EP0248727B1 - Four de fusion à induction haute fréquence - Google Patents

Four de fusion à induction haute fréquence Download PDF

Info

Publication number
EP0248727B1
EP0248727B1 EP87401230A EP87401230A EP0248727B1 EP 0248727 B1 EP0248727 B1 EP 0248727B1 EP 87401230 A EP87401230 A EP 87401230A EP 87401230 A EP87401230 A EP 87401230A EP 0248727 B1 EP0248727 B1 EP 0248727B1
Authority
EP
European Patent Office
Prior art keywords
turn
melting furnace
crucible
furnace according
refractory
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP87401230A
Other languages
German (de)
English (en)
Other versions
EP0248727A1 (fr
Inventor
Bruno Caillaut
René Perrier De la Bathie
Jacques Terrier
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Original Assignee
Commissariat a lEnergie Atomique CEA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat a lEnergie Atomique CEA filed Critical Commissariat a lEnergie Atomique CEA
Publication of EP0248727A1 publication Critical patent/EP0248727A1/fr
Application granted granted Critical
Publication of EP0248727B1 publication Critical patent/EP0248727B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/22Furnaces without an endless core
    • H05B6/24Crucible furnaces
    • H05B6/28Protective systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B14/00Crucible or pot furnaces
    • F27B14/06Crucible or pot furnaces heated electrically, e.g. induction crucible furnaces with or without any other source of heat
    • F27B14/061Induction furnaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B14/00Crucible or pot furnaces
    • F27B14/08Details peculiar to crucible or pot furnaces
    • F27B14/10Crucibles
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/22Furnaces without an endless core
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B14/00Crucible or pot furnaces
    • F27B14/08Details peculiar to crucible or pot furnaces
    • F27B2014/0837Cooling arrangements

