value (xk0) for the cooling air shutters (10).
9.A cooling air shutter and fan control according to claim 8, characterised in that the control curve (ug = fgp(p))
- when the pressure (p) increases:
for pressure values (p) smaller than a first pressure threshold value (pg1), does not actuate the fan (18, 43, 44),
for pressure values (p) greater than or equal to the first pressure threshold value (pg1), but smaller than or equal to the second pressure threshold value (pg2), proceeds to a fourth voltage value (ug4),
for pressure values (p) greater than or equal to the second pressure threshold value (pg2), but smaller than or equal to a fifth pressure threshold value (pg5) lying above the second pressure threshold value (pg2), increases linearly from the fourth voltage value (ug4) to the voltage value (ugmax) and remains at this value for higher pressure values,
- when the pressure values (p) decrease:
proceeds along the same curve as for increasing pressure values (p) down to the first pressure threshold value (pg1) and for pressure values smaller than or equal to the first pressure threshold value (pg1), but greater than the fourth pressure threshold value (pg4), remains at the fourth voltage value (ug4) and for group values (p) smaller than or equal to the fourth pressure threshold value (pg4) no longer actuates the fan (18, 43, 44).
10. A cooling air shutter and fan control according to claim 9, characterised in that the cooling air shutters (10) are guided from the closed position (xk0) into the partially open position (xk1), so long as the ignition (22) is switched on and the temperature (tg) of the lubricant in the lubricant circuit of the automatic gearing reaches or exceeds a temperature threshold (tgg).
11. A cooling air shutter and fan control according to claim 10, characterised in that, proceeding from a non-actuated state (ug = 0), the fan (18, 43, 44) is acted upon by the fourth voltage value (ug4) so long as the ignition (22) is switched on and the temperature (tg) of the lubricant in the lubricant circuit of the gearing reaches or exceeds a temperature threshold value (tgg).
12. A cooling air shutter and fan control according to claim 11, characterised in that the cooling air shutters (10) are guided from the closed position (xk0) into the fully open position (xk2) so long as the ignition (22) is switched off, the engine bonnet (29) is closed and the temperature (tm) of the internal combustion engine (3) reaches or exceeds a sixth temperature threshold value (tmg6) or the temperature (ts) of the suction pipe (27) of the internal combustion engine (3) reaches or exceeds a temperature threshold value (tsg).
13. A cooling air shutter and fan control according to claim 12, characterised in that, proceeding from the non-actuated state (ug =  0), the fan (18, 43, 44) is acted upon by the first voltage value (ug1) so long as the ignition (22) is switched off, the engine bonnet (29) is closed and the temperature (tm) of the internal combustion engine (9) reaches or exceeds the sixth temperature threshold value (tmg 6) or the temperature (ts) of the suction pipe (27) of the internal combustion engine (3) reaches or exceeds the temperature threshold value (tsg).
14. A cooling air shutter and fan control according to claim 13, characterised in that, in order to actuate the cooling air shutters (10), an electromotor (12) provided with a gearing (13) drives in a rotationally rigid manner on its gearing output shaft (59) a cam (14) used for moving the electromotor cooling air shutter control (11 to 14) into its closed (xk0), partially open (xk1) and fully open (xk2) positions (xk), the electromotor (12) (being connected) via a relay (58), whose exciting circuit (74) is on the one hand permanently connected to a first pole (positive pole (+)) of a current supply (33) and on the other hand is connected by the control device (15) via sliding contacts (61 to 64) cooperating by frictional resistance with the cam (14) to a second pole (negative pole (-)) of a current supply (33) or is insulated relative thereto.
15. A cooling air shutter and fan control according to claim 14, characterised in that the cam (14) is circular in design and comprises a circular contact path (65), with which a first sliding contact (81) enters into an electrically conductive connection on an inner circular track (68), a second sliding contact (62) on a central circular track (67) and a third (63) and fourth (64) sliding contact on an outer circular track (68), an insulating surface (69, 70) neutralising the electrical connection within a restricted angle of rotation range being arranged on the inner (66) and outer (68) circular tracks respectively and the second sliding contact (62) lying in the exciting circuit (74) of the relay (58) and the first (61), third (63) and fourth (64) sliding contacts being connected with a first (71), second (72) and third (73) output of the control device (15) used for triggering the relay (58) or for moving the cooling air shutter control into the closed (xk0), partially open (xk1) and fully open (xk2) positions.
