EP0252935B1 - Moteur a combustion interne a deux temps - Google Patents

Moteur a combustion interne a deux temps Download PDF

Info

Publication number
EP0252935B1
EP0252935B1 EP87900178A EP87900178A EP0252935B1 EP 0252935 B1 EP0252935 B1 EP 0252935B1 EP 87900178 A EP87900178 A EP 87900178A EP 87900178 A EP87900178 A EP 87900178A EP 0252935 B1 EP0252935 B1 EP 0252935B1
Authority
EP
European Patent Office
Prior art keywords
cylinder
intake valve
intake
prechamber
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP87900178A
Other languages
German (de)
English (en)
Other versions
EP0252935A1 (fr
Inventor
Jean Frédéric Melchior
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to AT87900178T priority Critical patent/ATE49032T1/de
Publication of EP0252935A1 publication Critical patent/EP0252935A1/fr
Application granted granted Critical
Publication of EP0252935B1 publication Critical patent/EP0252935B1/fr
Expired legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B25/00Engines characterised by using fresh charge for scavenging cylinders
    • F02B25/14Engines characterised by using fresh charge for scavenging cylinders using reverse-flow scavenging, e.g. with both outlet and inlet ports arranged near bottom of piston stroke
    • F02B25/18Engines characterised by using fresh charge for scavenging cylinders using reverse-flow scavenging, e.g. with both outlet and inlet ports arranged near bottom of piston stroke the charge flowing upward essentially along cylinder wall adjacent the inlet ports, e.g. by means of deflection rib on piston
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B25/00Engines characterised by using fresh charge for scavenging cylinders
    • F02B25/14Engines characterised by using fresh charge for scavenging cylinders using reverse-flow scavenging, e.g. with both outlet and inlet ports arranged near bottom of piston stroke
    • F02B25/145Engines characterised by using fresh charge for scavenging cylinders using reverse-flow scavenging, e.g. with both outlet and inlet ports arranged near bottom of piston stroke with intake and exhaust valves exclusively in the cylinder head
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/02Engines characterised by their cycles, e.g. six-stroke
    • F02B2075/022Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle
    • F02B2075/025Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle two
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B3/00Engines characterised by air compression and subsequent fuel addition
    • F02B3/06Engines characterised by air compression and subsequent fuel addition with compression ignition

