EP0243256B1 - Compositions for thermistors having a negative temperature coefficient - Google Patents

Compositions for thermistors having a negative temperature coefficient Download PDF

Info

Publication number
EP0243256B1
EP0243256B1 EP87400895A EP87400895A EP0243256B1 EP 0243256 B1 EP0243256 B1 EP 0243256B1 EP 87400895 A EP87400895 A EP 87400895A EP 87400895 A EP87400895 A EP 87400895A EP 0243256 B1 EP0243256 B1 EP 0243256B1
Authority
EP
European Patent Office
Prior art keywords
copper
atomic percent
nickel
barium
composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP87400895A
Other languages
German (de)
French (fr)
Other versions
EP0243256A1 (en
Inventor
Roland Carnet
Alain Lagrange
Jean-Pierre Caffin
Abel Rousset
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Compagnie Europeenne de Composants Electroniques LCC CICE
Original Assignee
Compagnie Europeenne de Composants Electroniques LCC CICE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Compagnie Europeenne de Composants Electroniques LCC CICE filed Critical Compagnie Europeenne de Composants Electroniques LCC CICE
Priority to AT87400895T priority Critical patent/ATE57788T1/en
Publication of EP0243256A1 publication Critical patent/EP0243256A1/en
Application granted granted Critical
Publication of EP0243256B1 publication Critical patent/EP0243256B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C7/00Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
    • H01C7/04Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material having negative temperature coefficient
    • H01C7/042Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material having negative temperature coefficient mainly consisting of inorganic non-metallic substances
    • H01C7/043Oxides or oxidic compounds