16. A cooling air shutter and fan control according to claim 15, characterised in that the triggering of the individual cooling air shutter positions (xki, i = 0, 1, 2) is subject to a time restriction, which is determined in such a manner that it is at least sufficient for a respective adjustment manoeuvre under difficult conditions.
17. A cooling air shutter and fan control according to claim 15, characterised in that the relay (58) short-circuit the electromotor (12) in the non-excited state.
18. A cooling air shutter and fan control according to claim 17, characterised in that the electronic end stage (45, 46) is designed as a semi-conductor switch, which is actuated by the control device (15) via a pulse code modulated square-wawe signal.
19. A cooling air shutter and fan control according to claim 17, characterised in that the electronic end stage (45, 46) is actuated by the control device (15) via an analog or digital signal and the end stage (45, 46) converts said signal into a keying ratio signal for actuating the semiconductor switch.
20. A cooling air shutter and fan control according to claim 18 or 19, characterised in that the control device (15) conprises input signals from a cooling water temperature sensor (21) detecting the cooling medium temperature (tm) of the internal combustion engine, a temperature sensor (26) detecting the temperature (ts) in the suction pipe of the internal combustion engine, a bonnet contact switch (28) which detects a closed position of the lid engine bonnet 29) for closing the internal combustion engine chamber (2), a temperature sensor (24) detecting the temperature (tg) of a lubricant of a gearing, a pressure sensor (25) in the cooling agent circuit of the air conditioning system (20), a switch (air conditioning switch (23)) for switching the air conditioning on and off, an answering signal from the end stage signaling the operation of the fan or semiconductor switch and a signal from an ignition switch (22), and as a function thereof controls three cooling air shutter positions (xk0, xk1, xk2) and the electronic end stage (45, 46).
21. A cooling air shutter and fan control according to claim 20, characterised in that the control device monitors itself and the connected sensors in respect of function and tests whether the cooling air shutters have reached their intended position, and in the event of an error introduces emergency operations and deposits an error code in a storage area (error store).
22. A cooling air shutter and fan control according to claim 21, characterised in that, when the ignition (22) is switched off and the engine bonnet (29) is open, a safety circuit (28) becomes effective, which prevents a uncontrolled starting of the fan (18, 43, 44).
23. A cooling air shutter and fan control according to claim 22, characterised in that the control device (15) is capable of making diagnoses and is provided with a storage area, from which a diagnostic system can read diagnostic data via a diagnostic bus (K, L).
24. A cooling air shutter and fan control according to claim 23, characterised in that, in the event of a system defect, the control device (15) triggers a warning light (77) via an error signal line (output 79).
25. A cooling air shutter and fan control according to claim 24, characterised in that the fan can run only within a limited period of time after the ignition (22) has been switched off.
26. A cooling air shutter and fan control according to claim 25, characterised in that the control device (15) is constructed according to microprocessing technology known per se.
27. A cooling air shutter and fan control according to claim 26, characterised in that both electronic end stages (45, 46) operate in timed sequence offset by a half period relative to one another.
EP87105938A 1986-07-26 1987-04-23 Control for shutters and blower for cooling air in a motor vehicle Expired - Lifetime EP0254815B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3625375 1986-07-26
DE19863625375 DE3625375A1 (en) 1986-07-26 1986-07-26 COOLING FLAP AND BLOWER CONTROL FOR MOTOR VEHICLES