Definitions

  • the present invention generally relates to a two-stroke internal combustion engine with at least one cylinder containing a reciprocating piston, in particular but not exclusively of the Diesel type, and it relates more particularly to a valve device, incorporated exclusively in the cylinder head , which allows the replacement of burnt gases by the fresh air necessary for combustion.
  • the invention also relates to a cylinder head, for internal combustion engines, which is equipped with said device, as well as to the various applications and uses resulting from its implementation.
  • the geometry of the prechamber is such that there is a strong turbulence around the intake valve, causing disorientation of the particles of fresh air entering the cylinder, causing a strong short-circuit (criterion b not respected), and that the air is preferentially directed into the upper surface of the elbow connecting the prechamber to the cylinder, which will make the air particles penetrate within the mass of gas, giving rise to a significant mixture of fresh air with the burnt gases (criterion c not respected).
  • the invention aims to improve the functioning of a two-stroke internal combustion engine, in particular but not exclusively of the Diesel type, with at least one cylinder with reciprocating piston and with gas exchange device provided exclusively by at least an intake valve and at least one exhaust valve arranged in the cylinder head at the head of the associated cylinder, so as to allow a scavenging to be obtained which meets both the three criteria defined above.
  • the main object of the invention is therefore, in an engine of the aforementioned type, to increase the efficiency of the exchange of gases, that is to say to remove as much as possible the residual burnt gases from the cylinder by replacing them there. by a corresponding volume of fresh air, while preventing or, at least, minimizing any risk of direct passage of fresh air from the intake valve to the exhaust valve and simultaneously avoiding, as much as possible , any creation of a zone for mixing fresh air and burnt gases with minimal energy expenditure.
  • the mixture, preferably homogeneous, of air and fuel is prepared upstream of the cylinder using a carburetor or a fuel injection system, it becomes necessary to obtain an exchange of gases without short circuit of fresh carbureted air towards the exhaust.
  • the geometry of the structure must also allow satisfactory combustion, which practically results in the need to simultaneously satisfy antagonistic conditions or requirements.
  • the objective of the invention is therefore to achieve a compromise between good sweeping and combustion efficiency with the simplest technology while retaining the aforementioned advantages as much as possible while reducing the drawbacks mentioned above.
  • the position of the cylinder is such that its axis is vertical and that thus the cylinder head occupies the upper or upper position and the piston the lower or lower position.
  • the present invention solves the aforementioned technical problems by providing a two-stroke internal combustion engine, with at least one cylinder with reciprocating piston, with a gas exchange device entirely incorporated in the cylinder head and comprising a valve or a group of valves. and an exhaust valve or group of exhaust valves, the or each intake valve having its seat disposed in the wall of a combustion and sweep prechamber, said gas exchange device having a plane of symmetry passing through the cylinder axis and common to the intake or exhaust valves or valve groups, to the interior surface of the prechamber, to the cylinder head and to the face of the piston, which prechamber communicates with the cylinder by a transfer channel whose walls are at least partly substantially parallel to the axis of the cylinder and whose cross section perpendicular to this axis opens in a substantially oblong shape tangentially to the ylindre, characterized in that the axis of the or each intake valve has a direction not parallel to the axis of the cylinder and in that the upper part of
  • the axis of the or each intake valve makes the axis of the cylinder an angle between about 45 ° and about 90 °.
  • FR-A-9 49 642 describes an engine according to the preamble of claim 1.
  • the axis of the intake valve has a direction parallel to the axis of the cylinder.
  • the intake air is therefore deflected transversely by the head of the valve, all around the latter, and the three abovementioned criteria are met.
  • the seat associated with each intake valve, is located in a wall portion of the prechamber extending at least approximately the wall portion of the transfer channel tangent to the surface of the cylinder.
  • a single intake valve and a single exhaust valve are provided.
  • the gas exchange device has two inlet valves parallel to each other.
  • the gas exchange device has two exhaust valves parallel to the axis of the cylinder.
  • the engine is characterized in that the cross section of the transfer channel opening into the cylinder develops over a circular sector with an angle at the center of between 60 ° and 110 ° and represents an area of which the ratio to that of the cross section of the cylinder is preferably between 0.10 and 0.20 and more particularly between 0.13 and 0.17.
  • the bottom wall of the sweeping and combustion prechamber substantially opposite the transfer channel opening into the cylinder is formed by a portion of cylinder of revolution coaxial with each intake valve , substantially tangent to each valve head, so that the radial clearance between said wall and the head of each intake valve has a minimum value such that each intake valve flows directly and essentially on its sector oriented towards the transfer channel, to direct almost all of the air flow emerging from each intake valve directly to the transfer channel.
  • the engine is characterized in that the radial clearance is as reduced as possible between the upper part of each intake valve and the side wall, cylindrical and coaxial with the corresponding valve, of the prechamber in the angular sector substantially opposite to the transfer channel.
  • the horizontal or inclined arrangement of the intake valve allows it to be actuated by a very direct control, in particular by lateral camshaft disposed in the upper part of the engine block, in the case of polycylindrical engines fitted with individual cylinder heads , or by overhead camshaft in the case of single cylinder head engines.
  • This configuration thus allows, due to the low masses in movement, to achieve very high acceleration values when opening and closing the intake valve without exceeding the allowable contact pressure limits at the cam, which is very favorable since the opening diagram of the intake valve is very short (of the order of 100 ° to 140 ° of rotation of the crankshaft) and shorter than that of the exhaust valve ( of the order of 20 to 40 ° rotation of the crankshaft).
  • This arrangement promotes the achievement of larger intake valve lifts than is common in known engines (the ratio between the maximum lift and the inside diameter at the valve seat can reach and exceed double the normal) for compensate for the fact that the intake valve only flows in its lower part, taking into account its almost zero radial clearance in its upper part, with the lateral surface of the prechamber opposite the transfer channel.
  • the geometrical configuration of the sweeping and combustion prechamber makes it possible to achieve very high volumetric ratios, which can reach and even exceed 20, and this also in the case of stroke / bore ratios close to the unit. This fact makes it possible to facilitate the starting conditions of very small diesel engines, for example for automotive application.
  • the reference 1 designates a cylinder of a diesel engine with one or more cylinders operating according to a two-stroke cycle, with a geometric axis 2 represented here in a substantially vertical position and containing a piston with reciprocating movement 3 shown in position close to its bottom dead center.
  • This cylinder 1, constituted here for example by a jacket of the wet type, is mounted in the frame or cylinder block 4 of the engine and usually surrounded by a jacket of cooling water 5.
  • the upper end or head of the cylinder is surmounted and closed by a cylinder head 6, which contains an exhaust valve 7 controlling a conduit 8 for exhaust of the burnt gases communicating with an exhaust path 9 forming in particular an exhaust manifold, as well as an intake valve 10 controlling an intake duct 11 for fresh oxidant air communicating with an intake manifold 12.
  • the intake valve 10 opens, and the intake duct 11 opens, in the direction of flow of the fresh sweeping air, in a sweeping and combustion prechamber 13 which is formed in the cylinder head 6 and which is open towards the cylinder 1 by communicating with the latter by a transfer channel 14.
  • the arrangement of the intake valves 10 and exhaust 7 admits preferably ce a plane of symmetry, corresponding moreover to the plane of Figure 1 and passing through the axis of the exhaust valve 7, the axis of the intake valve 10 and the axis 2 of the cylinder 1, these three axes being indicated in phantom in Figure 1.
  • the axis of the exhaust valve 7 is substantially parallel to the axis 2 of the cylinder and offset with respect to the latter so that in the open position, the head of this exhaust valve 7 is of a side (on the left side of FIG. 1) relatively close to the corresponding adjacent side wall of cylinder 1 and, on the other side (on the right side in FIG. 1 relatively distant from the outlet of the transfer channel 14.
  • the axis of the intake valve 10, opening in the prechamber 13, is not parallel, and is shown here preferably at least approximately orthogonal, to the walls of the cylinder 1, therefore to the axis of the valve exhaust 7 and axis 2 of the cylinder.
  • the rod 17 of the valve 10 moves away from this axis 2, in the above-mentioned plane of symmetry.
  • the exhaust valve 7 cooperates with a fixed seat 14 provided in the cylinder head 6.
  • the intake valve 10 cooperates with a fixed seat 16 provided in the cylinder head 6.
  • the transfer channel 14 has a wall 14a at least partly substantially parallel to the axis 2 of the cylinder 1, the part 14b of the wall located on the side of the intake valve 10 constituting in fact an extension of the wall of the cylinder (see figure 2).
  • the opposite part of the wall 14a of the transfer channel 14 in fact also constitutes an extension of the wall part 13a of the pre-mixing chamber 13, opposite the inlet valve 10.
  • the transfer channel 14 also has, in cross section perpendicular to the axis 2 of cylinder 1, a substantially oblong shape tangential to cylinder 1, as is clearly visible in FIG. 2.
  • the cross section of the transfer channel 14 opening into the cylinder preferably develops on a circular sector with an angle at the center of between 60 ° and 110 ° and represents an area whose ratio to that of the cross section of cylinder 1 is preferably between 0.10 and 0.20 and, more particularly, between 0, 13 and 0.17.
  • the prechamber 13 has, from the seat 16 of the intake valve 10, a portion of cylinder of revolution 18, coaxial with the intake valve 10, substantially tangent to the head 10a of the valve 10 and the dimension of which is such that there is practically no air flow at the upper part of the head 10a of the intake valve 10.
  • This portion of cylinder 13 therefore constitutes in practice the top or the wall of bottom of the prechamber 13.
  • the wall part 14a of the transfer channel 14 is connected to the lower part of the valve seat 16 by an arcuate profile 22 allowing a direct flow of air to the transfer channel 14, from the start of the opening the inlet valve 10.
  • the part of the cylinder of revolution 18 substantially coaxial with the intake valve 10 leaves between this wall 18 and the head 10a of the intake valve 10, a radial clearance 32 having a minimum value preventing the creation of a significant air stream around the upper part of the head 10a of the intake valve 10. Consequently, almost all of the air flow emerging from the intake valve 10 flows around the lower part of the head 10a of the intake valve 10 towards the transfer channel 14, as symbolized by the flow arrows 28 in FIG. 3.
  • FIG. 4 there is shown a second embodiment of the invention according to which there are two intake valves designated respectively by 100 and 110, at the top of each of which is provided, as in the case in FIG. 3, a minimum radial clearance 32 just sufficient for the passage of the heads of these valves.
  • this allows the injection of fuel in the aforementioned plane of symmetry, and also, as will be explained below, to take advantage of the organized turbulence caused by the flow from the cylinder 1 resulting from the ascent of the piston.
  • a single exhaust valve 7 has been provided.
  • FIG. 5 another embodiment of the invention has been represented, according to which two exhaust valves have been provided, designated respectively by 107 and 117, with a single intake valve 10.
  • the single valve either the exhaust 7 or the intake 10, is in the above-mentioned plane of symmetry.
  • FIG. 8 represents the diagram of opening of the intake and exhaust valves of the preferred embodiment of FIGS. 1, 2 and 3.
  • the intake opening is designated by OA, by OE 1 'opening of exhaust, by FA the closing of admission, by FE the closing of exhaust, by TDC the top dead center and by PMB the bottom dead center.
  • the opening period of the exhaust valve 7 represents approximately 160 ° of rotation angle of the crankshaft while the opening period of the intake valve 10 represents approximately 140 ° of rotation angle of the crankshaft. It will be observed in this connection that the opening period of the exhaust valve 7 begins well before the opening period of the intake valve 10, respectively 60 ° and 30 ° before the bottom dead center.
  • FIG. 9a represents the expansion phase for which the intake valve 10 and the exhaust valve 7 are closed and the piston 3 moves towards bottom dead center, as symbolized by the arrow F.
  • FIG. 9b the following sequence is shown, for which the exhaust valve 7 has just opened while the intake valve 10 is still closed, the piston 3 continuing its downward movement towards bottom dead center, which will allow, in a manner known per se, to reduce the pressure in the cylinder 1 to the level of the scanning pressure.
  • FIG. 9c represents the following sequence according to which the exhaust valve 7 is almost completely open, the piston being at the start of its upward stroke as shown in the reverse direction of the arrow F, while the intake valve 10 is already practically open and thus allows the flow of the air stream which has been designated for example by 28 in FIG. 3.
  • This flow 28 is transformed into a single flow of air 40 bearing on the vertical wall of the cylinder following the transfer channel 14, which discharges, during its penetration into the cylinder 1, a corresponding volume of burnt gases 42.
  • FIG. 9d represents the following sequence corresponding to the scanning of the cylinder 1 and showing the maximum liftings of the exhaust valve 7 and of the intake valve 10 respectively.
  • this maximum lift of the valve d intake 10 is larger than that of conventional two-stroke engines.
  • the valve lift is calculated in such a way that the lateral surface of the geometrical cylinder limited between the valve seat and the transverse surface of the valve is equal to or slightly greater than the free cross section of the valve seat. valve open. In the case of the invention, it is only about half of the lateral surface of the aforesaid geometrical cylinder which allows fresh air to pass and it is therefore necessary to compensate for this loss of surface by increasing the lift of the intake valve 10 or inlet valves 100, 110 °.
  • the ratio between the maximum lift of the or each intake valve 10 and the internal diameter of the seat 16 of said intake valve is greater than 0.35.
  • FIG. 9e represents the end of sweeping sequence for which the exhaust valve 7 has just closed, the inlet valve 10 being partially open before it is completely closed.
  • the piston 3 continues to rise in the cylinder 1 and causes partial discharge of the air in the direction of the intake manifold 12.
  • FIG. 9f shows the following compression sequence for which the two exhaust 7 and inlet 10 valves are closed.
  • the continued raising of the piston in the cylinder therefore not only causes compression but also a progressive discharge of air towards the prechamber 13, which induces a large field of turbulence, symbolized by the arrow 50, which is favorable for the phase d injection of fuel and its mixture with the combustion air in the following sequence.
  • FIG. 9g represents the fuel injection phase just before top dead center, symbolized by a jet of fuel 52.
  • FIG. 9h represents the last sequence relating to the combustion of the mixture thus prepared with the piston being at its top dead center. Thanks to the structure described and to this operation, all the technical advantages mentioned in the introductory part of the description are obtained.
  • all the usual means can be used in combination with the means of the invention, whether in terms of the culvert, the design of the injection and the combustion chamber, the design of the structure of the cylinder head which can advantageously be of the type known per se with drilled channels.
  • 70, 72 have been designated for the cooling channels of the seats 15, 16 of the exhaust 7 and intake 10 valves, which makes it possible to cool not only the valves themselves but also most of the cylinder head 6 exposed to the combustion gases.
  • the head 10a of the intake valve 10 has an approximately planar surface 19 intended to cooperate with a mating surface 20, also approximately planar, of the seat 16.
  • the opposite face 21 of the head 10a which is preferably approximately conical, is arranged so as to penetrate into a recess 30, of conjugate shape, formed in the opposite wall of the prechamber 13, the assembly being such as the inlet valve 10, at its maximum lift , penetrates almost completely into this recess by driving out the burnt gases.
  • the intake duct 11 is advantageously provided with a lip 33, immediately upstream of the seat 16 and on its lower part, intended to gradually accelerate, by a nozzle effect, the fresh air entering the prechamber 13 , at the opening of the intake valve 10.
  • the fuel is introduced under pressure into the prechamber 13 by an injector 120 arranged, not at the top of this prechamber as shown diagrammatically in FIG. 1, but in the axis of the intake valve 17, which improves the homogeneity of the air and fuel mixture admitted into the cylinder.
  • an injector 120 arranged, not at the top of this prechamber as shown diagrammatically in FIG. 1, but in the axis of the intake valve 17, which improves the homogeneity of the air and fuel mixture admitted into the cylinder.
  • FIG. 7 it is possible to provide only one injector 120 opening along the axis of symmetry of the assembly of these two valves.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion Methods Of Internal-Combustion Engines (AREA)
  • Valve-Gear Or Valve Arrangements (AREA)

Abstract

Un moteur à combustion interne à deux temps, notamment du type Diesel, qui comporte au moins une soupape d'admission (10) ayant son siège disposé dans la paroi d'une préchambre (13) de combustion et de balayage, et au moins une soupape d'échappement (7), est caractérisé en ce que la préchambre (13) communique avec le cylindre (1) par un canal de transfert (14) dont les parois sont au moins en partie sensiblement parallèles à l'axe (2) du cylindre et dont la section droite perpendiculaire à cet axe débouche selon une forme sensiblement oblongue tangentiellement au cylindre (1). On obtient une meilleure efficacité du moteur.