Definitions

  • the present invention relates to compositions for thermistors with negative temperature coefficient, more particularly compositions for thermistors with negative temperature coefficient having a low resistivity, this resistivity being stable over time.
  • compositions for thermistors with negative temperature coefficient more particularly compositions for thermistors with negative temperature coefficient having a low resistivity, this resistivity being stable over time.
  • Such a composition comprising manganese, nickel and copper oxides is known from BE-A 475 405.
  • CTN thermistors compositions for thermistors with a negative temperature coefficient based on semiconductor oxides
  • thermistors of this type have a resistivity between 1,000 a.cm and 100,000 ⁇ .cm.
  • the present invention therefore aims to remedy this drawback by proposing new compositions for NTC thermistors of low resistivity, namely less than 25a.cm with a resistivity of high stability over time at a temperature of approximately 125 ° C.
  • the subject of the present invention is a composition for NTC thermistors based on oxides, comprising at least four cations including manganese, nickel and copper, characterized in a first embodiment in that, the fourth cation being barium or strontium, the composition comprises 40 to 67.7% in atomic percentage of manganese, 20 to 33% in atomic percentage of nickel, 12 to 20% in atomic percentage of copper and 0.4 to 7% in atomic percentage of barium or strontium, the composition comprising 100% by atomic percentage and characterized in a second embodiment in that, the fourth cation being calcium, the composition comprises 45 to 67.2% in atomic percentage of manganese, 20 to 33% by atomic percentage of nickel, 12 to 20% by atomic percentage of copper and 0.8 to 2% by atomic percentage of calcium, the composition comprising 100% by atomic percentage.
  • the percentage of the element chosen from barium, calcium and strontium was chosen so as to obtain a resistivity of less than approximately 25a.cm with an AR / R variation ⁇ 3% after approximately 1000 hours.
  • calcium decreases the electrical resistivity.
  • the percentage of copper should be limited to 20% to avoid sintering problems. On the other hand, for a percentage of copper less than 12%, the desired percentage of aging cannot be obtained.
  • the nickel level was chosen taking into account the fact that, in a manganese-nickel system, the resistivity decreases with an increase in the nickel rate passing through a minimum at a nickel rate of 22% in atomic percentage and that beyond this point, the resistivity increases again with the nickel content, as shown on the curve in FIG. 2.
  • the nickel content will be between 20 and 33%, the upper limit being determined by the manufacturing process used. In fact, in the case of a conventional powder mixing process, the nickel content must not exceed 24% if the desired resistivity is to be obtained. In the case of a chemical process, the atomic percentage of Ni can be 33% while giving good results.
  • the manganese ions are brought in the form of manganese oxide, the nickel ions in the form of nickel oxide, the copper ions in the form of copper oxide and the barium ions in the form of barium salt or oxide.
  • the manganese oxide will be in the form Mn0 2 , Mn 2 0 3 , Mns0 4 or a mixture of these elements, the nickel oxide in the NiO form, copper oxide in the form CuO, Cu 2 0, the barium salt or oxide in the form BaS0 4 , BaNOa, BaCO 3 , the salt or calcium oxide in the form CaS0 4 , CaNOa, CaCOa, strontium salt or oxide in the form SrS0 4 , SrNO 3 , SrCO 3 .
  • other types of oxides or salts can be envisaged.
  • the CTN thermistors having the compositions given above are produced using a powder technique known per se which consists in mixing the oxide powders in a grinder mixer, in drying them, in sieving them and in pressing them in the form of a disc in a known manner, then subjecting them to sintering at a temperature preferably between 1180 ° C. and 1250 ° C., the sintering preferably being carried out in a plateau of at least one hour.
  • the sintering temperature is important in the context of the present invention in order to obtain good stability of the resistivity over time.
  • the CTN thermistors having the compositions given above are obtained chemically, that is to say by heating a mixed oxalate of manganese, nickel, copper and barium or strontium or calcium, or a hydrate said oxalate, in an atmosphere consisting of a mixture of an inert gas and oxygen having a reduced partial pressure of oxygen at the decomposition temperature of the oxalate, the temperature is maintained until complete decomposition of the oxalate, the product obtained is heated in an inert atmosphere to a temperature between 420 ° C and 800 ° C for a time sufficient to obtain particles having the dimensions of the specific surface desired, then the compositions are transformed ceramic particles according to the usual methods.
  • Tests 1 to 10 of Table I and those of the other tables were carried out on thermistors prepared using the same process, namely a conventional process for the preparation of ceramics. Only the proportions between the various components or the sintering temperature have been modified as will be explained in each table. Tests 11 and 12 in Table 1 were carried out using the chemical method.
  • each thermistor has been prepared in a conventional manner. Powders of Mna0 4 , NiO, CuO and BaCO 3 or SrCOs or CaCO s incorporated in predetermined proportions so that the atomic percentages of the ions Mn, Ni, Cu and Ba or Sr or Ca are in accordance with the present invention been mixed and ground by liquid (water) in a mill containing zirconia beads, for example in a "Turbula" mill. The grinding was carried out for approximately two hours. A solution containing a polyvinyl alcohol binder is added to the slip for 1/4 hour. The composition thus obtained was dried in an oven at 120 ° C, then sieved through a 315 micron sieve.
  • the composition thus sieved was pressed in the form of discs using a hydraulic machine of known type under a pressure of between 3 and 4 tonnes / cm 2.
  • the discs thus obtained are sintered at a temperature between 1180 ° C and 1250 ° C , with a stop time of a total duration of one hour.
  • the sintering temperature is chosen as a function of the copper content, so as to obtain a resistivity and an A R / R ratio corresponding to those fixed.
  • the powders are prepared in the following manner: the manganese, nickel, copper and barium oxalates are mixed in the proportions corresponding to the formulas indicated in Table I, Examples 11 and 12. L 'mixed oxalate obtained is thermally decomposed at 700 ° C. The powder is shaped identically to the powder process previously described. The discs thus obtained are sintered at a temperature of 1180 ° C for two hours.
  • the discs are then covered with silver electrodes in a known manner and heat treated at 550 ° C.
  • Table 1 gives the influence of the barium level on a composition containing 15% Cu and 22% Ni.
  • the resistivity increases slightly with the barium content for a constant copper content.
  • the stability of ceramics containing barium is significantly improved since with a barium content of 0.4%, a relative change in resistance of 1.9% is obtained after 1000 hours.
  • Table II represents the influence of the percentage of copper when the percentage of barium is 1.6% and that of nickel 22%.
  • Table III represents the influence of the sintering temperature on certain compositions of the type of those tested in Table II.
  • Tables IV and V are identical to Table I and represent respectively the influence of the strontium rate and the calcium rate on the electrical characteristics of the NTC thermistors developed from the Mn, Ni, Cu system. In these tables, the thermistors are obtained using powder technology.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Thermistors And Varistors (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

1. A composition of matter for negative temperature coefficient thermistors based on oxides, comprising at least four cations including manganese, nickel and copper, characterized in that the fourth cation is barium or strontium, the composition comprises 40 to 67.6 atomic percent manganese, 20 to 33 atomic percent nickel, 12 to 20 atomic percent copper and 0.4 to 7 atomic percent barium or strontium, and the composition comprises 100 atomic percent.

Description

La présente invention concerne des compositions pour thermistances à coefficient de température négatif, plus particulièrement des compositions pour thermistances à coefficient de température négatif présentant une faible résistivité, cette résistivité étant stable dans le temps. Une telle composition comprenant des oxydes de manganèse, de nickel et de cuivre est connue de BE-A 475 405.The present invention relates to compositions for thermistors with negative temperature coefficient, more particularly compositions for thermistors with negative temperature coefficient having a low resistivity, this resistivity being stable over time. Such a composition comprising manganese, nickel and copper oxides is known from BE-A 475 405.