Publications (3)

Publication Number Publication Date
EP0254815A2 EP0254815A2 (en) 1988-02-03
EP0254815A3 EP0254815A3 (en) 1989-01-11
EP0254815B1 true EP0254815B1 (en) 1991-06-05

Family

ID=6306073

Family Applications (1)

Application Number Title Priority Date Filing Date
EP87105938A Expired - Lifetime EP0254815B1 (en) 1986-07-26 1987-04-23 Control for shutters and blower for cooling air in a motor vehicle

Country Status (5)

Country Link
US (1) US4779577A (en)
EP (1) EP0254815B1 (en)
JP (1) JPS6341617A (en)
DE (2) DE3625375A1 (en)
ES (1) ES2022828B3 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130117569A (en) * 2012-04-18 2013-10-28 현대모비스 주식회사 Control device and method for opening and shutting flap of the vehicle
KR20140026788A (en) * 2012-08-23 2014-03-06 현대모비스 주식회사 Flap opening and shutting control apparatus and method

Families Citing this family (82)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4033092A1 (en) * 1990-10-18 1992-04-23 Telefunken Electronic Gmbh Tandem cooler with single controller for motor vehicle - supplies air for engine cooling and passenger compartment ventilation purposes from two power transistor-driven fans
DE4130066C2 (en) * 1991-09-11 1997-08-14 Licentia Gmbh Blower for motor vehicles with an electric motor
US5307644A (en) * 1992-03-26 1994-05-03 Ford Motor Company Method and electronic device for controlling engine fan
FR2693231B1 (en) * 1992-07-06 1994-09-30 Valeo Thermique Moteur Sa Cooling device for motor vehicle engine.
US5473937A (en) * 1993-05-14 1995-12-12 Texas Instruments Incorporated Temperature sensing apparatus
US5601071A (en) * 1995-01-26 1997-02-11 Tridelta Industries, Inc. Flow control system
JP3675108B2 (en) * 1996-06-24 2005-07-27 トヨタ自動車株式会社 Fault diagnosis device for water temperature sensor
KR100189257B1 (en) * 1996-06-11 1999-06-01 정몽규 Radiator grill device of a vehicle
DE19719792B4 (en) 1997-05-10 2004-03-25 Behr Gmbh & Co. Method and device for regulating the temperature of a medium
JPH11229876A (en) * 1997-12-10 1999-08-24 Denso Corp Cooling system for vehicle
DE19844618A1 (en) * 1998-09-29 2000-03-30 Zahnradfabrik Friedrichshafen Method for reducing the thermal load on an automatic transmission for a motor vehicle in an emergency mode
US6142108A (en) * 1998-12-16 2000-11-07 Caterpillar Inc. Temperature control system for use with an enclosure which houses an internal combustion engine
AU2455401A (en) 1999-12-23 2001-07-03 Textron Automotive Company Inc. Air-intake management device
DE10019419A1 (en) 2000-04-19 2001-10-25 Bosch Gmbh Robert Cooling system for motor vehicle detects faulty positioning of cooling flow closure unit from variation with time of temperature difference between model and actual temperature variation
US6345594B1 (en) * 2000-05-03 2002-02-12 Edward J. Orschek Method for correcting hot manifold condition in a turbocharged diesel engine
DE10052331A1 (en) * 2000-10-17 2002-05-02 Stribel Gmbh A fan installation
US6532909B2 (en) 2001-03-20 2003-03-18 Siemens Automotive Inc. Low ram air resistance cooling module with automatic flapper door actuation
WO2003013894A2 (en) * 2001-08-01 2003-02-20 Behr Gmbh & Co. Cooling system for motor vehicles and method for controlling at least one air mass flowing through a radiator
DE10140094B4 (en) * 2001-08-16 2006-03-30 Robert Bosch Gmbh Cooling fan, in particular for motor vehicles
DE10224063A1 (en) * 2002-05-31 2003-12-11 Daimler Chrysler Ag Method for heat regulation of an internal combustion engine for vehicles
US6933687B2 (en) * 2002-10-03 2005-08-23 Siemens Vdo Automotive Inc. Dual motor configuration with primary brushless motor and secondary integrated speed control motor
JP4119222B2 (en) * 2002-10-28 2008-07-16 カルソニックカンセイ株式会社 Ventilation device for vehicle heat exchanger and control method thereof
FR2850356B1 (en) * 2003-01-28 2005-03-18 Airbus France SYSTEM FOR MONITORING THE REGIME OF AT LEAST ONE ENGINE OF AN AIRCRAFT