Definitions

  • the present invention relates to a melting furnace by electromagnetic induction by circulation of high frequency alternating current, usable in particular for the melting and transformation of refractory materials such as ceramic oxides, glass and chemical salts.
  • the principle of the induction furnace consists in passing an inductor through an alternating current; a magnetic field is then created inside this inductor where the charge is liquefied. Induced currents are then generated, which circulate inside this load and are converted into heat energy by the Joule effect provided that the resistivity of the load is less than a value depending on the diameter of this load and the frequency considered.
  • refractory materials can be considered as insulating at ambient temperature, but their resistivity decreases beyond a temperature here called inducibility. In this case it is necessary to provide a heating means to ensure the initiation of the induction phenomenon.
  • the furnace can operate in continuous casting provided that it has suitable filling and emptying means.
  • the present invention provides an improvement on existing solutions insofar as it combines the simplest design: monospire oven in self-crucible, with a device making it possible to guard against the risks of arcing which constitute the major problem of monospire.
  • the subject of the present invention is a melting furnace for induction refractory materials, the electrically conductive wall of which consists of a single cylindrical turn, the ends of which are connected to a source of high frequency alternating current, said turn forming both the inductor and the crucible proper and comprising means for cooling its surface, this furnace being characterized in that it comprises at least one cooled piece of elongated shape made of electrically conductive material, disposed along the slot delimited by the ends of the turn, maintained at a floating potential and electrically isolated from said turn.
  • the elongated piece which constitutes the essential means of the invention, thus fulfills a double function.
  • the space between the cooled part and the ends of the coil is filled with an electrical insulator which must withstand maximum temperatures of approximately 200 ° C and can therefore be made of paper, plaster, epoxy resin or refractory cement in thin layer.
  • the bottom of the crucible is made of a conductive material.
  • the coil is then electrically isolated from the bottom of the crucible by a refractory electrical insulator.
  • the conductive material constituting the bottom of the crucible is of the same nature as that of the coil.
  • the bottom of the crucible is made of an insulating material.
  • the lower part of the turn, adjacent to the bottom of the crucible is notched.
  • This arrangement in the case of a conductive crucible bottom allows, according to the invention, not to disturb the electromagnetic field in the lower part of the crucible by greatly reducing the coupling between the monospire and the bottom of the crucible.
  • This arrangement in the case of an insulating crucible bottom, makes it possible to limit the field of induction in the charge and thus prohibit fusion on contact with the refractory bottom.
  • the oven therefore generally comprises a turn 1 constituted, according to a preferred embodiment of the invention, of a curved sheet of an electrically conductive metal such as copper or aluminum, at the ends 2 from which an electrical circuit 3 introduces the alternating electrical current necessary for operation.
  • a turn 1 constituted, according to a preferred embodiment of the invention, of a curved sheet of an electrically conductive metal such as copper or aluminum, at the ends 2 from which an electrical circuit 3 introduces the alternating electrical current necessary for operation.
  • At least one elongated piece 5 of electrically conductive material maintained at a floating potential and electrically isolated from the coil 1 by a space which can optionally be filled with an insulator 6 disposed between the part 5 and the ends of the coil 1.
  • the part 5 is unique and makes it possible to halve the value of the tension between the two ends of the turn.
  • Each part 5 is subject to the action of the electromagnetic field and therefore traversed by induced heat-generating currents. It therefore essentially consists of a hollow envelope 7 inside which circulates a cooling fluid.
  • FIG. 2 indicates a possible configuration, according to which a metal tube 8 is introduced inside the envelope 7: the fluid enters through the metal tube 8 and rises along the envelope 7.
  • the insulator 6, which also seals the crucible, must withstand maximum temperatures of around 200 ° C. since the part 5 is cooled. It can be made of paper, plaster or epoxy resin or refractory cement in a thin layer for example.
  • the bottom 9 of the crucible can be, according to a particular embodiment of the invention, made of refractory material.
  • the device shown in Figure 4, ensuring the emptying of the liquefied product then consists essentially of a cooled copper tube 18 by a few windings of a smaller copper tube 20 in which circulates a cooling fluid, the whole being embedded in the refractory material constituting the bottom 9 and closed by a plug 22 of copper itself cooled.
  • the bottom 9 can also be made, as is the case in FIG. 1, of the same conductive material as the turn 1, the emptying device then being limited to a hole bored in the bottom and closed by a cooled copper plug, as for the embodiment described in the previous paragraph. It is then necessary to provide electrical insulation between the bottom and the coil and to avoid an excessive modification of the lines of the electromagnetic field; this is why an insulating and refractory joint 10 separates the bottom and the turn, and moreover the part of the turn adjacent to the bottom is notched, which removes the part of the electromagnetic field which would have undergone coupling due to the presence of the bottom .
  • These notches 11 formed in the turn are sealed by an electrical insulator which seals the crucible. They are generally arranged periodically and their length is of the order of a tenth of the height of the turn.
  • the cooling of the walls of the crucible is carried out by means of small copper tubes 12 which are the seat of a forced circulation of fluid brought in and collected after use by two collectors 13 and 14 of larger diameters.
  • the tubes 12 are generally circumferential. Only the cutouts 15 limited by the notches are cooled by circulation of fluid in bent tubes 16 winding along the cutouts.
  • This oven can be adapted to continuous operation, the solid material being able to be introduced continuously and discharged in the form of liquid by overflowing using a chute not shown here fixed in the upper part of the coil, as is described in French patent application FR-A 2,540,982.
  • the advantage of the invention consists in that the part (s) 5 allow (s) to operate with a higher voltage current without fear of the formation of an electric arc between the ends of the coil 1 : this voltage can be doubled in the case of an oven comprising only one of these parts. It is then possible to work with a turn of diameter twice as large, making it possible to process products with higher resistivity, which implies a heat exchange surface four times greater.
  • the inductance and resistance of an inductor and therefore its impedance are proportional to the square of the number of turns.
  • the material brought to the melting point is a borosilicate glass of the VR15F type sold by HPC.
  • the loading of raw powder is made continuously on the surface and the evacuation of the molten glass takes place by overflow through a chute formed in the upper part of the inductor.
  • Table 1 presents the main characteristics and the results of two tests carried out using a single-coil inductor with a diameter of 400 mm or 600 mm. For comparison, characteristics and results of a test carried out using an inductor two turns (diameter 300 mm) of the prior art, are given in the first column of this table.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Furnace Details (AREA)
  • Crucibles And Fluidized-Bed Furnaces (AREA)
  • General Induction Heating (AREA)