Description

  • La présente invention concerne généralement un moteur à combustion interne à deux temps à au moins un cylindre contenant un piston à mouvement alternatif, notamment mais non exclusivement du type Diesel, et elle a plus particulièrement pour objet un dispositif à soupapes, incorporé exclusivement dans la culasse, qui permet le remplacement des gaz brûlés par l'air frais nécessaire à la combustion.
  • L'invention se rapporte également à une culasse, pour moteurs à combustion interne, qui est équipée dudit dispositif, ainsi qu'aux diverses applications et utilisations résultant de sa mise en oeuvre.
  • Le remplacement des gaz brûlés par la charge d'air frais pose un problème particulier, dans les moteurs à combustion interne à deux temps, car on n'y dispose que d'un temps réduit (correspondant à un angle de rotation d'environ 120° à 140° du vilebrequin) pour le réaliser alors que, dans les moteurs à quatre temps, le laps de temps, disponible à cet effet, est sensiblement plus grand et peut correspondre à un angle de rotation d'environ 400° de l'arbre-vilebrequin.
  • Dans les moteurs à deux temps à soupapes modernes, on s'efforce d'améliorer le balayage:
    • a) en augmentant la perméabilité de la chambre de travail ou cylindre, lorsque les soupapes d'admission et d'échappement sont ouvertes simultanément;
    • b) en diminuant le court-circuit entre l'admission et l'échappement, grâce à l'orientation du courant des particules d'air frais entrant dans le cylindre, dans une direction les empêchant de passer directement de l'admission à l'échappement; et
    • c) en réduisant autant que possible le mélange, dans le cylindre, entre l'air frais et les gaz brûlés provenant du ou des cycles précédents.