US7070229B2 (en) * 2003-02-21 2006-07-04 Visteon Global Technologies, Inc. Underhood electronic interior integration
DE10339211C5 (en) 2003-08-20 2017-11-02 Siemens Aktiengesellschaft Cooling concept for brake means of a locomotive
DE10348130A1 (en) * 2003-10-16 2005-05-12 Daimler Chrysler Ag Cooling system for an internal combustion engine of a motor vehicle
JP2005299407A (en) * 2004-04-07 2005-10-27 Toyota Motor Corp Cooling system, method for controlling the same, and automobile
US20060095178A1 (en) * 2004-10-29 2006-05-04 Freightliner Llc Controlling the flow of air through at least one vehicle opening at a front portion of the vehicle
US7766111B2 (en) * 2004-10-29 2010-08-03 Daimler Trucks North America Llc Selective closing of at least one vehicle opening at a front portion of a vehicle
DE102005034775A1 (en) * 2005-07-26 2006-11-09 Daimlerchrysler Ag Louver control for cooling system of internal combustion engine allows louver to open depending upon conditions relating to temperature of cooling fluid, engine temperature, fan status, suction air temperature, and vehicle speed
DE102005044559A1 (en) * 2005-09-17 2007-03-29 Behr Gmbh & Co. Kg Arrangement for cooling an internal combustion engine of a motor vehicle, in particular cooling module
US20090155103A1 (en) * 2005-10-12 2009-06-18 Pietro De Filippis Cooling Fan Module for a Motor Vehicle
FR2909320A1 (en) * 2006-12-04 2008-06-06 Renault Sas Face bar for all-terrain vehicle, has flap mounted relative to body between opening and closing positions of air passage, and endless screw and wheel mechanism integrated to body in which screw is driven to displace flap between positions
US7598683B1 (en) 2007-07-31 2009-10-06 Lsi Industries, Inc. Control of light intensity using pulses of a fixed duration and frequency
US8604709B2 (en) 2007-07-31 2013-12-10 Lsi Industries, Inc. Methods and systems for controlling electrical power to DC loads
US8903577B2 (en) 2009-10-30 2014-12-02 Lsi Industries, Inc. Traction system for electrically powered vehicles
US7992664B2 (en) * 2008-09-23 2011-08-09 Kunststoff Schwanden Ag Jalousie for a vehicle
DE102008049876A1 (en) * 2008-10-01 2010-04-08 Brose Fahrzeugteile GmbH & Co. Kommanditgesellschaft, Würzburg Device for controlling the air flow rate of an air inlet
JP4909972B2 (en) * 2008-10-02 2012-04-04 本田技研工業株式会社 Cooling device for vehicle engine
JP5454909B2 (en) * 2009-03-25 2014-03-26 アイシン精機株式会社 Drive device for movable member
JP5424022B2 (en) * 2009-03-25 2014-02-26 アイシン精機株式会社 Movable fin drive unit
US8256387B2 (en) * 2009-04-28 2012-09-04 Denso International America, Inc. Radiator shutter using film door technology
JP5344233B2 (en) * 2009-05-07 2013-11-20 アイシン精機株式会社 Grill device for vehicle
JP4957768B2 (en) 2009-09-02 2012-06-20 トヨタ自動車株式会社 Cooling air introduction structure
US8550887B2 (en) * 2009-09-18 2013-10-08 Lacks Enterprises, Inc. Vehicle grill with moveable louvers
FR2950574B1 (en) * 2009-09-29 2012-03-23 Valeo Systemes Thermiques THERMAL EXCHANGE BLOCK FOR MOTOR VEHICLE
JP5424039B2 (en) * 2009-11-19 2014-02-26 アイシン精機株式会社 Vehicle grill control mechanism
JP5429551B2 (en) * 2009-11-19 2014-02-26 アイシン精機株式会社 Vehicle grill control mechanism
KR101108261B1 (en) * 2009-11-23 2012-01-31 현대모비스 주식회사 Control apparatus of flap in vehicle and control method thereof
US8311708B2 (en) * 2010-02-16 2012-11-13 Ford Global Technologies, Llc Adjustable grill shutter system
US8473164B2 (en) * 2010-04-13 2013-06-25 GM Global Technology Operations LLC Shutter with offset louver pivot
US8655545B2 (en) * 2010-05-24 2014-02-18 Chrysler Group Llc Vehicle grille shutter system and method of its use
US8646552B2 (en) 2010-07-21 2014-02-11 Shape Corp. Integrated energy absorber and air flow management structure
US8903599B2 (en) * 2010-08-31 2014-12-02 Honda Motor Co., Ltd. Failure determination device for shutter device of vehicle