Description

  • La présente invention concerne un four de fusion par induction électromagnétique par circulation de courant alternatif à haute fréquence, utilisable notamment pour la fusion et la transformation de matériaux réfractaires tels que les oxydes céramiques, le verre et les sels chimiques.
  • Le principe du four à induction consiste à faire parcourir un inducteur par un courant alternatif ; il se crée alors un champ magnétique à l'intérieur de cet inducteur où se trouve la charge liquéfier. Des courants induits sont alors générés, qui circulent à l'intérieur de cette charge et sont convertis en énergie calorifique par effet Joule à condition que la résistivité de la charge soit inférieure à une valeur dépendant du diamètre de cette charge et de la fréquence considérée.
  • De nombreux matériaux réfractaires peuvent être considérés comme isolants à température ambiante, mais leur résistivité décroît au-delà d'une température dite ici d'inductibilité. Il est dans ce cas nécessaire de prévoir un moyen de chauffage pour assurer l'initiation du phénomène d'induction. Quand la fusion de la charge est réalisée, le four peut fonctionner en coulée continue à condition de comporter des moyens de remplissage et de vidange appropriés.
  • Des dispositifs connus, tels ceux protégés par les brevets français 1 430 192 et 1 430 962, ainsi que par le brevet européen 0 079 266, font apparaître que de tels fours de fusion peuvent être réalisés suivant diverses variantes de conception :
    • - L'inducteur peut être constitué d'une simple enveloppe de métal conducteur, de forme généralement cylindrique et interrompue uniquement par une fente aux bornes de laquelle arrivent les prises de tension. Le courant parcourt donc un tour complet seulement autour de la charge. Cette conception sera appelée monospire dans ce qui suit.
    • - L'inducteur peut aussi être constitué d'un solénoïde (conception multispire), le courant parcourt alors une hélice.
    • - Qu'il soit monospire ou multispire, l'inducteur peut être isolé de la charge à liquéfier par une paroi refroidi ou réfractaire (mode d'induction indirecte). Il peut aussi être en contact avec la charge liquéfier : on est alors en présence d'une induction directe en auto-creuset. Le refroidissement de l'inducteur doit alors être assuré, en principe, par une circulation de fluide : une couche solide du matériau réfractaire, sous forme pulvérulente ou granuleuse, subsiste alors et isole l'inducteur de la charge en fusion.
  • Toutefois, ces diverses conceptions présentent des inconvénients que l'on peut ainsi résumer :
    • - Les solutions dans lesquelles une paroi intermédiaire isole l'inducteur de la charge ont un rendement amoindri par suite de l'effet Joule produit dans cette paroi, ainsi que par le découplage électromagnétique créé.
    • - Les solutions de type auto-creuset nécessitent la mise en place d'une enveloppe externe dans le cas d'un inducteur multispire afin d'éviter l'écoulement de la charge hors du creuset. L'inducteur monospire présente quant à lui l'inconvénient du risque de formation d'arc électrique entre les deux prises de tension de l'inducteur, surtout si la couche externe de la charge est portée à une température supérieure à la température d'inductibilité. Cette couche ne peut alors plus remplir correctement son rôle d'isolant électrique.
    • - Les inducteurs multispires ont pour principal inconvénient leur impédance élevée, l'inductance étant proportionnelle au carré du nombre de spires ainsi qu'au carré du diamètre. On est alors amené à utiliser des creusets de petit diamètre (en pratique, pas plus de 35 cm pour un enroulement à deux spires), ce qui pose des problèmes d'induction l'intérieur de la charge et d'autre part limite la surface d'échange thermique entre le bain fondu et la matière première ajoutée en continu.
    • - Un autre désavantage des monospires est lié au risque de formation d'arc électrique entre les prises de tension, comme on l'a mentionné ci-dessus. Il en resulte une limitation des différences de potentiel avec lesquelles on peut travailler.
  • La présente invention apporte une amélioration des solutions existantes dans la mesure où elle associe la conception la plus simple : four monospire en auto-creuset, à un dispositif permettant de se prémunir contre les risques d'arc qui constituent le problème majeur de la monospire.
  • A cet effet, la présente invention a pour objet un four de fusion pour matériaux réfractaires par induction dont la paroi conductrice de l'électricité est constituée d'une spire cylindrique unique dont les extrémités sont reliées à une source de courant alternatif à haute fréquence, ladite spire formant à la fois l'inducteur et le creuset proprement dit et comportant des moyens de refroidissement de sa surface, ce four étant caractérisé en ce qu'il comprend au moins une pièce refroidie de forme allongée en matériau conducteur de l'électricité, disposée le long de la fente délimitée par les extrémités de la spire, maintenue à un potentiel flottant et isolée électriquement de ladite spire.