    Dans le US-A-2 061 157 (HURUM), il a déjà été proposé de disposer, dans la culasse d'un moteur à combustion interne à deux temps, une ou deux soupapes d'admission, qui débouchent dans une préchambre de forme plate et dont le ou les axes sont orthogonaux à celui du cylindre, et une soupape d'échappement dont l'axe est parallèle à celui du cylindre et décalé par rapport à ce dernier axe. La préchambre débouche dans le cylindre par un orifice de section restreinte de façon à y faire pénétrer le mélange d'air et de combustible sous forme d'un jet compact et la tige de la ou de chaque soupape d'admission traverse l'espace délimité dans la culasse par le prolongement géométrique de la paroi du cylindre, ce qui donne lieu à un écoulement étranglé et dissymétrique du mélange admis au cylindre. L'expérience a montré que le susdit jet compact était peu efficace au point de vue du balayage: en effet, si le critère (b) est respecté, du fait de l'introduction à vitesse élevée des particules d'air dans le cylindre vers le piston, en revanche, le critère (c) n'est pas respecté: l'introduction des particules d'air à vitesse élevée dans le cylindre est effectuée, du fait de la disposition de la soupape d'admission, au sein même de la masse de gaz - et ce particulièrement au moment ou la soupape d'admission est en début d'ouverture - y provoquant un intense mélange de l'air frais et des gaz brûlés. En outre, cette disposition laisse subsister des zones mortes, non balayées, ce qui réduit encore l'efficacité du balayage. En raison de la présence de l'orifice de section restreinte, la perméabilité de la culasse à l'écoulement (critère a) est très mauvaise. Enfin, la forme plate de la préchambre assure un mauvais mélange entre l'air frais et le combustible qui y est injecté. Cette analyse du US-A-2 061 157 est confirmée au troisième paragraphe du US-A-4 616 605 (KLINE) qui n'a été publié que le 14 octobre 1986.
  • Dans le US-A-2 222 134 (AUGUSTINE), il est décrit un moteur à combustion interne à deux temps possédant une soupape d'admission et une soupape d'échappement dont les axes sont parallèles à celui du cylindre et dont les mouvements d'ouverture sont dirigés en sens opposés. Le siège de la soupape d'admission débouche de bas en haut dans une préchambre qui débouche elle-même de haut en bas dans le cylindre par un orifice en forme de croissant, disposé tangentiellement au cylindre. La géométrie de la préchambre est telle qu'il se produit une forte turbulence autour de la soupape d'admission, causant une désorientation des particules d'air frais pénétrant dans le cylindre, provoquant un fort court-circuit (critère b non respecté), et que l'air est dirigé préférentiellement dans l'extrados du coude reliant la préchambre au cylindre, ce qui fera pénétrer les particules d'air au sein même de la masse de gaz, donnant lieu à un mélange important de l'air frais avec les gaz brûlés (critère c non respecté).
  • L'invention vise à améliorer le fonctionnement d'un moteur à combustion interne à deux temps, notamment mais non exclusivement du type Diesel, à au moins un cylindre avec piston à mouvement alternatif et à dispositif d'échange des gaz assuré exclusivement par au moins une soupape d'admission et au moins une soupape d'échappement disposées dans la culasse en têtefu cylindre associé, de façon à permettre d'obtenir un balayage respectant à la fois les trois critères définis ci-dessus.
  • L'invention a donc principalement pour but, dans un moteur du genre précité, d'augmenter l'efficacité de l'échange des gaz, c'est-à-dire de chasser au maximum les gaz brûles résiduels du cylindre en les y remplaçant par un volume correspondant d'air frais, tout en empêchant ou, du moins, en réduisant au maximum tout risque de passage direct d'air frais de la soupape d'admission à la soupape d'échappement et en évitant simultanément, le plus possible, toute création d'une zone de mélange d'air frais et de gaz brûlés et ce, avec une dépense d'énergie minimale. La dépense énergétique est minimisée par la recherche de la meilleure utilisation possible de l'air de balayage fourni au cylindre comme décrit précédemment, mais aussi par l'obtention de la plus grande perméabilité, c'est-à-dire par la réalisation de sections d'écoulement maximales offertes aux fluides gazeux, nécessitant ainsi une différence de pression minimale entre la pression d'air de balayage et la contre-pression à l'échappement pour assurer un débit d'air de balayage donné. L'efficacité de l'échange des gaz du moteur à combustion interne à deux temps est ainsi caractérisée par la qualité d'utilisation de l'air de balayage d'une part et par la perméabilité du cylindre d'autre part. Ces deux caractéristiques conditionnent directement la puissance et le rendement du cycle du moteur Diesel non suralimenté et également, mais à un degré moindre, du moteur Diesel moyennement ou fortement suralimenté.
  • Toutes les observations formulées précédemment pour les moteurs Diesel s'appliquent aux moteurs à allumage commandé, à aspiration naturelle ou suralimentés.
  • Dans le cas où, pour ces moteurs, la préparation du mélange, de préférence homogène, d'air et de combustible s'opère en amont du cylindre à l'aide d'un carburateur ou d'un système d'injection de combustible, il devient nécessaire d'obtenir un échange des gaz sans courtcircuit d'air frais carburé vers l'échappement. Sur les moteurs à deux temps à balayage en boucle par lumières d'admission et d'échappement, il est ainsi courant de subir des pertes d'air et donc de combustible allant jusqu'à 30 %, voire 40 %, de la charge fraîche retenue dans le cylindre au cours de l'échange des gaz, ce qui obère d'autant la consommation de combustible. La géométrie de la structure doit en outre permettre une combustion satisfaisante, ce qui se traduit pratiquement par la nécessité de satisfaire simultanément à des conditions ou exigences antagonistes. L'objectif de l'invention est donc de réaliser un compromis entre une bonne efficacité du balayage et de la combustion et ce, avec la technologie la plus simple en conservant au maximum les avantages précités tout en réduisant les inconvénients précédemment mentionnés.
  • Pour faciliter la description ci-après, on admettra que la position du cylindre est telle que son axe soit vertical et qu'ainsi la culasse occupe la position supérieure ou haute et le piston la position inférieure ou basse.
  • La présente invention résout les problèmes techniques précités en prévoyant un moteur à combustion interne à deux temps, à au moins un cylindre avec piston alternatif, à dispositif d'échange des gaz entièrement incorporé à la culasse et comportant une soupape ou un groupe de soupapes d'admission et une soupape ou un groupe de soupapes d'échappement, la ou chaque soupape d'admission ayant son siège disposé dans la paroi d'une préchambre de combustion et de balayage, ledit dispositif d'échange des gaz ayant un plan de symétrie passant par l'axe du cylindre et commun aux soupapes ou groupes de soupapes d'admission et d'échappement, à la surface intérieure de la préchambre, au ciel de culasse et à la face du piston, laquelle préchambre communique avec le cylindre par un canal de transfert dont les parois sont au moins en partie sensiblement parallèles à l'axe du cylindre et dont la section droite perpendiculaire à cet axe débouche selon une forme pratiquement oblongue tangentiellement au cylindre, caractérisé en ce que l'axe de la ou chaque soupape d'admission a une direction non parallèle à l'axe du cylindre et en ce que la partie supérieure de la tête de la ou chaque soupape d'admission, dans toutes les positions de cette dernière, est voisine, pratiquement sans jeu, de la partie supérieure de la paroi de la préchambre sensiblement opposée au canal de transfert. De cette façon, le circuit d'air d'admission, en amont de la soupape, débouche directemente dans le canal transfert en aval de la soupape d'admission, y compris pendant les premiers instants de la levée de cette soupape.
  • Selon une autre caractéristique de l'invention, l'axe de la ou chaque soupape d'admission fait l'axe du cylindre un angle compris entre environ 45° et environ 90°.
  • Le FR-A-9 49 642 décrit un moteur conforme au préamble de la revendication 1. Dans ce moteur connu, l'axe de la soupape d'admission a une direction parallèle à l'axe du cylindre. En pénétrant dans le cylindre, l'air d'admission est donc dévié transversalement par la tête de la soupape, tout autour de celle-ci, et les trois susdits critères sont respectés.
  • Selon encore une autre caractéristique de l'invention, le siège, associé à chaque soupape d'admission, est situé dans une portion de paroi de la préchambre prolongeant au moins approximativement la portion de paroi du canal de transfert tangente à la surface du cylindre.
  • Selon un premier mode de réalisation, on prévoit une seule soupape d'admission et une seule soupape d'échappement.
  • Selon un mode de réalisation particulier, le dispositif d'échange des gaz possède deux soupapes d'admission parallèles entre elles.
  • Selon un autre mode de réalisation particulier, le dispositif d'échange des gaz possède deux soupapes d'échappement parallèles à l'axe du cylindre. Selon une autre caractéristique de l'invention, le moteur est caractérisé en ce que la section droite du canal de transfert débouchant dans le cylindre se développe sur un secteur circulaire d'angle au centre compris entre 60° et 110° et représente une aire dont le rapport à celle de la section droite du cylindre est compris de préférence entre 0,10 et 0,20 et plus particulièrement entre 0,13 et 0,17.
  • Selon un autre mode de réalisation de l'invention, la paroi de fond de la préchambre de balayage et de combustion sensiblement opposée au canal de transfert débouchant dans le cylindre est constituée par une portion de cylindre de révolution à coaxiale à chaque soupape d'admission, sensiblement tangente à chaque tête de soupape, de telle sorte que le jeu radial entre ladite paroi et la tête de chaque soupape d'admission ait une valeur minimale telle que chaque soupape d'admission débite directement et essentiellement sur son secteur orienté en direction du canal de transfert, pour orienter la quasi-totalité du flux d'air émergeant de chaque soupape d'admission directement vers le canal de transfert.
  • Selon encore un autre mode de réalisation de l'invention, le moteur est caractérisé en ce que le jeu radial soit aussi réduit que possible entre la partie supérieure de chaque soupape d'admission et la paroi latérale, cylindrique et coaxiale avec la soupape correspondante, de la préchambre dans le secteur angulaire sensiblement opposé au canal de transfert.
  • L'invention procure, entre autres, les avantages importants suivants:
    • - Elle permet de rendre maximales les sections des soupapes d'admission et d'échappement en n'exigeant qu'une déviation relativement faible de la veine d'air moyenne durant son parcours du col lecteur d'admission à l'intérieur du cylindre, ce qui se traduit par l'obtention d'une perméabilité sensiblement accrue par comparaison avec d'autres solutions utilisant le même nombre de soupapes d'admission et d'échappement.
    • - L'efficacité du balayage est améliorée car, tout en assurant une perméabilité élevée, elle permet d'obtenir un rendement de balayage élevé avec une très bonne utilisation de l'air de balayage, en réduisant au maximum tout risque de passage direct d'air frais du cylindre à la soupape d'échappement, grâce au confinement de la veine qui se trouve accélérée vers le piston sans pouvoir se dévier en direction de la soupape d'échappement, y compris pendant les premiers instants de l'ouverture de la soupape d'admission.