US8485296B2 (en) * 2010-09-17 2013-07-16 GM Global Technology Operations LLC Jamming resistant aero louver
US20120097465A1 (en) * 2010-10-22 2012-04-26 Gm Global Technology Operations, Inc. System and method for controlling a shutter in a vehicle via a cooling fan duty-cycle
US20120097464A1 (en) * 2010-10-22 2012-04-26 Gm Global Technology Operations, Inc. Control of a shutter via bi-directional communication using a single wire
US8689917B2 (en) * 2010-10-22 2014-04-08 GM Global Technology Operations LLC Method for monitoring operation of a shutter
DE102010049868B4 (en) 2010-10-28 2023-06-15 Volkswagen Ag Controlling cooling of a power source of an automobile
US8443921B2 (en) * 2010-11-09 2013-05-21 GM Global Technology Operations LLC System and method for increasing operating efficiency of a powertrain by controlling an aero shutter
JP5358603B2 (en) 2011-03-18 2013-12-04 トヨタ自動車株式会社 Control device for opening / closing operation mechanism for vehicle
EP2724883B1 (en) * 2011-06-23 2015-07-22 Toyota Jidosha Kabushiki Kaisha Vehicle
US8667931B2 (en) * 2011-08-09 2014-03-11 Ford Global Technologies, Llc Control method for a vehicle air intake system
DE102011089035B4 (en) * 2011-12-19 2017-05-24 Bayerische Motoren Werke Aktiengesellschaft Control of adjustable cooling air flaps of a motor vehicle with an internal combustion engine comprising a supercharger
JP5811858B2 (en) * 2012-01-17 2015-11-11 アイシン精機株式会社 Grill shutter device
US9657632B2 (en) 2012-08-01 2017-05-23 GM Global Technology Operations LLC Method and apparatus for remote torque control of an aerodynamic air shutter mechanism
KR101428203B1 (en) 2012-11-05 2014-08-07 현대자동차주식회사 Active air flap apparatus for vehicle and defect diagnosis method thereof
US8933658B2 (en) * 2013-01-08 2015-01-13 Honeywell International Inc. Thermal protection method and system to maximize availability of electric drive system
US9394858B2 (en) * 2013-03-11 2016-07-19 Ford Global Technologies, Llc Charge air cooling control for boosted engines to actively maintain targeted intake manifold air temperature
US8978628B2 (en) * 2013-06-06 2015-03-17 The Boeing Company Engine cooling system
US9247678B2 (en) * 2013-07-18 2016-01-26 GM Global Technology Operations LLC Method and apparatus for controlling a coolant circuit thermally coupled to a power electronics device
US9752491B2 (en) 2013-10-07 2017-09-05 Denso International America, Inc. Powered air ram with energy recovery
DE102013113489A1 (en) * 2013-12-04 2015-06-11 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Lockable louver on a vehicle
DE102013021604A1 (en) 2013-12-20 2015-06-25 Daimler Ag Adjustment method for controlling and regulating amounts of heat and cooling device
US20160033214A1 (en) * 2014-08-04 2016-02-04 Kia Motors Corporation Universal controlling method and system for flow rate of cooling water and active air flap
US9551275B2 (en) 2014-08-07 2017-01-24 Caterpillar Inc. Cooling system having pulsed fan control
US9587548B2 (en) * 2014-09-02 2017-03-07 Arctic Cat, Inc. Oxygen sensor cooling duct
US10252611B2 (en) * 2015-01-22 2019-04-09 Ford Global Technologies, Llc Active seal arrangement for use with vehicle condensers
KR101856360B1 (en) 2016-09-19 2018-05-09 현대자동차주식회사 Method for Controlling Active Air Flap Based On Aerodynamic Force Gain and Eco Vehicle thereby
DE102017107384B4 (en) * 2017-04-06 2019-03-07 Otto Altmann A vehicle diagnostic system for front cooling units, motor vehicle having such a vehicle diagnostic system and vehicle diagnostic method for front cooling units
CN112576332B (en) * 2020-11-24 2022-04-29 济南吉美乐电源技术有限公司 Quick starting and warming device for air-cooled internal combustion engine in low-temperature high-altitude environment
DE102021210414A1 (en) 2021-09-20 2023-03-23 Volkswagen Aktiengesellschaft Method and system for regulating an air conditioning system of a motor vehicle