  • La pièce de forme allongée, qui constitue le moyen essentiel de l'invention, remplit ainsi une double fonction.
  • D'abord, du fait qu'elle est conductrice et se place automatiquement à un potentiel intermédiaire entre ceux des extrémités de la spire, elle supprime pratiquement les risques d'amorçage d'arc électrique entre les extrémités de cette spire.
  • Ensuite, de par sa position le long de la fente séparant les extrémités de la spire, elle permet un refroidissement suffisant pour assurer l'étanchéité du creuset vis-à-vis de son contenu.
  • Selon une caractéristique secondaire, l'espace entre la pièce refroidie et les extrémités de la spire est empli d'un isolant électrique qui doit résister à des températures maximales de 200°C environ et peut donc être réalisé en papier, plâtre, résine époxy ou ciment réfractaire en couche fine.
  • Selon une autre caractéristique secondaire, mais néanmoins importante de l'invention, et qui s'applique de préférence en même temps que la caractéristique principale, le fond du creuset est constitué d'un matériau conducteur.
  • La spire est alors isolée électriquement du fond du creuset par un isolant électrique réfractaire.
  • Selon une réalisation de cette caractéristique secondaire le matériau conducteur constituant le fond du creuset est de même nature que celui de la spire. Selon une autre caractéristique secondaire, le fond du creuset est constitué d'un matériau isolant.
  • Selon une autre caractéristique secondaire, la partie inférieure de la spire, adjacente au fond du creuset, est entaillée. Cette disposition, dans le cas d'un fond de creuset conducteur permet, selon l'invention, de ne pas perturber le champ électromagnétique dans la partie inférieure du creuset en réduisant fortement le couplage entre la monospire et le fond du creuset. Cette disposition, dans le cas d'un fond de creuset isolant, permet de limiter le domaine d'induction dans la charge et ainsi interdire la fusion au contact du fond réfractaire. Pour parachever ce mode de mise en oeuvre, il est possible de séparer la spire et le fond par un isolant électrique réfractaire et de colmater les entailles à l'aide de cet isolant électrique réfractaire.
  • D'autres caractéristiques et avantages de l'invention ressortiront de la description qui va suivre, donnée à titre purement illustratif et non limitatif, en référence aux dessins annexés, dans lesquels :
    • - la figure 1 représente une perspective générale du four à induction selon l'invention,
    • - la figure 2 représente une vue de face, en coupe partielle, de la pièce qui contribue à isoler les prises de tension de la spire de la figure 1,
    • - la figure 3 représente un mode particulier de réalisation de l'invention, d'après lequel l'isolation électrique de la spire est assurée par deux exemplaires, disposés en parallèle, de la pièce représentée figure 2. L'agencement est représenté en vue de dessus.
    • - la figure 4 représente une coupe d'un fond de creuset non conducteur.
  • Sur la figure 1, le four comprend donc généralement une spire 1 constituée, suivant un mode préféré de l'invention, d'une feuille recourbée d'un métal conducteur de l'électricité tel que le cuivre ou l'aluminium, aux extrémités 2 de laquelle un circuit électrique 3 introduit le courant électrique alternatif nécessaire au fonctionnement.
  • Le long de la fente 4 délimitée par les extrémités de la spire 1 et à proximité de celle-ci est disposée au moins une pièce de forme allongée 5 en matériau conducteur de l'électricité, maintenue à un potentiel flottant et isolée électriquement de la spire 1 par un espace pouvant être éventuellement empli d'un isolant 6 disposé entre la pièce 5 et les extrémités de la spire 1.
  • Dans le mode de réalisation de l'invention décrit sur la figure 1, la pièce 5 est unique et permet de diviser par deux la valeur de la tension entre les deux extrémités de la spire.
  • Dans d'autres modes de réalisation de l'invention, plusieurs pièces 5 sont installées le long de la fente 4 et les tensions entre les extrémités de la spire peuvent être échelonnées plus finement. C'est le cas notamment de l'exemple qui sera décrit plus loin en se référant à la figure 3.
  • Chaque pièce 5 est sujette à l'action du champ électromagnétique et donc parcourue par des courants induits générateurs de chaleur. Elle est donc constituée essentiellement d'une enveloppe creuse 7 à l'intérieur de laquelle circule un fluide de refroidissement. La figure 2 indique une configuration possible, d'après laquelle on introduit un tube métallique 8 à l'intérieur de l'enveloppe 7 : le fluide entre par le tube métallique 8 et remonte le long de l'enveloppe 7.