    • - Le développement expérimental pour l'obtention d'une bonne efficacité de balayage est considérablement simplifié en raison du faible nombre de paramètres agissant sur la formation de la veine d'air. En effet, pour la première partie de la levée de la soupape, donc à faible débit de balayage, la forme des parois délimitant la préchambre et aboutissant au canal de transfert est prépondérante pour orienter la veine d'air sur la paroi de la chemise la plus éloignée de la soupape d'achappement, tandis qu'à levée croissante et débit de balayage élevé, ce rôle est assuré en majeure partie par la forme de la tulipe du la soupape d'admission et du siège associé, permettant à l'écoulement de réaliser un coude à 90° environ entre la pipe d'admission et le cylindre avec un laminage minimal après le passage du col.
    • - Outre la simplification constructive évidente qu'apporte l'invention dans la variante n'utilisant qu'une seule soupape d'admission, une soupape d'admission unique interdit toute dissymétrie de la veine d'air de balayage par rapport à son plan de symétrie défini précédemment, ce qui est toujours difficile à éviter lorsqu'il y a par exemple deux soupapes d'admission en raison d'une possible évolution en fonctionnement de leur jeu respectif ou de leur état d'encrassement respectif. La participation importante de la géométrie du canal de transfert, qui représente une géométrie fixe par opposition à la géométrie par essence variable de la soupape d'admission, à la formation de la veine d'air de balayage, permet de réaliser une veine d'air de balayage d'une grande stabilité dans tous les cas de charge et de vitesse de fonctionnement du moteur. Le canal de transfert contribue le cas échéant à rétablir une meilleure symétrie de la veine gazeuse.
    • - L'invention assure un balayage successif de la préchambre et du cylindre, de sorte que, même dans le cas d'une quantité d'air de balayage très faible, le volume de la préchambre est balayé et rempli presque exclusivement d'air frais avant la course de compression (contrairement aux préchambres de combustion non balayées). Ceci a pour conséquence que, dans le cas extrême décrit correspondant à un fonctionnement à charge partielle, le volume d'air comburant se trouve dans la partie haute de la préchambre après avoir été refoulé par les gaz résiduels provenant du cylindre durant la course de compression.
  • Ainsi sont créées, en quelque sorte par un effet de stratification, des conditions très favorables à exploiter pour contrôler le fonctionnement du moteur à charge minimale, qu'il s'agisse d'un moteur à allumage par compression ou d'un moteur à allumage commandé. Dans les deux cas, les moyens d'introduction de combustible (injecteur) et/ou d'allumage seront de préférence implantés dans la partie de la préchambre opposée au siège de la soupape d'admission.
    • - Le mouvement du piston en fin de course ascendante de celui-ci, c'est-à-dire au voisinage de son point mort haut, provoque le transfert de la charge d'air frais du cylindre vers la préchambre et induit ainsi un champ de turbulence d'autant plus intense que l'espace mort entre la tête du piston de préférence plate et le fond de culasse où affleure, à l'état fermé, la tête de la soupape d'échappement est réduit.
    • - La turbulence régnant dans la préchambre de combustion au moment de l'injection de combustible, dans la période précédant immédiatement la position de point mort haut du piston, peut être puissamment influencée par la turbulence résiduelle du vortex issu de la phase de balayage de sens opposé au champ de turbulence induit par la remontée du piston.
    • - Le fait que la préchambre de combustion et de balayage soit à la fois balayée et refroidie par l'air de balayage et que la plus grande partie de la chaleur dégagée au cours de la phase de combustion le soit dans ladite préchambre permet de contenir la charge thermique de la culasse et de la partie haute du cylindre en égalisant les températures les plus élevées des parties constitutives de la culasse et du cylindre exposées aux gaz de combustion. Cet avantage est prépondérant pour un moteur à deux temps pour lequel il est bien connu que la charge thermique est plus élevée que dans le cas d'un moteur à quatre temps, et ceci, tout particulièrement pour les moteurs utilisant des pressions maximales de cycle très élevées (par exemple de l'ordre de 200 à 300 bars) comme cela est prévu dans le cadre de l'invention.
    • - La disposition et la taille des soupapes d'admission et d'échappement permettent d'utiliser l'intérieur de leurs sièges pour aménager de façon connue un canal annulaire de refroidissement, pou assurer le refroidissement desdites soupapes mais aussi celui de la culasse proprement dite, en raison de la très grande fraction de la surface de la culasse en contact avec les gaz de comustion ainsi irriguée naturellement par l'eau de refroidissement desdits sièges de soupape.
  • La disposition horizontale ou inclinée de la soupape d'admission permet de l'actionner par une commande très directe, notamment par arbre à cames latéral disposé dans la partie haute du bloc-moteur, dans le cas des moteurs polycylin- driques munis de culasses individuelles, ou bien par arbre à cames en tête dans le cas de moteurs à culasse unique. Cette configuration permet ainsi, en raison des faibles masses en mouvement, de réaliser des valeurs d'accélération très élevées lors de l'ouverture et de la fermeture de la soupape d'admisssion sans dépasser les limites admissibles de pression de contact au niveau de la came, ce qui est très favorable puisque le diagramme d'ouverture de la soupape d'admission est très court (de l'ordre de 100° à 140° de rotation du vilebrequin) et plus court que celui de la soupape d'échappement (de l'ordre de 20 à 40° de rotation du vilebrequin). Cette disposition favorise la réalisation de levées de soupape d'admission plus importantes que ce qui est courant dans les moteurs connus (le rapport entre la levée maximale et le diamètre intérieur au siège de la soupape pouvant atteindre et dépasser le double de la normale) pour compenser le fait que la soupape d'admission ne débite que dans sa partie inférieure, compte tenu de son jeu radial quasi nul dans sa partie supérieure, avec la surface latérale de la préchambre opposée au canal de transfert.
  • Ceci permet de résoudre de façon élégante le problème précité posé par la période d'ouverture très courte des soupapes, en particulier des soupapes d'admission.
  • L'ensemble des avantages décrits précédemment et relatifs principalement à l'efficacité du balayage et de la combustion permet de réaliser un excellent rendent de balayage et de combustion jusqu'à des valeurs élevées rapport course-alésage du cylindre, en particulier supérieures aux valeurs connues par ailleurs pour les balayages dits en boucle ou en coin réalisés à l'aide de lumières disposées dans la chemise ou bien exclusivement à l'aide de soupapes disposées dans la culasse. L'obtention d'un bon rendement de balayage avec un rapport course/alésage très élevé (jusqu'à 2, voire 2,5) s'inscrit de manière très favorable dans l'évolution technique actuelle des moteurs Diesel de fort alésage, pour application navale ou terrestre, car la recherche du rendement le plus élevé conduit aujourd'hui à retenir des rapports course/alésage de plus en plus élevés (rendant possible un rapport volumétrique de compression et un rendement de combustion élevés), de l'ordre de 3 à 4 pour les moteurs lents à deux temps à balayage unicourant et a construction à crosses et de 1,5 à 2 pour les moteurs semi-rapides quatre temps, dans les deux cas au détriment du poids et de l'encombrement. Cette caractéristique permet en effet d'envisager l'application du dispositif conforme à l'invention à des moteurs semi-rapides à deux temps à balayage exclusivement par la culasse, ce qui, grâce aux avantages connus du cycle à deux temps en matière de puissance spécifique, contribuerait pour ces moteurs à haut rendement, mais de plus en plus encombrants, à apporter une amélioration sensible du rapport poids/puissance (de l'ordre de 30 % à rendement inchangé).
  • Enfin, la configuration géométrique de la préchambre de balayage et de combustion permet de réaliser de très hauts rapports volumétriques, pouvant atteindre et même dépasser 20, et ce également dans le cas de rapports course/alésage voisins de l'unité. Ce fait permet de faciliter les conditions de démarrage de moteurs Diesel de très petite taille, par exemple pour application automobile.
  • L'invention sera mieux comprise et d'autres buts, caractéristiques, détails et avantages de celle-ci apparaîtront plus clairement au cours de la description qui va suivre en se reportant aux dessins schématiques annexés dans lequels:
    • - la figure est une vue fragmentaire, en coupe transversale, des seuls éléments relatifs à l'invention, c'est-à-dire de la tête d'un cylindre et de la portion de culasse associée d'un moteur Diesel à deux temps à distribution par une soupape d'admission et une soupape d'échappement mutuellement perpendiculaires et représentées toutes les deux ouvertes pendant la phase de balayage et de remplissage, au voisinage du point mort bas du piston;
    • - la figure 2 est une vue en coupe transversale horizontale suivant la ligne Il - Il de la figure 1, montrant le débouché du canal de transfert dans le cylindre;
    • - la figure 3 est une vue en coupe selon la ligne Ill- lll de la figure 1;
    • - la figure 4 est une vue en coupe, analogue à celle de la figure 2, d'un mode de réalisation à deux soupapes d'admission parallèles entre elles;
    • - la figure 5 est une vue en coupe, analogue à celle de la figure 2, d'un mode de réalisation à deux soupapes d'échappement parallèles entre elles;
    • - la figure 6 représente, à plus grande échelle, une variante préférée du mode de réalisation des figures 1 à 3;
    • - la figure 7 est une vue en coupe selon la ligne VII - VII de la figure 4;
    • - la figure 8 représente le diagramme des périodes d'ouverture des soupapes d'admission et d'échappement en fonction de l'angle de rotation de l'arbre-vilebrequin;
    • - les figures 9a à 9h représentent les différentes phases du cycle de fonctionnement de la variante faisant l'objet des figures 1 et 2;
    • - la figure 10 représente un autre mode de réalisation de l'invention selon une vue fragmentaire analogue à celle de la figure 1, dans lequel la commande des soupapes par un seul arbre à cames en tête commun est clairement représentée.
  • Selon l'exemple de réalisation représenté sur la figure 1, le repère 1 désigne un cylindre d'un moteur Diesel à un ou plusieurs cylindres fonctionnant selon un cycle à deux temps, à axe géométrique 2 représenté ici en position sensiblement verticale et contenant un piston à mouvement alternatif 3 représenté en position voisine de son point mort bas. Ce cylindre 1, constitué ici par exemple par une chemise du type humide, est monté dans le bâti ou bloc-cylindres 4 du moteur et habituellement entouré d'une enveloppe d'eau de refroidissement 5. L'extrémité supérieure ou tête au cylindre est surmontée et fermée par une culasse 6, qui contient une soupape d'échappement 7 commandant un conduit 8 d'échappement des gaz brûlés communiquant avec une voie d'échappement 9 formant notamment collecteur d'échappement, ainsi qu'une soupape d'admission 10 commandant un conduit d'admission 11 d'air frais comburant communiquant avec un collecteur d'admission 12. La soupape d'admission 10 s'ouvre, et le conduit d'admission 11 débouche, dans le sens de l'écoulement de l'air frais de balayage, dans une préchambre de balayage et de combustion 13 qui est ménagée dans la culasse 6 et qui est ouverte vers le cylindre 1 en communiquant avec celui-ci par un canal de transfert 14. La disposition des soupapes d'admission 10 et d'échappement 7 admet de préférence un plan de symétrie, correspondant par ailleurs au plan de la figure 1 et passant par l'axe de la soupape d'échappement 7, l'axe de la soupape d'admission 10 et l'axe 2 du cylindre 1, ces trois axes étant indiqués en trait mixte à la figure 1.
  • L'axe de la soupape d'échappement 7 est sensiblement parallèle à l'axe 2 du cylindre et décalé par rapport à celui-ci de façon qu'en position ouverte, la tête de cette soupape d'échappement 7 se trouve d'un côté (du côté gauche de la figure 1) relativement proche de la paroi latérale voisine correspondante du cylindre 1 et, de l'autre côté (du côté droit sur la figure 1 relativement éloignée du débouché du canal de transfert 14.