Parmi les compositions pour thermistances à coefficient de température négatif à base d'oxydes semiconducteurs, dénommées thermistances CTN, actuellement disponibles sur le marché, certaines comportent au moins deux types de cations, ceux du manganèse et du nickel, ces compositions étant obtenues en utilisant de l'oxyde de manganèse, le plus souvent sous la forme Mna04, et de l'oxyde de nickel, le plus souvent sous la forme NiO. Toutefois, les thermistances de ce type présentent une résistivité comprise entre 1 000 a.cm et 100 000 α.cm.Among the compositions for thermistors with a negative temperature coefficient based on semiconductor oxides, called CTN thermistors, currently available on the market, some contain at least two types of cations, those of manganese and nickel, these compositions being obtained by using manganese oxide, most often in the form Mna04, and nickel oxide, most often in the form NiO. However, thermistors of this type have a resistivity between 1,000 a.cm and 100,000 α.cm.

Il est connu, pour abaisser la résistivité, d'ajouter au système Mn-Ni ci-dessus, l'élément cuivre. Cet élément Cu est ajouté le plus souvent dans la composition sous forme d'oxyde de cuivre CuO. On obtient dans ce cas une résistivité inférieure à 25Ω.cm pour une concentration atomique en cuivre d'environ 10 %, la résistivité diminuant lorsqu'on augmente la teneur en cuivre. Toutefois, comme représenté sur les courbes de vieillissement 2 et 3 de la figure 1, la résistivité de cette composition n'est pas stable dans le temps. Ainsi, pour un système comportant en pourcentage atomique 78 % de Mn, 12 % de Ni et 10 % de Cu, on obtient au bout de 500 heures, une variation de résistance AR/R > 15 % et pour un système comportant en pourcentage atomique 63 % de Mn, 22 % de Ni et 15 % de Cu, on obtient au bout de 500 heures, une variation de résistance AR/R d'environ 8 %, les essais ci-dessus ayant été réalisés à 125°C, les thermistances n'étant pas mises sous tension.To lower the resistivity, it is known to add the copper element to the Mn-Ni system above. This Cu element is most often added to the composition in the form of copper oxide CuO. In this case, a resistivity of less than 25Ω.cm is obtained for an atomic copper concentration of approximately 10%, the resistivity decreasing when the copper content is increased. However, as shown in the aging curves 2 and 3 in FIG. 1, the resistivity of this composition is not stable over time. Thus, for a system comprising in atomic percentage 78% of Mn, 12% of Ni and 10% of Cu, one obtains at the end of 500 hours, a variation of resistance A R / R> 15% and for a system comprising in percentage atomic 63% of Mn, 22% of Ni and 15% of Cu, one obtains at the end of 500 hours, a variation of resistance A R / R of approximately 8%, the above tests having been carried out at 125 ° C , the thermistors not being energized.

La présente invention a donc pour but de remédier à cet inconvénient en proposant de nouvelles compositions pour thermistances CTN de faible résistivité, à savoir inférieure à 25a.cm avec une résistivité de stabilité élevée dans le temps à une température d'environ 125°C.The present invention therefore aims to remedy this drawback by proposing new compositions for NTC thermistors of low resistivity, namely less than 25a.cm with a resistivity of high stability over time at a temperature of approximately 125 ° C.

En conséquence, la présente invention a pour objet une composition pour thermistances CTN à base d'oxydes, comportant au moins quatre cations dont le manganèse, le nickel et le cuivre, caractérisée dans un prémiér mode de réalisation en ce que, le quatrième cation étant le baryum ou le strontium, la composition comporte 40 à 67,7% en pourcentage atomique de manganèse, 20 à 33% en pourcentage atomique de nickel, 12 à 20% en pourcentage atomique de cuivre et 0,4 à 7% en pourcentage atomique de baryum ou de strontium, la composition comportant 100% en pourcentage atomique et caractérisée dans un second mode de réalisation en ce que, le quatrième cation étant le calcium, la composition comporte 45 à 67,2% en pourcentage atomique de manganèse, 20 à 33% en pourcentage atomique de nickel, 12 à 20% en pourcentage atomique de cuivre et 0,8 à 2% en pourcentage atomique de calcium, la composition comportant 100% en pourcentage atomique.Consequently, the subject of the present invention is a composition for NTC thermistors based on oxides, comprising at least four cations including manganese, nickel and copper, characterized in a first embodiment in that, the fourth cation being barium or strontium, the composition comprises 40 to 67.7% in atomic percentage of manganese, 20 to 33% in atomic percentage of nickel, 12 to 20% in atomic percentage of copper and 0.4 to 7% in atomic percentage of barium or strontium, the composition comprising 100% by atomic percentage and characterized in a second embodiment in that, the fourth cation being calcium, the composition comprises 45 to 67.2% in atomic percentage of manganese, 20 to 33% by atomic percentage of nickel, 12 to 20% by atomic percentage of copper and 0.8 to 2% by atomic percentage of calcium, the composition comprising 100% by atomic percentage.