  • L'isolant 6, qui assure en outre l'étanchéité du creuset, doit résister à des températures maximales de 200°C environ puisque la pièce 5 est refroidie. Il peut être réalisé en papier, plâtre ou résine époxy ou ciment réfractaire en couche fine par exemple.
  • Le fond 9 du creuset peut être, suivant un mode particulier de l'invention, réalisé en matériau réfractaire.
  • Le dispositif, représenté sur la figure 4, assurant la vidange du produit liquéfié est alors constitué essentiellement d'un tube de cuivre refroidi 18 par quelques enroulements d'un tube de cuivre 20 plus petit dans lequel circule un fluide de refroidissement, l'ensemble étant noyé dans le matériau réfractaire constituant le fond 9 et obturé par un bouchon 22 de cuivre lui-même refroidi.
  • Le fond 9 peut encore, suivant un autre mode de réalisation de l'invention, être constitué, comme c'est le cas sur la figure 1, du même matériau conducteur que la spire 1, le dispositif de vidange se limitant alors à un trou alésé dans le fond et obturé par un bouchon de cuivre refroidi, comme pour la réalisation décrite au paragraphe précédent. Il est alors nécessaire d'assurer l'isolation électrique entre le fond et la spire et d'éviter une modification trop importante des lignes du champ électromagnétique ; c'est pourquoi un joint isolant et réfractaire 10 sépare le fond et la spire, et de plus la partie de la spire adjacente au fond est entaillée, ce qui supprime la partie du champ électromagnétique qui aurait subi un couplage dû à la présence du fond. Ces entailles 11 ménagées dans la spire sont colmatées par un isolant électrique qui assure l'étanchéité du creuset. Elles sont généralement disposées périodiquement et leur longueur est de l'ordre du dixième de la hauteur de la spire.
  • Le refroidissement des parois du creuset est effectué au moyen de petits tubes de cuivre 12 qui sont le siège d'une circulation forcée de fluide amené et recueilli après utilisation par deux collecteurs 13 et 14 de diamètres plus importants. Les tubes 12 sont généralement circonférentiels. Seules les découpes 15 limitées par les entailles sont refroidies par circulation de fluide dans des tubes coudés 16 serpentant le long des découpes.
  • Ce four peut être adapté à un fonctionnement en continu, la matière solide pouvant être introduite en continu et évacuée sous forme de liquide par débordement à l'aide d'une goulotte non représentée ici fixée dans la partie supérieure de la spire, comme cela est décrit dans la demande de brevet français FR-A 2 540 982.
  • L'avantage de l'invention consiste en ce que la (ou les) pièce(s) 5 permet(tent) d'opérer avec un courant de tension plus élevé sans craindre la formation d'arc électrique entre les extrémités de la spire 1 : cette tension peut être doublée dans le cas d'un four comprenant une seule de ces pièces. Il est alors possible de travailler avec une spire de diamètre deux fois plus grand, permettant de traiter des produits de résistivité plus élevée, ce qui implique une surface d'échange thermique quatre fois plus importante. L'inductance et la résistance d'un inducteur et donc son impédance sont proportionnelles au carré du nombre de spires. L'impédance d'une monospire, quatre fois plus faible que celle d'un inducteur à deux spires, permet également de ne pas changer le diamètre et de travailler à une fréquence quatre fois inférieure, ce qui est équivalent du point de vue énergétique mais autorise l'emploi de dispositifs de transformation du courant alternatif beaucoup plus simples et efficaces dans certains cas. Ces possibilités nouvelles peuvent encore être étendues si on insère plusieurs exemplaires de la pièce 5 comme le montre la figure 3. Sur cette figure on retrouve les mêmes éléments essentiels que ceux décrits à la figure 1 et remplissant les mêmes rôles. Seul est prévu l'emploi de deux pièces refroidies.
  • Il est possible de travailler suivant la résistivité du produit dans la gamme de fréquence 40 kHz-500 kHz en utilisant un générateur à triodes de type apériodique, et dans la gamme 50 Hz-40 kHz avec un générateur à semi-conducteur ou à partir du réseau.
  • A titre d'exemple, le matériau porté la fusion (environ 1400°C) est un verre borosilicaté de type VR15F commercialisé par HPC. Le chargement en poudre brute se fait en continu à la surface et l'évacuation du verre fondu a lieu par débordement à travers une goulotte ménagée dans la partie supérieure de l'inducteur.
  • Le tableau 1 présente les caractéristiques principales et les résultats de deux essais réalisés à l'aide d'un inducteur monospire de diamètre 400 mm ou 600 mm. A titre comparatif, des caractéristiques et des résultats d'un essai réalisé l'aide d'un inducteur deux spires (diamètre 300 mm) de l'art antérieur, sont donnés dans la première colonne de ce tableau.
    Figure imgb0001
  • L'utilisation d'un générateur haute fréquence de type apériodique permet d'adapter la capacité du circuit oscillant à l'inducteur utilisé pour se situer dans la gamme de fréquence indiquée par le constructeur.