  • L'axe de la soupape d'admission 10, s'ouvrant dans la préchambre 13, n'est pas parallèle, et est représenté ici de préférence au moins approximativement orthogonal, aux parois du cylindre 1, donc à l'axe de la soupape d'échappement 7 et à l'axe 2 du cylindre. Comme il ressort de la figure 1, la tige 17 de la soupape 10 s'éloigne de cet axe 2, dans le susdit plan symétrie.
  • La soupape d'échappement 7 coopère avec un siège fixe 14 prévu dans la culasse 6. De même, la soupape d'admission 10 coopère avec un siège fixe 16 prévu dans la culasse 6.
  • Le canal de transfert 14 présente une paroi 14a au moins en partie sensiblement parallèle à l'axe 2 du cylindre 1, la partie 14b de la paroi située de côté de la soupape d'admission 10 constituant en fait un prolongement de la paroi du cylindre (voir la figure 2). La partie opposée de la paroi 14a du canal de transfert 14 constitue en fait également un prolongement de la partie de paroi 13a de la chambre de pré mélange 13, opposée à la soupape d'admission 10. Le canal de transfert 14 présente en outre, en section droite perpendiculaire à l'axe 2 du cylindre 1, une forme sensiblement oblongue tangentiellement au cylindre 1, comme cela est clairement visible à la figure 2. La section droite du canal de transfert 14 débouchant dans le cylindre se développe de préférence sur un secteur circulaire d'angle au centre compris entre 60° et 110° et représente une aire dont le rapport à celle de la section droite du cylindre 1 est compris de préférence entre 0,10 et 0,20 et, plus particulièrement, entre 0,13 et 0,17.
  • A sa partie supérieure, la préchambre 13 présente, depuis le siège 16 de la soupape d'admission 10, une portion de cylindre de révolution 18, coaxiale à la soupape d'admission 10, sensiblement tangente à la tête 10a de la soupape 10 et dont la dimension est telle qu'il n'y ait pratiquement pas d'écoulement d'air à la partie supérieure de la tête 10a de la soupape d'admission 10. Cette portion de cylindre 13 constitue donc pratique le sommet ou la paroi de fond de la préchambre 13.
  • En outre, la partie de paroi 14a du canal de transfert 14 se raccorde à la partie inférieure du siège de soupape 16 par un profil arqué 22 permettant un écoulement direct de l'air vers le canal de transfert 14, dès le début de l'ouverture de la soupape d'admission 10.
  • Comme il ressort en particulier de la figure 3, la partie de cylindre de révolution 18 sensiblement coaxiale à la soupape d'admission 10, laisse entre cette paroi 18 et la tête 10a de la soupape d'admission 10, un jeu radial 32 présentant une valeur minimale empêchant la création d'une veine d'air significative autour de la partie supérieure de la tête 10a de la soupape d'admission 10. En conséquence, la quasi-totalité du flux d'air émergeant de la soupape d'admission 10 s'écoule autour de la partie inférierure de la tête 10a de la soupape d'admission 10 vers le canal de transfert 14, comme symbolisé par les flèches d'écoulement 28 de la figure 3.
  • En référence à la figure 4, on a représenté un deuxième mode de réalisation de l'invention selon lequel on a prévu deux soupapes d'admission désignées respectivement par 100 et 110, à la partie supérieure de chacune desquelles est prévu, comme dans le cas de la figure 3, un jeu radial minimal 32 juste suffisant pour le passage des têtes de ces soupape. Comme représenté à la figure 7, ceci permet de réliser l'injection de combustible dans le plan de symétrie précité, et également, comme cela sera explicité plus loin, de profiter de la turbulence organisée provoquée par l'écoulement en provenance du cylindre 1 résultant de la remontée du piston. Dans ce mode de réalisation, on a prévu une seule soupape d'échappement 7.
  • En référence à la figure 5, on a représenté encore un mode de réalisation de l'invention selon lequel on a prévu deux soupapes d'échappement désignées respectivement par 107 et 117, avec une seule soupape d'admission 10.
  • Dans chacun de ces modes de réalisation des figures 4 et 5, la soupape unique soit l'échappement 7, soit d'admission 10, se trouve dans le plan de symétrie précité.
  • La figure 8 représente le diagramme d'ouverture des soupapes d'admission et d'échappement du mode de réalisation préféré des figures 1, 2 et 3. De façon usuelle, on a désigné par OA l'ouverture d'admission, par OE l'ouverture d'échappement, par FA la fermeture d'admission, par FE la fermeture d'échappement, par PMH le point mort haut et par PMB le point mort bas.
  • La période d'ouverture de la soupape d'échappement 7 représente environ 160° d'angle de rotation de l'arbre-vileberquin tandis que la période d'ouverture de la soupape d'admission 10 représente environ 140° d'angle de rotation de l'arbre-vilebrequin. On observera à ce propos que la période d'ouverture de la soupape d'échappement 7 débute bien avant la période d'ouverture de la soupape d'admission 10, respectivement 60° et 30° avant le point mort bas.
  • En référence aux figures 9a à 9h, on a représenté différentes séquences du cycle de fonctionnement de ce moteur.
  • La figure 9a représente la phase de détente pour laquelle la soupape d'admission 10 et la soupape d'échappement 7 sont fermées et le piston 3 se dirige vers le point mort bas, comme symbolisé par la flèche F.
  • A la figure 9b, on a représenté la séquence suivante pour laquelle la soupape d'échappement 7 vient de s'ouvrir tandis que la soupape d'admission 10 est toujours fermée, le piston 3 continuant son mouvement de descente vers le point mort bas, ce qui va permettre, d'une façon connue en soi, de faire baisser la pression dans le cylindre 1 jusqu'au niveau de la pression de balayage.
  • La figure 9c représente la séquence suivante selon laquelle la soupape d'échappement 7 est à peu près complètement ouverte, le piston se trouvant au début de sa course ascendante comme le montre le sens inversé de la flèche F, tandis que la soupape d'admission 10 est déjà pratiquement ouverte et permet ainsi l'écoulement de la veine d'air qui a été désignée par exemple par 28 à la figure 3.
  • Ce flux 28 se transforme en un écoulement unique d'air 40 en appui sur la paroi verticale du cylindre faisant suite au canal de transfert 14, qui refoule, lors de sa pénétration dans le cylindre 1, un volume correspondant de gaz brûlés 42.
  • La figure 9d représente la séquence suivante correspondant au balayage du cylindre 1 et montrant les levées maximales respectivement de la soupape d'échappement 7 et de la soupape d'admission 10. Il est à noter à ce sujet que cette levée maximale de la soupape d'admission 10 est plus grande que celle des moteurs à deux temps usuels. Comme on le sait en effet, la levée d'une soupape est calculée de façon telle que la surface latérale du cylindre géométrique limité entre le siège de soupape et la surface transversale de la soupape soit égale ou légèrement supérieure à la section libre du siège de soupape ouvert. Dans le cas de l'invention, c'est seulement la moitié environ de la surface latérale du susdit cylindre géométrique qui laisse passer l'air frais et il faut donc compenser cette perte de surface en augmentant la levée de la soupape d'admission 10 ou des soupapes d'admission 100, 110°. A cet effet, de préférence, le rapport entre la levée maximale de la ou chaque soupape d'admission 10 et le diamètre intérieur du siège 16 de ladite soupape d'admission est supérieur à 0,35.
  • On observera qu'à ce moment du cycle, le flux d'air d'admission 40, pratiquement sans mélange avec les gaz brûlés 42 et alimenté presque exclusivement par la veine 28 du fait de la position de la tête 1 Oa de la soupape d'admission 10, occupe presque la totalité du volume du cylindre 1 et a refoulé la plus grande partie des gaz brûles 42.
  • La figure 9e représente la séquence de fin de balayage pour laquelle la soupape d'échappe- mente 7 vient de se fermer, la soupape d'admission 10 trouvant partiellement ouverte avant sa fermeture complète. Le piston 3 poursuit sa remontée dans le cylindre 1 et provoque un refoulement partiel de l'air en direction du collecteur d'admission 12.
  • La figure 9f représente la séquence suivante de compression pour laquelle les deux soupapes d'échappement 7 et d'admission 10 sont fermées. La poursuite de la remontée du piston dans le cylindre provoque donc non seulement la compression mais également un refoulement progressif de l'air vers la préchambre 13, ce qui induit un champ de turbulence important, symbolisé par la flèche 50, propice à la phase d'injection de combustible et à son mélange avec l'air comburant dans la séquence suivante.
  • La figure 9g représente la phase d'injection du combustible juste avant le point mort haut, symbolisée par un jet de combustible 52.
  • Enfin, la figure 9h représente la dernière séquence relative à la combustion du mélange ainsi préparé avec le piston se trouvant à son point mort haut. Grâce à la structure décrite et à ce fonctionnement, on obtient tous les avantages techniques mentionnés dans la partie introductive de la description.
  • En particulier, on peut utiliser tous les moyens habituels en combinaison avec les moyens de l'invention, que ce soit en ce qui concerne la cul- buterie, la conception de l'injection et de la chambre de combustion, la conception de la structure de la culasse qui peut être avantageusement du type connu en soi à canaux forés. D'ailleurs, à la figure 1, on a désigné par 70, 72 des canaux de refroidissement des sièges 15, 16 des soupapes d'échappement 7 et d'admission 10, ce qui permet de refroidir non seulement les soupapes elles-mêmes mais également la plus grande partie de la culasse 6 exposée aux gaz de combustion.
  • On a vu à ce propos dans la partie introductive de la description que l'on pouvait renoncer presque totalement à la présence de chambres d'eau en conférant ainsi à la culasse une très grande rigidité structurale.
  • En outre, selon un autre mode de réalisation objet de la figure 10, analogue à celui de la figure 1 et pour lesquels, les mêmes signes de référence ont été utilisés pour les parties identiques, on peut prévoir que la direction de l'axe de la soupape d'admission 10 fasse un angle égal à environ 50° avec la direction de l'axe 2 du cylindre 1. Dans ce cas, on peut avantageusement réaliser une commande de chaque groupe d'au moins une soupape d'admission 10 et de chaque groupe d'au moins une soupape d'échappement 7 par un seul arbre à cames en tête 150 commun agissant sur chaque soupape précitée par l'intermédiaire de culbuteurs associés 152, 154 et pourvus de galets 156, 158, les moyens de rappel de, soupape, n'étant pas représentés pour une meilleure compréhension du dessin.
  • Selon la variante de la figure 6, la tête 10a de la soupape d'admission 10 possède une surface approximativement plane 19 destinée à coopérer avec une surface conjuguée 20, elle aussi approximativement plane, du siège 16. La face opposée 21 de la tête 10a, qui est de préférence approximativement conique, est agencée de manière à pénétrer dans un évidement 30, de forme conjuguée, ménagé dans la paroi opposée de la préchambre 13, l'ensemble étant tel que la soupape d'admission 10, à sa levée maximale, pénètre pratiquement à fond dans cet évidement en en chassant les gaz brûlés. De plus, le conduit d'admission 11 est avantageusement muni d'une lèvre 33, immédiatement en amont du siège 16 et sur sa partie inférieure, destinée à accélérer progressivement, par un effet de tuyère, l'air frais entrant dans la préchambre 13, à l'ouverture de la soupape d'admission 10.
  • De préférence encore, le combustible est introduit sous pression dans la préchambre 13 par un injecteur 120 disposé, non pas au sommet de cette préchambre comme schématisé à la figure 1, mais dans l'axe de la soupape d'admission 17, ce qui améliore l'homogénéité du mélange d'air et de combustible admis dans le cylindre. Dans le cas où il existe deux soupapes d'admission symétriques 100 et 110 (figure 7), on peut ne prévoir qu'un seul injecteur 120 débouchant selon l'axe de symétrie de l'ensemble de ces deux soupapes.