En effet, la demanderesse s'est aperçue, suite à de nombreux essais, que le fait d'ajouter des ions baryum ou strontium, au système Mn-Ni-Cu connu, bien qu'augmentant légèrement la résistivité de la thermistance, permettait d'obtenir une variation AR/R de la résistivité dans le temps à 3 % au bout de 1000 heures, comme on le voit clairement sur la courbe de vieillissement 1 de la figure 1 qui correspond à un ajout de baryum. D'autre part, le calcium diminue aussi la résistivité électrique tout en donnant des résultats encore satisfaisants quant à la variation dans le temps AR/R de la résistivité.Indeed, the applicant has noticed, following numerous tests, that the fact of adding barium or strontium ions to the known Mn-Ni-Cu system, although slightly increasing the resistivity of the thermistor, makes it possible to '' obtaining a variation A R / R of the resistivity over time at 3% after 1000 hours, as can be clearly seen on the aging curve 1 of FIG. 1 which corresponds to an addition of barium. On the other hand, calcium also decreases the electrical resistivity while giving still satisfactory results as for the variation in time A R / R of the resistivity.

Le pourcentage de l'élément choisi parmi le baryum, le calcium et le strontium a été choisi de manière à obtenir une résistivité inférieure à environ 25a.cm avec une variation AR/R ≦ 3% au bout d'environ 1000 heures. En fait, c'est le rapport du pourcentage de l'élément sur le pourcentage de cuivre qui doit être ajusté pour obtenir une résistivité donnée avec une variation AR/R donnée car, comme mentionné ci-dessus, en augmentant le pourcentage de l'élément choisi parmi le baryum ou le strontium, on augmente la résistivité de la thermistance alors qu'en augmentant le pourcentage de cuivre, on diminue la résistivité de la thermistance. Par contre, le calcium diminue la résistivité électrique. Toutefois, le pourcentage de cuivre doit être limité à 20 % pour éviter des problèmes de frittage. D'autre part, pour un pourcentage de cuivre inférieur à 12 %, le pourcentage de vieillissement souhaité ne peut être obtenu.The percentage of the element chosen from barium, calcium and strontium was chosen so as to obtain a resistivity of less than approximately 25a.cm with an AR / R variation ≦ 3% after approximately 1000 hours. In fact, it is the ratio of the percentage of the element to the percentage of copper which must be adjusted to obtain a given resistivity with a given AR / R variation because, as mentioned above, by increasing the percentage of the element chosen from barium or strontium, the resistivity of the thermistor is increased while increasing the percentage of copper, the resistivity of the thermistor is decreased. On the other hand, calcium decreases the electrical resistivity. However, the percentage of copper should be limited to 20% to avoid sintering problems. On the other hand, for a percentage of copper less than 12%, the desired percentage of aging cannot be obtained.

De plus, un pourcentage de baryum, de calcium ou de strontium inférieur à ceux indiqués précédemment ne permet pas d'obtenir la stabilité souhaitée.In addition, a lower percentage of barium, calcium or strontium than those indicated above does not allow the desired stability to be obtained.

Le taux de nickel a été choisi en tenant compte du fait que, dans un système manganèse-nickel, la résistivité diminue avec une augmentation du taux de nickel en passant par un minimum à un taux de nickel de 22 % en pourcentage atomique et qu'au-delà de ce point, la résistivité réaugmente avec la teneur en nickel, comme représenté sur la courbe de la figure 2.The nickel level was chosen taking into account the fact that, in a manganese-nickel system, the resistivity decreases with an increase in the nickel rate passing through a minimum at a nickel rate of 22% in atomic percentage and that beyond this point, the resistivity increases again with the nickel content, as shown on the curve in FIG. 2.

En fait, la teneur en nickel sera comprise entre 20 et 33 %, la limite supérieure étant déterminée par le procédé de fabrication utilisé. En effet, dans le cas d'un procédé classique par mélange de poudre, la teneur en nickel ne doit pas dépasser 24 % si l'on veut obtenir la résistivité souhaitée. Dans le cas d'un procédé par voie chimique, le pourcentage atomique de Ni peut être de 33 % tout en donnant de bons résultats.In fact, the nickel content will be between 20 and 33%, the upper limit being determined by the manufacturing process used. In fact, in the case of a conventional powder mixing process, the nickel content must not exceed 24% if the desired resistivity is to be obtained. In the case of a chemical process, the atomic percentage of Ni can be 33% while giving good results.