Claims (10)

1. Four de fusion pour matériaux réfractaires par induction dont la paroi conductrice de l'électricité est constituée d'une spire cylindrique unique (1) dont les extrémités (2) sont reliées à une source de courant alternatif à haute fréquence (3), ladite spire formant à la fois l'inducteur et le creuset proprement dit et comportant des moyens de refroidissement (12) de sa surface, caractérisé en ce qu'il comprend au moins une pièce refroidie de forme allongée en matériau conducteur de l'électricité (5), disposée le long de la fente (4) délimitée par les extrémités (2) de la spire (1), maintenue à un potentiel flottant et isolée électriquement de ladite spire.
2. Four de fusion selon la revendication 1, caractérisé en ce que l'espace entre la pièce refroidie (5) et les extrémités de la spire (1) est empli d'un isolant.
3. Four de fusion selon l'une quelconque des revendications 1 ou 2, caractérisé en ce que le fond (9) du creuset est constitué d'un matériau conducteur.
4. Four de fusion selon la revendication 3, caractérisé en ce que le matériau conducteur constituant le fond (9) du creuset est de même nature que celui de la spire (1).
5. Four de fusion selon l'une quelconque des revendications 1 ou 2, caractérisé en ce que le fond (9) du creuset est constitué d'un matériau isolant.
6. Four de fusion selon l'une quelconque des revendications 1 à 5, caractérisé en ce que la partie inférieure de la spire, adjacente au fond du creuset, est entaillée.
7. Four de fusion suivant l'une quelconque des revendications 3 et 4, caractérisé en ce que le fond conducteur (9) et la spire (1) sont séparés par un isolant électrique réfractaire (10).
8. Four de fusion suivant la revendication 6, caractérisé en ce que les entailles (11) ménagées dans la spire sont colmatées par un isolant électrique réfractaire.
9. Four de fusion suivant l'une quelconque des revendications 6 ou 8, caractérisé en ce que les découpes (15) limitées par les entailles sont refroidies par circulation de fluide dans des tubes coudés (16) serpentant le long des découpes.
10. Four suivant la revendication 1, caractérisé en ce que la pièce (5) maintenue à potentiel flottant est constituée principalement d'une enveloppe creuse (7) à l'intérieur de laquelle circule un fluide de refroidissement.
EP87401230A 1986-06-03 1987-06-02 Four de fusion à induction haute fréquence Expired - Lifetime EP0248727B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8607970 1986-06-03
FR8607970A FR2599482B1 (fr) 1986-06-03 1986-06-03 Four de fusion a induction haute frequence

Publications (2)

Publication Number Publication Date
EP0248727A1 EP0248727A1 (fr) 1987-12-09
EP0248727B1 true EP0248727B1 (fr) 1990-09-12

Family

ID=9335942

Family Applications (1)

Application Number Title Priority Date Filing Date
EP87401230A Expired - Lifetime EP0248727B1 (fr) 1986-06-03 1987-06-02 Four de fusion à induction haute fréquence

Country Status (6)