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB595202A (en) * 1945-02-28 1947-11-28 William Michael Jarvis Improvements in or relating to means for regulating the temperature of internal combustion engines
GB573820A (en) * 1943-05-27 1945-12-07 William Warren Triggs Improvements in electric control systems for fluid coolers and similar heat exchangedevices
DE1207710B (en) * 1958-02-22 1965-12-23 Maschf Augsburg Nuernberg Ag Control of the coolant temperature of liquid-cooled internal combustion engines
US3377023A (en) * 1966-02-01 1968-04-09 Caterpillar Tractor Co Discriminating variable speed control for multiple heat exchanger fan motors
US3872842A (en) * 1973-06-14 1975-03-25 Kress Corp Speed control system for fan in engine cooling system
US3963070A (en) * 1975-02-18 1976-06-15 American Warming And Ventilating Inc. Condition controlling air flow damper
US4186694A (en) * 1976-05-27 1980-02-05 Nissan Motor Company, Limited Temperature control system of an engine exhaust gas component sensor
US4133185A (en) * 1976-10-20 1979-01-09 Paccar Inc. Automatic air circulation control
US4124066A (en) * 1977-01-03 1978-11-07 The United States Of America As Represented By The Secretary Of The Army Radiator shutter for arctic vehicles
JPS6114582Y2 (en) * 1979-11-19 1986-05-07
JPS6137540Y2 (en) * 1980-12-26 1986-10-30
IT1139074B (en) * 1981-04-06 1986-09-17 Alfa Romeo Auto Spa THERMOSTAT SYSTEM OF THE COOLING LIQUID OF AN INTERNAL COMBUSTION ENGINE FOR VEHICLES
DE3145506A1 (en) * 1981-11-17 1983-05-26 Udo 8631 Weitramsdorf Nicolai Device for controlling the temperature of the cooling water in water-cooled motor vehicle engines
JPS58124017A (en) * 1982-01-19 1983-07-23 Nippon Denso Co Ltd Cooling system controller of engine
US4539943A (en) * 1983-09-20 1985-09-10 Aisin Seiki Kabushiki Kaisha Engine cooling system
US4489680A (en) * 1984-01-23 1984-12-25 Borg-Warner Corporation Engine temperature control system
US4546742A (en) * 1984-01-23 1985-10-15 Borg-Warner Corporation Temperature control system for internal combustion engine
DE3540599A1 (en) * 1985-11-15 1987-05-21 Porsche Ag DIAGNOSTIC SYSTEM FOR A MOTOR VEHICLE
US4854459A (en) * 1988-11-18 1989-08-08 Primary Delivery Systems, Inc. Convertible childproof/non-childproof cap and container