Selon une autre caractéristique de la présente invention, les ions manganèse sont amenés sous forme d'oxyde de manganèse, les ions nickel sous forme d'oxyde de nickel, les ions cuivre sous forme d'oxyde de cuivre et les ions baryum sous forme de sel ou d'oxyde de baryum. De préférence, l'oxyde de manganèse sera sous la forme Mn02, Mn203, Mns04 ou d'un mélange de ces éléments, l'oxyde de nickel sous la forme NiO, l'oxyde de cuivre sous la forme CuO, Cu20, le sel ou l'oxyde de baryum sous la forme BaS04, BaNOa, BaCO3, le sel ou l'oxyde de calcium sous la forme CaS04, CaNOa, CaCOa, le sel ou l'oxyde de strontium sous la forme SrS04, SrNO3, SrCO3. Toutefois, d'autres types d'oxydes ou sels peuvent être envisagés.According to another characteristic of the present invention, the manganese ions are brought in the form of manganese oxide, the nickel ions in the form of nickel oxide, the copper ions in the form of copper oxide and the barium ions in the form of barium salt or oxide. Preferably, the manganese oxide will be in the form Mn0 2 , Mn 2 0 3 , Mns0 4 or a mixture of these elements, the nickel oxide in the NiO form, copper oxide in the form CuO, Cu 2 0, the barium salt or oxide in the form BaS0 4 , BaNOa, BaCO 3 , the salt or calcium oxide in the form CaS0 4 , CaNOa, CaCOa, strontium salt or oxide in the form SrS0 4 , SrNO 3 , SrCO 3 . However, other types of oxides or salts can be envisaged.

En fait, les thermistances CTN présentant les compositions données ci-dessus sont réalisées en utilisant une technique de poudre connue en soi qui consiste à mélanger les poudres d'oxydes dans un mélangeur broyeur, à les sécher, à les tamiser et à les-presser sous forme de disque de manière connue, puis à les soumettre à un frittage à une température comprise de préférence entre 1180°C et 1250°C, le frittage étant réalisé de préférence par un palier d'au moins une heure.In fact, the CTN thermistors having the compositions given above are produced using a powder technique known per se which consists in mixing the oxide powders in a grinder mixer, in drying them, in sieving them and in pressing them in the form of a disc in a known manner, then subjecting them to sintering at a temperature preferably between 1180 ° C. and 1250 ° C., the sintering preferably being carried out in a plateau of at least one hour.

Comme cela sera expliqué de manière plus détaillée ci-après, la température de frittage est importante dans le cadre de la présente invention pour obtenir une bonne stabilité de la résistivité dans le temps. Selon un autre mode de réalisation, les thermistances CTN présentant les compositions données ci-dessus sont obtenues par voie chimique, c'est-à-dire en chauffant un oxalate mixte de manganèse, nickel, cuivre et baryum ou strontium ou calcium, ou un hydrate dudit oxalate, dans une atmosphère constituée par un mélange d'un gaz inerte et d'oxygène ayant une pression partielle d'oxygène réduite à la température de décomposition de l'oxalate, l'on maintient la température jusqu'à décomposition complète de l'oxalate, l'on chauffe le produit obtenu en atmosphère inerte à une température comprise entre 420°C et 800°C pendant un temps suffisant pour obtenir des particules ayant les dimensions de la surface spécifique souhaitées, puis l'on transforme les compositions particulaires en céramique selon les méthodes usuelles.As will be explained in more detail below, the sintering temperature is important in the context of the present invention in order to obtain good stability of the resistivity over time. According to another embodiment, the CTN thermistors having the compositions given above are obtained chemically, that is to say by heating a mixed oxalate of manganese, nickel, copper and barium or strontium or calcium, or a hydrate said oxalate, in an atmosphere consisting of a mixture of an inert gas and oxygen having a reduced partial pressure of oxygen at the decomposition temperature of the oxalate, the temperature is maintained until complete decomposition of the oxalate, the product obtained is heated in an inert atmosphere to a temperature between 420 ° C and 800 ° C for a time sufficient to obtain particles having the dimensions of the specific surface desired, then the compositions are transformed ceramic particles according to the usual methods.

D'autres caractéristiques et avantages de la présente invention apparaîtront à la lecture des tableaux ci-après donnant les résultats d'essais réalisés sur diverses compositions conformes à la présente invention.Other characteristics and advantages of the present invention will appear on reading the tables below giving the results of tests carried out on various compositions in accordance with the present invention.

Les essais 1 à 10 du tableau I et ceux des autres tableaux ont été réalisés sur des thermistances préparées en utilisant le même procédé, à savoir un procédé classique de préparation de céramique. Seules les proportions entre les divers composants ou la température de frittage ont été modifiées comme cela sera expliqué dans chaque tableau. Les essais 11 et 12 du tableau 1 ont été réalisés en utilisant le procédé par voie chimique.Tests 1 to 10 of Table I and those of the other tables were carried out on thermistors prepared using the same process, namely a conventional process for the preparation of ceramics. Only the proportions between the various components or the sintering temperature have been modified as will be explained in each table. Tests 11 and 12 in Table 1 were carried out using the chemical method.