Country Link
US (1) US4761528A (fr)
EP (1) EP0248727B1 (fr)
JP (1) JPH01118088A (fr)
DE (1) DE3764871D1 (fr)
ES (1) ES2017507B3 (fr)
FR (1) FR2599482B1 (fr)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4738713A (en) * 1986-12-04 1988-04-19 The Duriron Company, Inc. Method for induction melting reactive metals and alloys
DE3939017C2 (de) * 1988-12-15 1998-07-02 Blum Gmbh & Co E Induktiv beheizbare Vorrichtung
DE4106537A1 (de) * 1991-03-01 1992-09-03 Degussa Verfahren zum teilkontinuierlichen schmelzen keramischen materials in induktionsschmelzoefen mit sinterkrustentiegel, ein hierfuer geeigneter ofen und vorrichtung zum periodischen schmelzanstich
US5304767A (en) * 1992-11-13 1994-04-19 Gas Research Institute Low emission induction heating coil
US5461215A (en) * 1994-03-17 1995-10-24 Massachusetts Institute Of Technology Fluid cooled litz coil inductive heater and connector therefor
FR2797440B1 (fr) 1999-08-13 2003-08-29 Cerdec Ag Procede de production de produits a base d'oxyde de zirconium cubique stabilise, produits obtenus par ce procede et leur utilisation
US6727483B2 (en) 2001-08-27 2004-04-27 Illinois Tool Works Inc. Method and apparatus for delivery of induction heating to a workpiece
US7015439B1 (en) 2001-11-26 2006-03-21 Illinois Tool Works Inc. Method and system for control of on-site induction heating
US8038931B1 (en) 2001-11-26 2011-10-18 Illinois Tool Works Inc. On-site induction heating apparatus
US6956189B1 (en) 2001-11-26 2005-10-18 Illinois Tool Works Inc. Alarm and indication system for an on-site induction heating system
US6713737B1 (en) 2001-11-26 2004-03-30 Illinois Tool Works Inc. System for reducing noise from a thermocouple in an induction heating system
US6911089B2 (en) 2002-11-01 2005-06-28 Illinois Tool Works Inc. System and method for coating a work piece
US20040084443A1 (en) * 2002-11-01 2004-05-06 Ulrich Mark A. Method and apparatus for induction heating of a wound core
US20050230379A1 (en) * 2004-04-20 2005-10-20 Vianney Martawibawa System and method for heating a workpiece during a welding operation
DE102006004637B4 (de) * 2006-01-31 2010-01-07 Schott Ag Induktiv beheizbarer Skulltiegel, Schmelzanlage und Verfahren zum kontinuierlichen Herstellen einer Glasschmelze
DE102008004739A1 (de) * 2008-01-16 2009-07-23 Schott Ag Verfahren und Vorrichtung zum Schmelzen oder Läutern von Glasschmelzen
DE102009033501B4 (de) * 2009-07-15 2016-07-21 Schott Ag Verfahren und Vorrichtung zum kontinuierlichen Schmelzen oder Läutern von Schmelzen
KR101218923B1 (ko) * 2010-09-15 2013-01-04 한국수력원자력 주식회사 유도코일과 용융로 일체형 유도가열식 저온용융로
CN103703170B (zh) * 2011-06-06 2017-04-26 Gtat公司 用于晶体生长装置的加热器组件
CN105043097A (zh) * 2014-06-23 2015-11-11 宁波新欣海天电炉有限公司 一种节能钢壳炉
CN105758178B (zh) * 2016-05-12 2018-03-27 核工业理化工程研究院 整体式水冷铜坩埚
CN109612272B (zh) * 2018-12-04 2020-10-16 山东迈科钨钼科技股份有限公司 一种基于余热洁净加热技术的高温硅钼棒熔炉
CN112113423B (zh) * 2020-09-07 2022-06-14 宁国市宏达电炉有限公司 用于感应加热炉的开放式炉架