Claims (14)

1. Moteur à combustion interne à deux temps, à au moins un cylindre avec piston alternatif, à dispositif d'échange des gaz entièrement incorporé à la culasse et comportant une soupape ou un groupe de soupapes d'admission (10) et une soupape ou un groupe de soupapes d'échappement (7), la ou chaque soupape d'admission (10) ayant son siège disposé dans la paroi d'une préchambre de combustion et de balayage (13), ledit dispositif d'échange des gaz ayant un plan de symétrie passant par l'axe (2) du cylindre (1) et commun aux soupapes ou groupes de soupapes d'admission (10) et d'échappement (7), à la surface intérieure de la préchambre (13), au ciel de culasse (6) et à la face du piston (3), laquelle préchambre (13) communique avec le cylindre (1) par un canal de transfert (14) dont les parois (14a) sont au moins en partie sensiblement parallèles à l'axe (2) du cylindre (1) et dont la section droite perpendiculaire à cet axe débouche selon une forme pratiquement oblongue tangentiellement au cylindre (1), caractérisé en ce que l'axe de la ou chaque soupape d'admission (10) a une direction non parallèle à l'axe (2) du cylindre (1) et en ce que la partie supérieure de la tête de la ou chaque soupape d'admission (10), dans toutes les positions de cette dernière, est voisine, pratiquement sans jeu (32), de la partie supérieure de la paroi de la préchambre (13) sensiblement opposée au canal de transfert (14).
2. Moteur à combustion interne selon la revendication 1, caractérisé en ce que l'axe de la ou chaque soupape d'admission (10) fait avec l'axe (2) du cylindre (1) un angle compris entre environ 45° et environ 90°.
3. Moteur selon la revendication 2, caractérisé en ce que le siège (16), associé à chaque soupape d'admission (10), est situé dans une portion de paroi de la préchambre (13) prolongeant au moins approximativement la portion de paroi du canal de transfert (14) tangente à la surface du cylindre (1).
4. Moteur selon l'une des revendications précédentes, caractérisé en ce qu'il comprend une seule soupape d'admission (10) et une seule soupape d'échappement (7).
5. Moteur selon l'une des revendications 1 à 3, caractérisé en ce que le dispositif d'échange des gaz possède deux soupapes d'admission (100, 110) parallèles entre elles.
6. Moteur selon l'une des revendications 1 à 3, caractérisé en ce que le dispositif d'échange des gaz possède deux soupapes d'échappement (107, 117) parallèles à l'axe du cylindre.
7. Moteur selon l'une les revendications précédentes, caractérisé en ce que la section droite du canal de transfert (14) débouchant dans le cylindre (1) se développe sur un secteur circulaire d'angle au centre compris entre 60° et 110° et représente une aire dont le rapport à celle de la section droite du cylindre (1) est compris de préférence entre 0,10 et 0,20 et, plus particulièrement, entre 0,13 et 0,17.
8. Moteur selon l'une des revendications 1 à 7, caractérisé en ce que la paroi de fond de la préchambre (13) de balayage et de combustion sensiblement opposée du canal de transfert (14) débouchant dans le cylindre (1) est constituée par une portion de cylindre de révolution (30) coaxiale à chaque soupape d'admission (10) et sensiblement tangente à chaque tête de soupape, de telle sorte que le jeu radial (32) entre ladite paroi (30) et la tête de chaque soupape d'admission (10) ait une valeur minimale telle que chaque soupape d'admission (10) débite directement et essentiellement sur son secteur orienté en direction du canal de transfert (14), pour orienter la quasi-totalité du flux d'air émergeant de chaque soupape d'admission (10) directement vers le canal de transfert (14).
9. Moteur selon l'une des revendications 1 à 8, comportant un groupe de soupapes d'échappement, caractérisé en ce que les soupapes d'échappement (7) de ce groupe sont commandées par un seul arbre à cames en tête commun (150).
10. Moteur selon l'une quelconque des revendications 1 à 9, caractérisé en ce que le rapport entre la levée maximale de la ou chaque soupape d'admission (10) et le diamètre intérieur du siège (16) de ladite soupape d'admission est supérieur à 0,35.
11. Moteur selon l'une quelconque des revendications 1 à 10, caractérisé en ce que la tête (10a) de la ou chaque soupape d'admission (10) coopère, par sa surface (21) éloignée de son siège (16), avec un évidement (30), de forme conjuguée, ménagé dans la paroi opposée de la préchambre (13).
12. Moteur selon l'une quelconque des revendications 1 à 11, caractérisé en ce que le siège (16) de la ou chaque soupape d'admission (10) est plat et tangent à la paroi de l'ensemble du canal de transfert (14) et du cylindre (1).
13. Moteur selon l'une quelconque des revendications 1 à 12, caractérisé en ce que le conduit d'admission (11) est muni d'une lèvre (33) immédiatement en amont du siège (16) de la ou chaque soupape d'admission et sur la partie inférieure de ce conduit (11).
14. Moteur selon la revendication 4, caractérisé en ce qu'un injecteur de combustible (120) débouche dans la préchambre (13), approximativement dans l'axe de la ou chaque soupape d'admission (10) et de préférence du côte opposé à celle-ci.
EP87900178A 1985-12-31 1986-12-31 Moteur a combustion interne a deux temps Expired EP0252935B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT87900178T ATE49032T1 (de) 1985-12-31 1986-12-31 Zweitaktbrennkraftmaschine.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8519506 1985-12-31
FR8519506A FR2592430B1 (fr) 1985-12-31 1985-12-31 Moteur a combustion interne a deux temps et culasse equipant celui-ci