Ainsi, dans le premier cas, chaque thermistance a été préparée de manière classique. Des poudres de Mna04, NiO, CuO et BaCO3 ou SrCOs ou CaCOs incorporées selon des proportions déterminées de manière à ce que les pourcentages atomiques des ions Mn, Ni, Cu et Ba ou Sr ou Ca soient conformes à la présente invention ont été mélangées et broyées par voie liquide (eau) dans un broyeur contenant des billes de zircone, par exemple dans un broyeur "Turbula". Le broyage a été réalisé pendant environ deux heures. Une solution contenant un liant d'alcool polyvinylique est ajoutée à la barbotine durant 1/4 heure. La composition ainsi obtenue a été séchée en étuve à 120°C, puis tamisée à travers un tamis de 315 microns. La composition ainsi tamisée a été pressée sous forme de disques en utilisant une machine hydraulique de type connu sous une pression comprise entre 3 et 4 tonnes/cm2. Les disques ainsi obtenus sont frittés à une température comprise entre 1180°C et 1250°C, avec un temps de palier d'une durée totale d'une heure. La température de frittage est choisie en fonction de la teneur en cuivre, de manière à obtenir une résistivité et un ratio AR/R correspondant à ceux fixés.Thus, in the first case, each thermistor has been prepared in a conventional manner. Powders of Mna0 4 , NiO, CuO and BaCO 3 or SrCOs or CaCO s incorporated in predetermined proportions so that the atomic percentages of the ions Mn, Ni, Cu and Ba or Sr or Ca are in accordance with the present invention been mixed and ground by liquid (water) in a mill containing zirconia beads, for example in a "Turbula" mill. The grinding was carried out for approximately two hours. A solution containing a polyvinyl alcohol binder is added to the slip for 1/4 hour. The composition thus obtained was dried in an oven at 120 ° C, then sieved through a 315 micron sieve. The composition thus sieved was pressed in the form of discs using a hydraulic machine of known type under a pressure of between 3 and 4 tonnes / cm 2. The discs thus obtained are sintered at a temperature between 1180 ° C and 1250 ° C , with a stop time of a total duration of one hour. The sintering temperature is chosen as a function of the copper content, so as to obtain a resistivity and an A R / R ratio corresponding to those fixed.

Dans le cas de la voie chimique, les poudres sont élaborées de la manière suivante : les oxalates de manganèse, de nickel, de cuivre et de baryum sont mélangés dans les proportions correspondant aux formules indiquées dans le tableau I, exemples 11 et 12. L'oxalate mixte obtenu est décomposé thermiquement à 700°C. La poudre est mise en forme de manière identique au procédé par poudre précédemment décrit. Les disques ainsi obtenus sont frittés à une température de 1180°C pendant deux heures.In the case of the chemical route, the powders are prepared in the following manner: the manganese, nickel, copper and barium oxalates are mixed in the proportions corresponding to the formulas indicated in Table I, Examples 11 and 12. L 'mixed oxalate obtained is thermally decomposed at 700 ° C. The powder is shaped identically to the powder process previously described. The discs thus obtained are sintered at a temperature of 1180 ° C for two hours.

Les disques sont alors recouverts d'électrodes en argent de manière connue et traités thermiquement à 550°C.The discs are then covered with silver electrodes in a known manner and heat treated at 550 ° C.

Pour étudier le vieillissement des différentes pièces, celles-ci sont placées dans une enceinte à 125°C ± 2°C sans application de tension, la résistivité des pièces est mesurée sous un courant de 5mA.To study the aging of the different parts, they are placed in an enclosure at 125 ° C ± 2 ° C without applying a voltage, the resistivity of the parts is measured under a current of 5mA.

Le tableau 1 ci-après donne l'influence du taux de baryum sur une composition contenant 15 % de Cu et 22 % de Ni.

Figure imgb0001
Table 1 below gives the influence of the barium level on a composition containing 15% Cu and 22% Ni.
Figure imgb0001

D'après le tableau I, on observe que le fait de doper le système Mn-Ni-Cu avec du baryum augmente la densité d'environ 10 %. Toutefois, la densité ne varie presque pas avec la teneur en baryum puisque, à partir d'une teneur en baryum de 0,6 % en concentration atomique, elle reste constante.From Table I, it can be seen that doping the Mn-Ni-Cu system with barium increases the density by about 10%. However, the density hardly varies with the barium content since, from a barium content of 0.6% in atomic concentration, it remains constant.

D'autre part, comme mentionné ci-dessus, la résistivité croît légèrement avec la teneur en baryum pour une teneur en cuivre constante. De plus, la stabilité des céramiques contenant du baryum est nettement améliorée puisqu'avec une teneur en baryum de 0,4 %, on obtient au bout de 1000 heures une variation relative de la résistance de 1,9 %.On the other hand, as mentioned above, the resistivity increases slightly with the barium content for a constant copper content. In addition, the stability of ceramics containing barium is significantly improved since with a barium content of 0.4%, a relative change in resistance of 1.9% is obtained after 1000 hours.