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130117569A (en) * 2012-04-18 2013-10-28 현대모비스 주식회사 Control device and method for opening and shutting flap of the vehicle
KR20140026788A (en) * 2012-08-23 2014-03-06 현대모비스 주식회사 Flap opening and shutting control apparatus and method

Also Published As

Publication number Publication date
JPS6341617A (en) 1988-02-22
EP0254815A3 (en) 1989-01-11
DE3625375A1 (en) 1988-02-04
US4779577A (en) 1988-10-25
ES2022828B3 (en) 1991-12-16
DE3625375C2 (en) 1990-10-11
EP0254815A2 (en) 1988-02-03
DE3770535D1 (en) 1991-07-11

Similar Documents

Publication Publication Date Title
EP0254815B1 (en) Control for shutters and blower for cooling air in a motor vehicle
DE4448011B4 (en) Cooling system for an internal combustion engine of a motor vehicle with a thermostatic valve containing an electrically heatable expansion element
EP0667821B1 (en) Device for cooling drive components and heating a passenger compartment of an electric vehicle
EP0512298B1 (en) Heating device for vehicles
DE102011116933A1 (en) Cooling circuit for a liquid-cooled engine
DE10224063A1 (en) Method for heat regulation of an internal combustion engine for vehicles
EP1476645A1 (en) Electric coolant pump having an integrated valve, and method for controlling said valve
WO2006125565A1 (en) Mechatronic coolant pump-drive connection
DE112009001025T5 (en) Electronically controlled viscous fan drive with socket
DE2408508B2 (en) Device for water-side temperature control, in particular of motor vehicle heating and air conditioning systems
DE102019122170A1 (en) Method for controlling a separating clutch, drive train with this and clutch actuation system for this
DE2806708C2 (en) Device for regulating the temperature of a cooling system of an internal combustion engine, in particular for motor vehicles
DE2937165A1 (en) MOTOR VEHICLE WITH A HEATING DEVICE FOR THE PASSENGER AREA
DE3435700A1 (en) Device for controlling a cooling air flap
DE102015113517B4 (en) Method for controlling a motorized flap drive and flap drive for adjusting a fluid flow
DE19906497C2 (en) Method and device for controlling an air conditioning system comprising a cold store
DE10228355A1 (en) Internal combustion engine heat regulation involves controlling influencing devices according to prevailing state associated with certain coolant temperatures and/or other operating parameter values
DE4005728A1 (en) Vehicle refrigeration circuit - has electrically-controlled thermostatic expansion valve controlled by line temp. between compressor and condenser
DE10036793A1 (en) Air-conditioning plant of car driven by IC engine has further compressor driven by engine and power corresponding to power difference of first compressor and travel drive speed of engine
DE19919452B4 (en) Motor vehicle driving device
DE10023508B4 (en) Cooling system of a liquid-cooled internal combustion engine
DE102016217352A1 (en) heat recovery device
DE19924499A1 (en) Take-off drive for automobile engine auxiliary unit e.g. water pump, has electrically-operated clutch controlled via characteristic field control dependent on engine and/or environmental parameters
DE102007023407A1 (en) Motor vehicle with linearly controlled engine fan
EP1662112B1 (en) Cooling system for an internal combustion engine and method of cooling an internal combustion engine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): DE ES FR GB IT SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): DE ES FR GB IT SE

17P Request for examination filed

Effective date: 19890516

17Q First examination report despatched

Effective date: 19891117

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES FR GB IT SE

ITF It: translation for a ep patent filed

Owner name: ING. C. GREGORJ S.P.A.

REF Corresponds to:

Ref document number: 3770535

Country of ref document: DE

Date of ref document: 19910711

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
ET Fr: translation filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19920325

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19920331

Year of fee payment: 6

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19920410

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 19920420

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19920430

Year of fee payment: 6

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19930423

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19930424

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19930424

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19930423

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19931229

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19940101

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

EUG Se: european patent has lapsed

Ref document number: 87105938.2

Effective date: 19931110

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 19990201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050423