Publications (2)

Publication Number Publication Date
EP0252935A1 EP0252935A1 (fr) 1988-01-20
EP0252935B1 true EP0252935B1 (fr) 1989-12-27

Family

ID=9326375

Family Applications (1)

Application Number Title Priority Date Filing Date
EP87900178A Expired EP0252935B1 (fr) 1985-12-31 1986-12-31 Moteur a combustion interne a deux temps

Country Status (10)

Country Link
US (2) US4854280A (fr)
EP (1) EP0252935B1 (fr)
JP (1) JPH0711248B2 (fr)
KR (1) KR940008265B1 (fr)
AU (1) AU594997B2 (fr)
DE (1) DE3667810D1 (fr)
FI (1) FI873667A0 (fr)
FR (1) FR2592430B1 (fr)
IN (1) IN166067B (fr)
WO (1) WO1987004217A1 (fr)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2592430B1 (fr) * 1985-12-31 1990-01-05 Melchior Jean Moteur a combustion interne a deux temps et culasse equipant celui-ci
JPH0733770B2 (ja) * 1987-07-09 1995-04-12 トヨタ自動車株式会社 2サイクル内燃機関の燃焼室構造
JPH086661B2 (ja) * 1988-07-01 1996-01-29 トヨタ自動車株式会社 内燃機関の燃料噴射装置
FR2641832B1 (fr) * 1989-01-13 1991-04-12 Melchior Jean Accouplement pour la transmission de couples alternes
US5507254A (en) * 1989-01-13 1996-04-16 Melchior; Jean F. Variable phase coupling for the transmission of alternating torques
FR2658240B1 (fr) * 1990-02-13 1994-07-08 Melchior Technologie Snc Perfectionnements aux moteurs a combustion interne a deux temps, a allumage par compression de type diesel.
FR2662745B1 (fr) * 1990-05-31 1992-09-11 Melchior Technologie Snc Perfectionnements aux moteurs alternatifs a combustion interne, du type a deux temps.
JP2653226B2 (ja) * 1990-08-08 1997-09-17 日産自動車株式会社 2ストロークディーゼルエンジン
US5146859A (en) * 1991-06-20 1992-09-15 Mim Industries, Inc. Adjustable clamp for use in a sewing machine
FR2690951B1 (fr) * 1992-05-05 1995-08-04 Melchior Jean Procede d'alimentation pour moteur a combustion interne a allumage par compression.
DE19860391B4 (de) * 1998-12-28 2009-12-10 Andreas Stihl Ag & Co. Tragbares Arbeitsgerät mit einem Viertaktmotor
US6880501B2 (en) * 2001-07-30 2005-04-19 Massachusetts Institute Of Technology Internal combustion engine
WO2003012266A1 (fr) 2001-07-30 2003-02-13 Massachusetts Institute Of Technology Moteur a combustion interne
FR2853011B1 (fr) * 2003-03-26 2006-08-04 Melchior Jean F Moteur alternatif a recirculation de gaz brules destine a la propulsion des vehicules automobiles et procede de turbocompression de ce moteur
NL1026968C2 (nl) * 2004-09-03 2006-03-06 Franklin Hubertus Truijens Tweetakt inwendige verbrandingsmotor.
US20070283908A1 (en) * 2006-06-07 2007-12-13 Kwong Wang Tse Tse's internal combustion engine
FR2914962B1 (fr) * 2007-04-10 2012-07-06 Univ Paris Curie Procede d'initiation de la combustion dans un moteur a combustion interne, et moteur faisant application
NO338265B1 (no) * 2014-09-15 2016-08-08 Viking Heat Engines As Arrangement for og fremgangsmåte ved innløpsventil for eksternvarmemaskin
FR3027626B1 (fr) 2014-10-24 2018-01-05 Renault S.A.S Systeme d'echappement pour moteur a combustion interne
JP2017110604A (ja) * 2015-12-17 2017-06-22 ヤマハ発動機株式会社 内燃機関、それを備えた車両、および内燃機関の製造方法
DK201600460A1 (da) * 2016-01-30 2018-03-05 Kurt Aggesen Motor med diverse forbedringer
RU2766518C2 (ru) * 2019-05-25 2022-03-15 Лятиф Низами оглу Абдуллаев Двухтактный двигатель внутреннего сгорания с внешней камерой сгорания
DK181032B1 (en) * 2020-06-17 2022-10-07 Man Energy Solutions Filial Af Man Energy Solutions Se Tyskland Internal combustion engine

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1626387A (en) * 1923-01-04 1927-04-26 Automotive Valves Co Internal-combustion engine
FR949642A (fr) * 1929-05-25 1949-09-05 Perfectionnements aux moteurs à combustion
GB357519A (en) * 1929-05-25 1931-09-22 Pierre Clerget Improvements in or relating to internal combustion engines of the liquid fuel injection type
FR777470A (fr) * 1933-08-18 1935-02-21 Moteur à combustion interne à deux temps
US2061157A (en) * 1933-08-18 1936-11-17 Hurum Fredrik Two-cycle motor
US2222134A (en) * 1938-05-24 1940-11-19 Harold B Augustine Internal combustion engine
US2685869A (en) * 1948-09-21 1954-08-10 Texas Co Internal-combustion engine
FR2338385A1 (fr) * 1976-01-15 1977-08-12 Melchior Jean Perfectionnements aux moteurs a combustion interne a deux temps
DE3143402A1 (de) * 1981-11-02 1983-05-11 Volkswagenwerk Ag, 3180 Wolfsburg Zweitaktbrennkraftmaschine
USRE32802E (en) * 1984-12-31 1988-12-20 Cummins Engine Company, Inc. Two-cycle engine with improved scavenging
US4616605A (en) * 1984-12-31 1986-10-14 Kline Herbert E Two-cycle engine with improved scavenging
FR2592430B1 (fr) * 1985-12-31 1990-01-05 Melchior Jean Moteur a combustion interne a deux temps et culasse equipant celui-ci

Also Published As

Publication number Publication date
FI873667A (fi) 1987-08-25
IN166067B (fr) 1990-03-10
AU594997B2 (en) 1990-03-22
US4854280A (en) 1989-08-08
FR2592430B1 (fr) 1990-01-05
DE3667810D1 (de) 1990-02-01
JPS63502045A (ja) 1988-08-11
KR880700889A (ko) 1988-04-13
FR2592430A1 (fr) 1987-07-03
JPH0711248B2 (ja) 1995-02-08
US5014663A (en) 1991-05-14
FI873667A0 (fi) 1987-08-25
EP0252935A1 (fr) 1988-01-20
AU6832487A (en) 1987-07-28
WO1987004217A1 (fr) 1987-07-16
KR940008265B1 (ko) 1994-09-09

Similar Documents

Publication Publication Date Title
EP0252935B1 (fr) Moteur a combustion interne a deux temps
EP0459848B1 (fr) Perfectionnements aux moteurs alternatifs à combustion interne, du type à deux temps
EP0057150B2 (fr) Chambre de combustion d'un moteur alternatif à combustion interne favorisant une turbulence rotative de combustion
FR2864578A1 (fr) Moteur deux temps a injection directe
EP0468014B1 (fr) Perfectionnements aux moteurs a combustion interne a deux temps, a allumage par compression de type diesel
FR2736091A1 (fr) Moteur a deux temps comportant un orifice supplementaire
FR2782345A1 (fr) Piston a tete a guidage actif, et chambre de combustion associee
FR2720113A1 (fr) Procédé et dispositif de préparation d'un mélange carbure dans un moteur quatre temps à allumage commande.
EP1340891A1 (fr) Procédé et moteur pour assurer le mélange d'au moins un fluide gazeux, tel que de l'air, et d'un carburant dans la chambre de combustion d'un moteur à combustion interne à injection directe
EP1025347B1 (fr) Moteur a injection directe et allumage commande
FR2763644A1 (fr) Moteur a combustion interne a deux temps
WO1999046492A1 (fr) Perfectionnement d'un moteur a combustion interne a injection
EP0042841B1 (fr) Moteur a combustion interne avec chambre de turbulence
FR2841597A1 (fr) Moteur a deux temps et procede pour faire fonctionner celui-ci
FR2671137A1 (fr) Moteur a deux temps a balayage retarde du cylindre.
FR2467288A1 (fr) Moteur a deux temps a distribution mixte
FR2834002A1 (fr) Moteur a combustion interne a allumage par compression
EP1115966A1 (fr) Moteur a combustion interne a allumage commande
FR2674906A1 (fr) Moteur a deux temps a controle selectif de la charge introduite dans la chambre de combustion.
FR2912465A1 (fr) Moteur a combustion interne alimente par un melange gazeux homogene pauvre.
FR2713282A1 (fr) Moteur à allumage par compression à injection directe, à combustion améliorée.
FR2878906A1 (fr) Moteur a injection directe de carburant avec un piston comportant un bol presentant une paroi laterale inclinee
FR2531139A1 (fr) Dispositif de controle d'un circuit de gaz d'une chambre de combustion
FR2763996A1 (fr) Moteur a combustion interne a allumage commande comportant trois soupapes par cylindre
FR2768177A1 (fr) Moteur thermique mono-soupape a quatre temps et injection du carburant dans la chambre de combustion

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19870810

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE FR GB IT LI NL SE

17Q First examination report despatched

Effective date: 19880506

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE FR GB IT LI NL SE

REF Corresponds to:

Ref document number: 49032

Country of ref document: AT

Date of ref document: 19900115

Kind code of ref document: T

ITF It: translation for a ep patent filed

Owner name: ING. C. GREGORJ S.P.A.

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
REF Corresponds to:

Ref document number: 3667810

Country of ref document: DE

Date of ref document: 19900201

R20 Corrections of a patent specification

Effective date: 19900412

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19941130

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19941206

Year of fee payment: 9

Ref country code: GB

Payment date: 19941206

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19941209

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19941214

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19941215

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19941229

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19941231

Year of fee payment: 9

EAL Se: european patent in force in sweden

Ref document number: 87900178.2

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19951231

Ref country code: GB

Effective date: 19951231

Ref country code: CH

Effective date: 19951231

Ref country code: BE

Effective date: 19951231

Ref country code: AT

Effective date: 19951231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19960101

BERE Be: lapsed

Owner name: MELCHIOR JEAN FREDERIC

Effective date: 19951231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19960701

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19951231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19960830

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19960701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19960903

EUG Se: european patent has lapsed

Ref document number: 87900178.2

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20051231