Le tableau Il représente l'influence du pourcentage de cuivre lorsque le pourcentage de baryum est de 1,6 % et celui du nickel de 22 %.

Figure imgb0002
Table II represents the influence of the percentage of copper when the percentage of barium is 1.6% and that of nickel 22%.
Figure imgb0002

D'après le tableau Il, on voit que pour une teneur en baryum de 1,6 % la teneur en cuivre peut descendre jusqu'à 12 % pour obtenir un bon vieillissement. Au-dessous de cette concentration, le vieillissement est de 6,2 % à 500 heures. D'autre part, on remarque qu'un vieillissement acceptable peut être aussi obtenu pour une teneur en cuivre de 3 %, mais dans ce cas la résistivité est de 288 α.cm avec une densité de la thermistance de 4,45.From Table II, it can be seen that for a barium content of 1.6% the copper content can drop to 12% to obtain good aging. Below this concentration, the aging is 6.2% at 500 hours. On the other hand, we note that an acceptable aging can also be obtained for a copper content of 3%, but in this case the resistivity is 288 α.cm with a density of the thermistor of 4.45.

Le tableau III représente l'influence de la température de frittage sur certaines compositions du type de celles essayées dans le tableau II.

Figure imgb0003
Table III represents the influence of the sintering temperature on certain compositions of the type of those tested in Table II.
Figure imgb0003

Les tableaux IV et V sont identiques au tableau I et représentent respectivement l'influence du taux de strontium et du taux de calcium sur les caractéristiques électriques des thermistances CTN élaborées à partir du système Mn, Ni, Cu. Dans ces tableaux, les thermistances sont obtenues en utilisant une technologie de poudre.Tables IV and V are identical to Table I and represent respectively the influence of the strontium rate and the calcium rate on the electrical characteristics of the NTC thermistors developed from the Mn, Ni, Cu system. In these tables, the thermistors are obtained using powder technology.

D'après les tableaux, on voit que le strontium donne des résultats sensiblement équivalents à ceux du baryum tandis que le calcium donne un moins bon vieillissement, mais diminue la résistivité électrique.

Figure imgb0004
From the tables, it can be seen that strontium gives results substantially equivalent to those of barium while calcium gives less good aging, but decreases electrical resistivity.
Figure imgb0004

Claims (5)

1. A composition of matter for negative temperature coefficient thermistors based on oxides, comprising at least four cations including manganese, nickel and copper, characterized in that the fourth cation is barium or strontium, the composition comprises 40 to 67.6 atomic percent manganese, 20 to 33 atomic percent nickel, 12 to 20 atomic percent copper and 0.4 to 7 atomic percent barium or strontium, and the composition comprises 100 atomic percent.
2. A composition of matter for negative temperature coefficient thermistors based on oxides, comprising at least four cations including manganese, nickel and copper, characterized in that the fourth cation is calcium, and the composition comprises 45 to 67.2 atomic percent manganese, 20 to 33 atomic percent nickel, 12 to 20 atomic percent copper and 0.8 to 2 atomic percent calcium, and the composition comprises 100 atomic percent.
3. The composition as claimed in claim 1 or claim 2, characterized in that the manganese is present in the form of manganese oxide, the nickel is in the form of nickel oxide, the copper is in the form of copper oxide and the barium, strontium or calcium is in the form of a salt.
4. The composition as claimed in claim 3, characterized in that the manganese oxide is in the form of Mn02, Mn203, Mn304, the oxide of nickel is in the form of NiO, the copper oxide is in the form of CuO, Cu20, the barium salt is in the form of BaCO3, BaS04, BaNO3, the calcium salt is in the form of CaCOs, CaS04, CaN03 and the strontium salt is SrCOs, SrS04 or SrNOa.
5. A method of manufacturing negative temperature coefficient thermistors having a composition as claimed in any one of the preceding claims 1 through 4, which consists in mixing the powders for constituting the composition, drying them, screening them, pressing them into the form of a disk and subjecting the disk to fritting, characterized in that the fritting temperature is comprised between 1180°C and 1300°C.
EP87400895A 1986-04-25 1987-04-17 Compositions for thermistors having a negative temperature coefficient Expired - Lifetime EP0243256B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT87400895T ATE57788T1 (en) 1986-04-25 1987-04-17 COMPOSITIONS FOR THERMISTORS WITH NEGATIVE TEMPERATURE COEFFICIENTS.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8606026 1986-04-25
FR8606026A FR2598021B1 (en) 1986-04-25 1986-04-25 COMPOSITIONS FOR THERMISTORS WITH NEGATIVE TEMPERATURE COEFFICIENT

Publications (2)

Publication Number Publication Date
EP0243256A1 EP0243256A1 (en) 1987-10-28
EP0243256B1 true EP0243256B1 (en) 1990-10-24

Family

ID=9334633

Family Applications (1)