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1975438A (en) * 1931-09-09 1934-10-02 Ugine Infra Magnetic muffle or other body and method of varying the magnetic transformation thereof
DE697555C (de) * 1936-05-27 1940-10-17 Heraeus Vacuumschmelze Akt Ges Hochfrequenz-Induktionsofen
FR1430962A (fr) * 1964-12-29 1966-03-11 Electro Refractaire Procédé et appareil de fusion et solidification continues des réfractaires électrofondus
FR1430192A (fr) * 1964-12-29 1966-03-04 Electro Refractaire Four électrique à induction à haute fréquence
FR1492063A (fr) * 1966-04-05 1967-08-18 Commissariat Energie Atomique Perfectionnement aux fours électriques haute fréquence pour la fabrication en continu de réfractaires électrofondus
DE1802524B1 (de) * 1968-10-11 1970-06-04 Siemens Ag Vorrichtung zum tiegelfreien Zonenschmelzen eines kristallinen Stabes,insbesondere Halbleiterstabes
US3980853A (en) * 1973-07-12 1976-09-14 Daido Metal Company, Ltd. Inductive body for high frequency induction heating
JPS5826799B2 (ja) * 1977-09-10 1983-06-04 川崎製鉄株式会社 誘導加熱炉
SU748918A1 (ru) * 1977-12-26 1980-07-15 Московский Ордена Ленина Энергетический Институт Устройство дл индукционного нагрева
FR2497050A1 (fr) * 1980-12-23 1982-06-25 Saphymo Stel Dispositif de fusion par induction directe en cage froide avec confinement electromagnetique de la charge fondue
US4409451A (en) * 1981-08-31 1983-10-11 United Technologies Corporation Induction furnace having improved thermal profile
FR2531062A2 (fr) * 1981-11-06 1984-02-03 Saphymo Stel Dispositif de fusion par induction directe de substances dielectriques du genre verres ou emaux
FR2540982B1 (fr) * 1983-02-14 1988-02-05 Commissariat Energie Atomique Procede de preparation de materiaux ceramiques par fusion par induction a haute frequence
DE3316546C1 (de) * 1983-05-06 1984-04-26 Philips Patentverwaltung Gmbh, 2000 Hamburg Kalter Tiegel fuer das Erschmelzen und die Kristallisation nichtmetallischer anorganischer Verbindungen

Also Published As

Publication number Publication date
DE3764871D1 (de) 1990-10-18
FR2599482A1 (fr) 1987-12-04
EP0248727A1 (fr) 1987-12-09
FR2599482B1 (fr) 1988-07-29
US4761528A (en) 1988-08-02
JPH01118088A (ja) 1989-05-10
ES2017507B3 (es) 1991-02-16

Similar Documents

Publication Publication Date Title
EP0248727B1 (fr) Four de fusion à induction haute fréquence
EP0079266B1 (fr) Dispositif de fusion par induction directe de substances diélectriques du genre verres ou émaux
EP0056915A1 (fr) Dispositif de fusion par induction directe en cage froide avec confinement électromagnétique supplémentaire de la charge
EP0119877B1 (fr) Four de fusion par induction à haute fréquence et procédé de préparation de matériaux céramiques à l'aide de ce four
EP2956727B1 (fr) Four a induction et procede de traitement des dechets metalliques a entreposer
FR2577311A1 (fr) Dispositif de connexion electrique destine a etre place en paroi d'un four metallurgique a courant continu.
CA1091736A (fr) Poches metallurgiques pour les traitements inductifs des metaux
FR2591325A1 (fr) Electrode de fond pour fours de fusion
WO1998005185A1 (fr) Four de fusion de verre par induction en creuset froid
EP0622140A1 (fr) Dispositif d'extraction par coulée à débit réglable d'un matériau fondu dans un four de fusion à parois froides
EP1925187B1 (fr) Four de fusion a dispositif inducteur a une seule spire compose d'une pluralite de conducteurs
CH616610A5 (fr)
EP2038978B1 (fr) Structure de traversee electrique pour element supraconducteur
EP0732866B1 (fr) Procédé et équipements pour le chauffage d'un liquide électriquement conducteur
EP0349405B1 (fr) Procédé et installation de fusion par micro-ondes d'un matériau corrosif à chaud
CN100402193C (zh) 液态金属容器底部加热装置及应用
WO1995009518A1 (fr) Dispositif pour la fusion electrique
FR2658277A1 (fr) Recipient metallurgique equipe d'au moins une electrode traversant sa paroi.
WO2021038163A1 (fr) Four a induction comprenant un circuit resonant additionnel
BE483324A (fr)
BE851926A (fr) Four electrique a resistance
BE417855A (fr)
BE474903A (fr)
BE493627A (fr)
BE397813A (fr)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE ES GB IT NL

17P Request for examination filed

Effective date: 19880516

17Q First examination report despatched

Effective date: 19890801

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES GB IT NL

REF Corresponds to:

Ref document number: 3764871

Country of ref document: DE

Date of ref document: 19901018

ITF It: translation for a ep patent filed

Owner name: JACOBACCI & PERANI S.P.A.

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 19920608

Year of fee payment: 6

ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19920630

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF THE APPLICANT RENOUNCES

Effective date: 19930603

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19940101

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 19991007

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20060531

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20060627

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20060630

Year of fee payment: 20

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20070601