Application Number Title Priority Date Filing Date
EP87400895A Expired - Lifetime EP0243256B1 (en) 1986-04-25 1987-04-17 Compositions for thermistors having a negative temperature coefficient

Country Status (4)

Country Link
EP (1) EP0243256B1 (en)
AT (1) ATE57788T1 (en)
DE (1) DE3765684D1 (en)
FR (1) FR2598021B1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2652675B1 (en) * 1989-10-03 1994-01-28 Lcc Cie Europ Composants Electro COMPOSITION FOR THERMISTORS WITH COEFFICIENT OF NEGATIVE TEMPERATURE AND VERY LOW ELECTRIC RESISTIVITY.
CN111606693A (en) * 2020-06-01 2020-09-01 东阳市聚冉电子科技有限公司 Preparation method of high-temperature negative temperature coefficient thermistor material

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE914748C (en) * 1941-08-10 1954-07-08 Western Electric Co Electrical resistance material
BE475405A (en) * 1942-03-27
FR1129167A (en) * 1955-07-19 1957-01-16 Csf Improvements to thermistors
CA1147945A (en) * 1979-11-02 1983-06-14 Takayuki Kuroda Oxide thermistor compositions

Also Published As

Publication number Publication date
EP0243256A1 (en) 1987-10-28
DE3765684D1 (en) 1990-11-29
FR2598021A1 (en) 1987-10-30
ATE57788T1 (en) 1990-11-15
FR2598021B1 (en) 1990-10-19

Similar Documents

Publication Publication Date Title
EP1010186B1 (en) Varistors based on nanocrystalline powders produced by mechanical grinding
US5770113A (en) Zinc oxide ceramics and method for producing the same
JPH03150273A (en) Alloy for making electrical binding between superconducting materials and said binding between said superconducting material and conducting material or semiconductor material
JPH0139614B2 (en)
EP0206885B1 (en) Composition of manganites of transition metals in the form of particles or in the form of ceramics, its preparation and its use in the manufacture of thermistors
EP0243256B1 (en) Compositions for thermistors having a negative temperature coefficient
CA2702021A1 (en) Use of a flash sintering technique for the synthesis and densification of iodoapatites
FR2490210A1 (en) STARTING MIXTURE FOR A HIGHLY RESISTANT COMPOSITION, INK SERIGRAPHIABLE CONSTITUTED WITH AND ELECTRIC CIRCUITS SO PERFORMED
EP0088009B1 (en) Temperature-stable dielectric ceramic composition based on barium titanate, and capacitor using this composition
FR2620864A1 (en) SUPERCONDUCTING MATERIALS AND PROCESS FOR PREPARING THE SAME
EP0290311B1 (en) Sintered composite material for electrical contacts, and contact discs using said material
FR2520731A1 (en) FRITTABLE MINERAL OXIDE COMPOSITION AND PROCESS FOR OBTAINING DENSE CERAMIC BODY
EP0067092B1 (en) Dielectric ceramic composition based on barium titanate, lithium oxide and copper fluoride, capacitor using the composition and process for its manufacture
JPS6297260A (en) Prevention of voltage suppression of lithium/carbon fluoridebattery, and improved cfx compound and battery containing the same
EP0079385B1 (en) A shielded heating element and a method of manufacturing the same
EP0034512A2 (en) Heating element for indirectly heated cathodes, process for manufacturing such an element and indirectly heated cathode comprising the same
EP0067736B1 (en) Dielectric ceramic composition based on barium titanate, lithium oxide and cadmium fluoride, capacitor using the composition and process for its manufacture
FR2652675A1 (en) Composition for thermistors having a negative temperature coefficient and a very low electrical resistivity
FR2644779A1 (en) CERAMIC COMPOSITION HAVING A HIGH DIELECTRIC CONSTANT
EP0394107B1 (en) Dielectric ceramic composition based on ferrites and process for its production
EP0229555B1 (en) Ferro-electric materials composition
JP3694762B2 (en) Optical memory material
CA2299167C (en) Varistors based on nanocrystalline powders produced by mechanical grinding
RU2159970C1 (en) Method for producing electric contact from compound of silver and zinc oxide
US7362209B2 (en) Zinc oxide resistor and its manufacturing method

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE DE FR GB

17P Request for examination filed

Effective date: 19871109

17Q First examination report despatched

Effective date: 19890202

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE DE FR GB

REF Corresponds to:

Ref document number: 57788

Country of ref document: AT

Date of ref document: 19901115

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3765684

Country of ref document: DE

Date of ref document: 19901129

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19940321

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19940326

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19940406

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19940429

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19950417

Ref country code: AT

Effective date: 19950417

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19950430

BERE Be: lapsed

Owner name: CIE EUROPEENNE DE COMPOSANTS ELECTRONIQUES LCC

Effective date: 19950430

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19950417

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19960103

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19970422

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19980430

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST