EP0034512A2 - Heating element for indirectly heated cathodes, process for manufacturing such an element and indirectly heated cathode comprising the same - Google Patents

Heating element for indirectly heated cathodes, process for manufacturing such an element and indirectly heated cathode comprising the same Download PDF

Info

Publication number
EP0034512A2
EP0034512A2 EP81400096A EP81400096A EP0034512A2 EP 0034512 A2 EP0034512 A2 EP 0034512A2 EP 81400096 A EP81400096 A EP 81400096A EP 81400096 A EP81400096 A EP 81400096A EP 0034512 A2 EP0034512 A2 EP 0034512A2
Authority
EP
European Patent Office
Prior art keywords
alumina
mixture
heating element
cylinder
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP81400096A
Other languages
German (de)
French (fr)
Other versions
EP0034512A3 (en
Inventor
Arvind Shroff
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thales SA
Original Assignee
Thomson CSF SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thomson CSF SA filed Critical Thomson CSF SA
Publication of EP0034512A2 publication Critical patent/EP0034512A2/en
Publication of EP0034512A3 publication Critical patent/EP0034512A3/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J1/00Details of electrodes, of magnetic control means, of screens, or of the mounting or spacing thereof, common to two or more basic types of discharge tubes or lamps
    • H01J1/02Main electrodes
    • H01J1/13Solid thermionic cathodes
    • H01J1/20Cathodes heated indirectly by an electric current; Cathodes heated by electron or ion bombardment
    • H01J1/24Insulating layer or body located between heater and emissive material

Definitions

  • the present invention relates to a heating element for an indirectly heated cathode. It also relates to a method of manufacturing such an element and to indirectly heated cathodes comprising such an element.
  • Indirectly heated cathodes which are used in electronic tubes are well known in the prior art. They generally consist of an emissive disc brazed at one of the ends of a cylinder of non-emissive material which serves as a housing. Inside the cylinder is placed a filament which ensures the so-called indirect heating of the cathode.
  • the filament In cathodes with indirect heating by "potted” filament, the filament is less vulnerable to shocks and mechanical vibrations than in cathodes with indirect heating by free filament.
  • the present invention relates to cathodes with indirect heating by "potted" filament.
  • the "potting" consists of a mixture of alumina and of less than 10% by weight of an oxide of one of the elements of column III A of the periodic table of the elements, this mixture being sintered between 1700 and 1800 ° C.
  • the mixture consists of yttrium oxide and alumina of chemical composition 3 Y 2 O 3 . 5 Al 2 O 3 , plus alumina in the ⁇ phase
  • FIG. 1 represents a perspective view of an indirect heating cathode with potted filament.
  • This cathode consists of an emissive disc 1 which occupies one of the ends of a cylinder 2 made of non-emissive material.
  • the cylinder 2 is generally made of molybdenum. It serves as a housing for the cathode and is also called the "skirt" of the cathode.
  • a porous entungsten disc 1 is brazed. Brazing takes place around 1900 ° C.
  • a filament 3 made of tungsten or tungsten is introduced into the cylinder.
  • potting 4 which blocks the filament 3 in the cylinder.
  • the "potting" consists of a mixture of alumina and of less than 10% by weight of an oxide of one of the elements of column III A of the periodic table of the elements, this mixture being sintered between 1700 and 1800 ° C.
  • FIG. 2 shows a detail of the phase diagram of the alumina-yttrium oxide mixture, which is taken from the work: "Phase diagrams for Ceramists - 1969 - supplement”.
  • the thick line curve indicates the melting tempera- ture of the mixture of alumina Al 2 O 3, yttrium oxide Y 2 0 3 based on the percentages by weight of alumina and yttria.
  • This curve is discontinuous. For certain percentages of alumina and yttrium oxide, melting occurs at a lower temperature than for the other percentages, they are eutectic compositions.
  • the alumina-yttrium oxide mixture is a eutectic is interesting because it makes it possible to reduce the temperature of the sintering compared to pure alumina.
  • the chemical composition of the solid product obtained is the same over a wide range of the respective percentages of alumina and yttrium oxide. Indeed, it is difficult when making a mixture of powders - here alumina powder and yttrium oxide powder - to ensure that the mixture is perfectly well produced and that the percentage of bodies present is constant. Consequently, it is advantageous to obtain the same chemical compound even if the mixture is not perfectly homogeneous.
  • the alumina which enters into the composition of the "potting" can consist of several varieties of alumina of different particle size.
  • grains less than 10 ⁇ m in diameter and gains of 10 to 50 ⁇ m in diameter are used.
  • the "potting" can be carried out by sintering between 1700 and 1800 ° C. a mixture of alumina and less than 10% of a scandium oxide, lanthanum or actinium.
  • the chemical composition of the bodies obtained will be, in the case of lanthanum oxide, La 2 O 3 . 11 Al 2 O 3 plus alumina in the ⁇ phase and in the case of scandium oxide, Sc 2 O 3 . Al 2 03, plus alumina in the ⁇ phase.
  • the insulation layer deposited by cataphoresis on the filament 3 may be an alumina layer as has been indicated in the description of FIG. 1, but this insulation layer may also have the same composition as the mixture which is used for potting, for example alumina and yttrium oxide.
  • alumina powder firstly intimately mixing, with stirring for at least 24 hours, powder of an oxide of one of the elements of column III A of the periodic table of the elements and one or more alumina powders different particle size.
  • the alumina powder should not exceed 10% by weight of the mixture.
  • a binder is then added to the mixture so as to obtain a paste.
  • the face of the emissive disc 1 which is situated towards the inside of the cylinder 2 is coated with this paste 5. This step is shown in FIG. 3a.
  • the binder is slowly evaporated using an electric lamp, for example 100 W, or leaving to dry naturally.
  • the filament 3 is introduced into the cylinder 2. This step is shown in FIG. 3b.
  • the cylinder is then filled several times with the paste, the consistency of which can be modified by adding the binder.
  • the binder which may be acetone, is evaporated using the electric lamp.

Landscapes

  • Solid Thermionic Cathode (AREA)
  • Powder Metallurgy (AREA)

Abstract

Cet élément chauffant est constitué d'un filament (3) et d'un mélange (4), fritté entre 1700 et 1800°C, d'alumine et de moins de 10 % en poids d'oxyde d'yttrium. Ce mélange remplit l'espace laissé libre par le filament à l'intérieur du cylindre (2) obturé par un disque émissif (1) qui constitue la cathode.This heating element consists of a filament (3) and a mixture (4), sintered between 1700 and 1800 ° C, alumina and less than 10% by weight of yttrium oxide. This mixture fills the space left free by the filament inside the cylinder (2) closed by an emissive disc (1) which constitutes the cathode.

Description

La présente invention concerne un élément chauffant pour cathode à chauffage indirect. Elle concerne également un procédé de fabrication d'un tel élément et les cathodes à chauffage indirect comportant un tel élément.The present invention relates to a heating element for an indirectly heated cathode. It also relates to a method of manufacturing such an element and to indirectly heated cathodes comprising such an element.

Les cathodes à chauffage indirect qui sont utilisées dans les tubes électroniques sont bien connues de l'art antérieur. Elles sont généralement constituées par un disque émissif brasé à l'une des extrê- mités d'un cylindre en matériau non émissif qui sert de boîtier. A l'intérieur du cylindre est placé un filament qui assure le chauffage dit indirect de la cathode.Indirectly heated cathodes which are used in electronic tubes are well known in the prior art. They generally consist of an emissive disc brazed at one of the ends of a cylinder of non-emissive material which serves as a housing. Inside the cylinder is placed a filament which ensures the so-called indirect heating of the cathode.

On distingue deux types de cathodes à chauffage indirect :

  • - celles à chauffage par filament libre dans lesquelles le filament chauffe la cathode par rayonnement ;
  • - celles à chauffage par filament dit potté, dans lesquelles l'espace laissé libre par le filament à l'intérieur du cylindre est rempli par un corps bon conducteur thermique, électriquement isolant à la température de fonctionnement, dont le point de fusion est élevé et qui enfin ne réagit pas à la température de fonctionnement avec le filament et le cylindre.
There are two types of indirect heating cathodes:
  • - those with free filament heating in which the filament heats the cathode by radiation;
  • - those with so-called potted filament heating, in which the space left free by the filament inside the cylinder is filled by a body which is a good thermal conductor, electrically insulating at operating temperature, the melting point of which is high and which finally does not react to the operating temperature with the filament and the cylinder.

Dans les cathodes à chauffage indirect par filament "potté", le filament est moins vulnérable aux chocs et aux vibrations mécaniques que dans les cathodes à chauffage indirect par filament libre.In cathodes with indirect heating by "potted" filament, the filament is less vulnerable to shocks and mechanical vibrations than in cathodes with indirect heating by free filament.

La présente invention concerne les cathode à chauffage indirect par filament "potté".The present invention relates to cathodes with indirect heating by "potted" filament.

Dans l'art antérieur, le "potting", c'est-à-dire le corps qui bloque le filament dans le cylindre, est constitué :

  • - par de la poudre d'alumine frittée vers 2000°C ;
  • - ou, par un mélange de poudre d'alumine et de poudre d'oxyde de calcium fritté entre 1750°C et 1800°C.
In the prior art, the "potting", that is to say the body which blocks the filament in the cylinder, consists of:
  • - with alumina powder sintered at around 2000 ° C;
  • - Or, by a mixture of alumina powder and sintered calcium oxide powder between 1750 ° C and 1800 ° C.

Selon la présente invention, le "potting" est constitué par un mélange d'alumine et de moins de 10 % en poids d'un oxyde d'un des éléments de la colonne III A de la table périodique des éléments, ce mélange étant fritté entre 1700 et 1800°C.According to the present invention, the "potting" consists of a mixture of alumina and of less than 10% by weight of an oxide of one of the elements of column III A of the periodic table of the elements, this mixture being sintered between 1700 and 1800 ° C.

Selon un mode préféré de réalisation de l'invention, le mélange est constitué d'oxyde d'yttrium et d'alumine de composition chimique 3 Y2 O3. 5 Al2 O3, plus de l'alumine en phase αAccording to a preferred embodiment of the invention, the mixture consists of yttrium oxide and alumina of chemical composition 3 Y 2 O 3 . 5 Al 2 O 3 , plus alumina in the α phase

Le "potting" selon la présente invention présente les avantages suivants :

  • - le frittage est réalisé entre 1700 et 1800°C et cette température ne peut pas fragiliser le filament en tungstène ou en tungstène rhénium, comme c'est le cas lorsqu'on doit monter à 2000°C pour fritter de la poudre d'alumine pure ;
  • - le potting réalisé est solide et compact, il assure un bon contact thermique de longue durée entre le filament et le cylindre.Il assure un isolement électrique égal à celui obtenu avec un "potting " à base d'alumine uniquement.
  • - l'oxyde d'yttrium'qui peut être utilisé est stable et très pur. Son coefficient de dilatation linéaire α égal à 8, 18. 10-6 est très proche de celui des filaments couramment utilisés et identique à celui de l'alumine, ce qui permet d'obtenir un "potting" dont le coefficient de dilatation ne dépend pas des proportions d'alumine et d'oxyde.De plus, la conductibilité thermique de l'oxyde d'yttrium est identique à celle de l'alumine (λ = 0,017 cal. S-1. cm-1.e-1 à 1800°C et 0,013 à 1000°C). Enfin, la température de fusion de l'oxyde d'yttrium (2410°C) est inférieure à celle de l'oxyde de calcium par exemple (2572°C).
The "potting" according to the present invention has the following advantages:
  • - the sintering is carried out between 1700 and 1800 ° C and this temperature cannot weaken the tungsten or rhenium tungsten filament, as is the case when it is necessary to go up to 2000 ° C to sinter alumina powder pure;
  • - the potting produced is solid and compact, it ensures good long-term thermal contact between the filament and the cylinder. It provides electrical insulation equal to that obtained with a "potting" based on alumina only.
  • - the yttrium'oxide which can be used is stable and very pure. Its coefficient of linear expansion α equal to 8.18. 10 -6 is very close to that of commonly used filaments and identical to that of alumina, which makes it possible to obtain a "potting" whose coefficient of expansion does not depend on the proportions of alumina and oxide. In addition, the thermal conductivity of yttrium oxide is identical to that of alumina (λ = 0.017 cal. S - 1. Cm -1 .e -1 at 1800 ° C and 0.013 at 1000 ° C). Finally, the melting temperature of yttrium oxide (2410 ° C) is lower than that of calcium oxide for example (2572 ° C).

D'autres objets, caractéristiques et résultats de l'invention ressortiront de la description suivante, donnée à titre d'exemple non limitatif et illustrée par les figures annexées qui représentent :

  • - La figure 1, une vue en perpective d'une cathode à chauffage indirect à filament "potté" ;
  • - La figure 2, un détail du diagramme de phase du mélange alumine-oxyde d'yttrium ;
  • - Les figures 3a, b et c, des schémas illustrant le procédé de fabrication selon l'invention.
Other objects, characteristics and results of the invention will emerge from the following description, given by way of nonlimiting example and illustrated by the appended figures which represent:
  • - Figure 1, a perspective view of an indirect heating cathode filament "potté";
  • - Figure 2, a detail of the phase diagram of the alumina-yttrium oxide mixture;
  • - Figures 3a, b and c, diagrams illustrating the manufacturing process according to the invention.

Sur les différentes figures, les mêmes repères désignent les mêmes éléments, mais, pour des raisons de clarté, les cotes et proportions des divers éléments ne sont pas respectées.In the different figures, the same references designate the same elements, but, for reasons of clarity, the dimensions and proportions of the various elements are not observed.

La figure 1 représente une vue en perspective d'une cathode à chauffage indirect à filament potté.FIG. 1 represents a perspective view of an indirect heating cathode with potted filament.

Cette cathode est constituée d'un disque émissif 1 qui occupe l'une des extrémités d'un cylindre 2 en matériau non-émissif.This cathode consists of an emissive disc 1 which occupies one of the ends of a cylinder 2 made of non-emissive material.

Le cylindre 2 est généralement en molybdène. Il sert de boîtier à la cathode et on l'appelle aussi "jupe" de la cathode.The cylinder 2 is generally made of molybdenum. It serves as a housing for the cathode and is also called the "skirt" of the cathode.

A l'une des extrémités du cylindre , on brase un disque 1 entungstène poreux. Le brasage s'effectue aux environs de 1900°C.At one end of the cylinder, a porous entungsten disc 1 is brazed. Brazing takes place around 1900 ° C.

Ce brasage effectué, on introduit dans le cylindre un filament 3 en tungstène ou en tungstène rhénium recouvert par cataphorèse d'une couche d'isolement en alumine. On réalise le "potting" 4 qui bloque le filament 3 dans le cylindre.Once this brazing is completed, a filament 3 made of tungsten or tungsten is introduced into the cylinder. rhenium covered by cataphoresis with an alumina isolation layer. We carry out the "potting" 4 which blocks the filament 3 in the cylinder.

On réalise ensuite à chaud, aux environs de 1750°C, l'imprégnation par de l'aluminate de baryum et de calcium du disque en tungstène poreux 1, ce qui rend ce disque émissif.Then carried out hot, around 1750 ° C., the impregnation with barium aluminate and calcium of the porous tungsten disc 1, which makes this disc emissive.

L'imprégnation du tungstène poreux se faisant vers 1750°C alors que le filament 3 se trouve dans le cylindre 2, il n'y a pas d'inconvénient à ce que pour l'élaboration du "potting", la température atteigne 1700 ou 1800°C comme c'est le cas pour l'élaboration du "potting" selon l'invention.The impregnation of the porous tungsten being done at around 1750 ° C. while the filament 3 is in the cylinder 2, there is no disadvantage in that for the preparation of the "potting", the temperature reaches 1700 or 1800 ° C as is the case for the preparation of the "potting" according to the invention.

Selon l'invention, le "potting" est constitué par un mélange d'alumine et de moins de 10 % en poids d'un oxyde d'un des éléments de la colonne III A de la table périodique des éléments, ce mélange étant fritté entre 1700 et 1800°C.According to the invention, the "potting" consists of a mixture of alumina and of less than 10% by weight of an oxide of one of the elements of column III A of the periodic table of the elements, this mixture being sintered between 1700 and 1800 ° C.

La colonne III A de la table périodique des éléments comporte quatre éléments : le. scandium, Sc, l'yttrium, Y, le lanthane, La,et enfin l'actinium, Ac.Column III A of the Periodic Table of the Elements has four elements: the. scandium, Sc, yttrium, Y, lanthanum, La, and finally actinium, Ac.

Nous allons prendre d'abord à titre d'exemple l'yttrium.We will first take yttrium as an example.

Sur la figure 2, on a représenté un détail du diagramme de phase du mélange alumine-oxyde d'yttrium, qui est extrait de l'ouvrage : "Phase diagrams for Ceramists - 1969 - supplement".FIG. 2 shows a detail of the phase diagram of the alumina-yttrium oxide mixture, which is taken from the work: "Phase diagrams for Ceramists - 1969 - supplement".

La courbe en trait épais indique la tempéra- ture de fusion du mélange alumine Al2 O3, oxyde d'yttrium Y2 03 en fonction des pourcentages en poids d'alumine et d'oxyde d'yttrium.The thick line curve indicates the melting tempera- ture of the mixture of alumina Al 2 O 3, yttrium oxide Y 2 0 3 based on the percentages by weight of alumina and yttria.

Cette courbe est discontinue. Pour certains pourcentages d'alumine et d'oxyde d'yttrium, la fusion se produit à une température plus faible que pour les autres pourcentages, ce sont des compositions eutectiques.This curve is discontinuous. For certain percentages of alumina and yttrium oxide, melting occurs at a lower temperature than for the other percentages, they are eutectic compositions.

Sur la figure 2, on constate que pour le point A qui correspond sensiblement à 60 % d'alumine et 40 % d'oxyde d'yttrium, la température de fusion est de 1760°C. Autour du point A, on constate que la température de fusion est supérieure à 1760°C. De même, il est remarquable en observant la figure 2 qu'à partir d'un pourcentage supérieur à 43 % d'alu- nine environ, le mélange obtenu à l'état solide a la même constitution chimique qui est 3 Y2 O3 . 5 Al2 O3, plus de l'alumine en phase α.In FIG. 2, it can be seen that for point A, which corresponds substantially to 60% of alumina and 40% of yttrium oxide, the melting temperature is 1760 ° C. Around point A, it can be seen that the melting temperature is higher than 1760 ° C. Similarly, it is remarkable when observing FIG. 2 that from a percentage greater than about 43% of aluminum, the mixture obtained in the solid state has the same chemical constitution which is 3 Y 2 O 3 . 5 Al 2 O 3 , plus alumina in the α phase.

Le fait que le mélange alumine-oxyde d'yttrium soit un eutectique est intéressant car il permet de diminuer la température du frittage par rapport à l'alumine pure. De même, il est intéressant que la composition chimique du produit solide obtenu soit la même dans un large domaine des pourcentages respectifs d'alumine et d'oxyde d'yttrium. En effet, il est difficile lorsqu'on effectue un mélange de poudres -ici la poudre d'alumine et la poudre d'oxyde d'yttrium- de s'assurer que le mélange est parfaitement bien réalisé et que le pourcentage des corps en présence est constant. Par conséquent il est intéressant d'obtenir un même composé chimique même si le mélange n'est pas parfaitement homogène.The fact that the alumina-yttrium oxide mixture is a eutectic is interesting because it makes it possible to reduce the temperature of the sintering compared to pure alumina. Likewise, it is advantageous that the chemical composition of the solid product obtained is the same over a wide range of the respective percentages of alumina and yttrium oxide. Indeed, it is difficult when making a mixture of powders - here alumina powder and yttrium oxide powder - to ensure that the mixture is perfectly well produced and that the percentage of bodies present is constant. Consequently, it is advantageous to obtain the same chemical compound even if the mixture is not perfectly homogeneous.

On désire donc bénéficier des avantages du mélange alumine-oxyde d'yttrium par rapport à l'alumine pure,tout en cherchant à avoir un mélange comportant le maximum d'alumine.We therefore wish to benefit from the advantages of the alumina-yttrium oxide mixture compared to pure alumina, while seeking to have a mixture comprising the maximum of alumina.

En effet, si le mélange comporte trop d'oxyde d'yttrium, on risque le décollement du "potting" du cylindre qui sert de boîtier et le décollement du filament de son "potting".Indeed, if the mixture contains too much yttrium oxide, there is a risk of detachment of the "potting" from the cylinder which serves as a housing and detachment of the filament from its "potting".

Expérimentalement, on a déterminé qu'on obtenait le potting réunissant le maximum d'avantages souhaité en frittant entre 1700 et 1800°C et en limitant à 10 % en poids environ le pourcentage d'oxyde d'yttrium.Experimentally, we have determined that we get potting was born bringing together the maximum of desired advantages by sintering between 1700 and 1800 ° C. and limiting the percentage of yttrium oxide to around 10% by weight.

Il est cependant bien entendu qu'on obtient un "potting" de bonne qualité en frittant entre 1700 et 1800°C un mélange comportant environ 50 à 99 % d'alumine et donc environ 1 à 50 % d'oxyde d'yttrium.It is however understood that a good quality "potting" is obtained by sintering between 1700 and 1800 ° C. a mixture comprising approximately 50 to 99% of alumina and therefore approximately 1 to 50% of yttrium oxide.

Dans tous les cas, on obtient un mélange d'oxyde d'yttrium et d'alumine de composition chimique 3 Y2 O3 . 5 Al2 O3, - plus , de l'alumine en phase α.In all cases, a mixture of yttrium oxide and alumina with chemical composition 3 Y 2 O 3 is obtained. 5 Al 2 O 3 , - plus, alumina in the α phase.

Sur la figure 2, on n'a représenté que la partie intéressante du diagrammè de phase alumine-oxyde d'yttrium. En effet, sur le restant du diagramme, le pourcentage d'alumine est , faible (inférieur à 40 %) et la température dé'fusion et donc la température de frittage sont trop élevées.In Figure 2, only the interesting part of the alumina-yttrium oxide phase diagram has been shown. Indeed, on the rest of the diagram, the percentage of alumina is low (less than 40%) and the temperature of fusion and therefore the sintering temperature are too high.

L'alumine qui entre dans la composition du "potting" peut être constituée de plusieurs variétés d'alumine de granulométrie différente.The alumina which enters into the composition of the "potting" can consist of several varieties of alumina of different particle size.

On utilise ainsi, par exemple,des grains de moins de 10 µm de diamètre et des gains de 10 à 50 pm de diamètre.Thus, for example, grains less than 10 μm in diameter and gains of 10 to 50 μm in diameter are used.

Le mélange de plusieurs variétés d'alumine permet, -de trouver un compromis entre les défauts et les qualités inhérents à chaque variété. En effet, l'alumine à grains fins se prend en masse facilement mais présente un retreintimportant. Alors que l'alumine à grains de grand diamètre se prend en masse plus difficilement mais constitue une masse poreuse sans retreint.The mixture of several varieties of alumina makes it possible to find a compromise between the defects and the qualities inherent in each variety. Indeed, fine-grained alumina takes on mass easily but has a significant shrinkage. While alumina with large diameter grains is more difficult to take in mass but constitutes a porous mass without shrinking.

De même que cela vient d'être décrit en détail pour l'yttrium, le "potting" peut être réalisé en frittant entre 1700 et 1800°C un mélange d'alumine et de moins de 10 % d'un oxyde de scandium, de lanthane ou d'actinium. La composition chimique des corps obtenus sera dans le cas de l'oxyde de lanthane, La2 O3 . 11 Al2 O3 plus de l'alumine en phase α et dans le cas de l'oxyde de scandium, Sc2 O3 . Al2 03, plus de l'alumine en phase α.As has just been described in detail for yttrium, the "potting" can be carried out by sintering between 1700 and 1800 ° C. a mixture of alumina and less than 10% of a scandium oxide, lanthanum or actinium. The chemical composition of the bodies obtained will be, in the case of lanthanum oxide, La 2 O 3 . 11 Al 2 O 3 plus alumina in the α phase and in the case of scandium oxide, Sc 2 O 3 . Al 2 03, plus alumina in the α phase.

On peut signaler que la couche d'isolement déposée par cataphorèse sur le filament 3 peut être une couche d'alumine comme cela a été signalé dans la description de la figure 1, mais cette couche d'isolement peut avoir aussi la même composition que le mélange qui sert à réaliser le potting, par exemple de l'alumine et de l'oxyde d'yttrium.It may be pointed out that the insulation layer deposited by cataphoresis on the filament 3 may be an alumina layer as has been indicated in the description of FIG. 1, but this insulation layer may also have the same composition as the mixture which is used for potting, for example alumina and yttrium oxide.

Sur les figures 3a, b et c, on a représenté. un procédé de fabrication d'un élément chauffant selon l'invention.In Figures 3a, b and c, there is shown. a method of manufacturing a heating element according to the invention.

Selon ce procédé, on mélange d'abord intimement en agitant pendant 24 heures au moins, de la poudre d'un oxyde d'un des éléments de la colonne III A de la table périodique des éléments et une ou plusieurs poudres d'alumine de granulométrie différente. La poudre d'alumine ne doit pas dépasser 10 % en poids du mélange.According to this method, firstly intimately mixing, with stirring for at least 24 hours, powder of an oxide of one of the elements of column III A of the periodic table of the elements and one or more alumina powders different particle size. The alumina powder should not exceed 10% by weight of the mixture.

On ajoute ensuite au mélange un liant de façon à obtenir une pâte.A binder is then added to the mixture so as to obtain a paste.

On tapisse avec cette pâte 5 la face du disque émissif 1 qui est située vers l'intérieur du cylindre 2. Cette étape est représentée sur la figure 3a. Ensuite, on fait s'évaporer lentement le liant en utilisant une lampe électrique, de 100 W par exemple, ou en laissant sécher naturellement.The face of the emissive disc 1 which is situated towards the inside of the cylinder 2 is coated with this paste 5. This step is shown in FIG. 3a. Then, the binder is slowly evaporated using an electric lamp, for example 100 W, or leaving to dry naturally.

On introduit le filament 3 dans le cylindre 2. Cette étape est représentée sur la figure 3b.The filament 3 is introduced into the cylinder 2. This step is shown in FIG. 3b.

On remplit ensuite en plusieurs fois le cylindre avec la pâte dont la consistance peut être modifiée par addition du liant. A chaque fois qu"on a ajouté de la pâte dans le cylindre, on fait s'évaporer le liant, qui peut être de l'acétone, en utilisant la lampe électrique.The cylinder is then filled several times with the paste, the consistency of which can be modified by adding the binder. Whenever we have added paste to the cylinder, the binder, which may be acetone, is evaporated using the electric lamp.

Enfin, on fritte sous hydrogène entre 1700 et 1800°C pendant une demi-heure environ de façon à obtenir le "potting" 4.Finally, sintered under hydrogen between 1700 and 1800 ° C for about half an hour so as to obtain the "potting" 4.

En faisant s'évaporer le liant lentement et au fur et à mesure qu'on ajoute une couche de pâte dans le cylindre, on évite la formation de bulles dues à une évaporation rapide du liant de la totalité de la pâte remplissant le cylindre.By evaporating the binder slowly and as a layer of paste is added to the cylinder, the formation of bubbles is prevented due to rapid evaporation of the binder from all of the paste filling the cylinder.

Claims (9)

1. Elément chauffant pour cathode à chauffage indirect constituée d'un disque émissif (1) qui occupe l'une des extrémités d'un cylindre (2) en matériau non émissif, cet élément chauffant étant constitué d'un filament (3) situé à l'intérieur du cylindre et d'un mélange (4) fritté d'alumine et d'oxyde, qui remplit l'espace laissé libre par le filament à l'intérieur du cylindre, caractérisé en ce que ce mélange (4) est constitué d'alumine et de moins de 10 % en poids d'un oxyde d'un des éléments de la colonne III A de la table périodique des éléments, ce mélange étant fritté entre 1700 et 1800°C.1. Heating element for indirect heating cathode consisting of an emissive disc (1) which occupies one end of a cylinder (2) made of non-emissive material, this heating element consisting of a filament (3) located inside the cylinder and a sintered mixture of alumina and oxide, which fills the space left free by the filament inside the cylinder, characterized in that this mixture (4) is consisting of alumina and of less than 10% by weight of an oxide of one of the elements of column III A of the periodic table of the elements, this mixture being sintered between 1700 and 1800 ° C. 2. Elément chauffant selon la revendication 1, caractérisé en ce que ce mélange (4) est constitué d'oxyde d'yttrium et d'alumine de composition chimique, 3 Y2 O3 . Al2 O3 plus de l'alumine en phase α .2. Heating element according to claim 1, characterized in that this mixture (4) consists of yttrium oxide and alumina of chemical composition, 3 Y 2 O 3 . Al 2 O 3 plus alumina in the α phase. 3. Elément chauffant selon la revendication 1, caractérisé en ce que ce mélange (4) est constitué d'oxyde de lanthane et d'alumine de composition chimique, La2 O3 . 11 Al2 O3 plus de l'alumine en phase α.3. Heating element according to claim 1, characterized in that this mixture (4) consists of lanthanum oxide and alumina of chemical composition, La 2 O 3 . 11 Al 2 O 3 plus alumina in the α phase. 4. Elément chauffant selon la revendication 1, caractérisé en ce que ce mélange (4) est constitué d'oxyde de scandium et d'alumine de composition chimique, Sc2 O3 . Al2 03 plus de l'alumine en phase α4. Heating element according to claim 1, characterized in that this mixture (4) consists of scandium oxide and alumina of chemical composition, Sc 2 O 3 . Al2 03 plus α-phase alumina 5. Elément chauffant selon l'une des revendication 1 à 4, caractérisé en ce que ce mélange (4) comporte plusieurs variétés d'alumine de granulométrie différente.5. Heating element according to one of claims 1 to 4, characterized in that this mixture (4) comprises several varieties of alumina of different particle size. 6. Elément chauffant selon la revendication 5, caractérisé en ce que l'une des variétés d'alumine' comporte des grains de moins de 10 µm de diamètre alors que l'autre variété comporte des grains de 10 à 50µm de diamètre.6. Heating element according to claim 5, characterized in that one of the varieties of alumina 'has grains of less than 10 µm in diameter while the other variety has grains of 10 to 50 µm in diameter. 7. Elément chauffant selon l'une des revendications 1 à 6, caractérisé en ce que le filament (3) est en tungstène ou en tungstène rhénium recouvert par cataphorèse d'une couche d'isolement en alumine ou consituée par le mélange d'alumine et d'oxyde qui constitue le reste de l'élément chauffant.7. Heating element according to one of the resale cations 1 to 6, characterized in that the filament (3) is made of tungsten or tungsten rhenium covered by cataphoresis with an insulating layer of alumina or constituted by the mixture of alumina and oxide which constitutes the remainder of the heating element. 8. Procédé de fabrication d'un élément chauffant selon l'une des revendications 1 à 7, caractérisé en ce qu'il comporte les étapes suivantes : a) - on mélange intimement en agitant pendant 24 heures au moins, de la poudre d'un oxyde d'un des éléments de la colonne III A de la table périodique des éléments et une ou plusieurs poudres d'alumine de granulométrie différente, la poudre d'oxyde ne dépassant pas 10 % en poids du mélange ; b) - on ajoute au mélange un liant de façon à obtenir une pâte c) - on tapisse avec cette pâte la face du disque émissif (1) située vers l'intérieur du cylindre (2) en matériau non-émissif, puis on fait s'évaporer lentement le liant ; d) - on introduit le filament (3) dans le cylindre ; e) - on remplit en plusieurs fois le cylindre (2) avec la pâte dont la consistance peut être modifiée par addition du liant, en faisant s'évaporer chaque fois le liant ; f) - on fritte sous hydrogène, entre 1700 et 1800°C. 8. Method for manufacturing a heating element according to one of claims 1 to 7, characterized in that it comprises the following steps: a) - intimately mixing by stirring for at least 24 hours, the powder of an oxide of one of the elements of column III A of the periodic table of the elements and one or more alumina powders of different particle size, the oxide powder not exceeding 10% by weight of the mixture; b) - a binder is added to the mixture so as to obtain a paste c) - the surface of the emissive disc (1) located towards the inside of the cylinder (2) made of non-emissive material is coated with this paste, then the binder is slowly evaporated; d) - the filament (3) is introduced into the cylinder; e) - the cylinder (2) is filled several times with the paste, the consistency of which can be modified by adding the binder, by evaporating the binder each time; f) - sintered under hydrogen, between 1700 and 1800 ° C. 9. Cathode à chauffage indirect, caractérisée en ce qu'elle comporte un,élément chauffant selon l'une des revendications 1 à 7 et en ce qu'elle est constituée d'un cylindre (2) en molybdène brasé à l'une de ses ex- trêmités sur un disque émissif (1) constitué de tungstène poreux imprégné à chaud d'aluminate de baryum et de calcium.9. Cathode with indirect heating, characterized in that it comprises a heating element according to one of claims 1 to 7 and in that it consists of a cylinder (2) of molybdenum brazed to one of its ends on an emissive disc (1) made of porous tungsten hot impregnated with barium aluminate and calcium.
EP81400096A 1980-02-15 1981-01-23 Heating element for indirectly heated cathodes, process for manufacturing such an element and indirectly heated cathode comprising the same Withdrawn EP0034512A3 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8003410 1980-02-15
FR8003410A FR2476386A1 (en) 1980-02-15 1980-02-15 INDIRECT HEATING CATHODE HEATING ELEMENT, METHOD OF MANUFACTURING THE SAME, AND INDIRECT HEATING CATHODE COMPRISING SUCH A MEMBER

Publications (2)

Publication Number Publication Date
EP0034512A2 true EP0034512A2 (en) 1981-08-26
EP0034512A3 EP0034512A3 (en) 1982-05-26

Family

ID=9238641

Family Applications (1)

Application Number Title Priority Date Filing Date
EP81400096A Withdrawn EP0034512A3 (en) 1980-02-15 1981-01-23 Heating element for indirectly heated cathodes, process for manufacturing such an element and indirectly heated cathode comprising the same

Country Status (3)

Country Link
US (1) US4427916A (en)
EP (1) EP0034512A3 (en)
FR (1) FR2476386A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2664427A1 (en) * 1990-07-03 1992-01-10 Thomson Tubes Electroniques Indirect-heating cathode with integrated filament for linear beam tube
WO2001015206A1 (en) * 1999-08-22 2001-03-01 Ip2H Ag Light source

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60189447U (en) * 1984-05-28 1985-12-16 アップリカ葛西株式会社 Child safety seat for automobiles
JPH0624093B2 (en) * 1984-12-26 1994-03-30 株式会社日立製作所 Heater for indirectly heated cathode
US5065070A (en) * 1990-12-21 1991-11-12 Hughes Aircraft Company Sputtered scandate coatings for dispenser cathodes
US5208508A (en) * 1991-09-16 1993-05-04 Raytheon Company Cathode heater potting assembly
FR2681726A1 (en) * 1991-09-20 1993-03-26 Thomson Tubes Electroniques Insulating potting for indirect heating cathodes
CN112490098B (en) * 2020-12-09 2023-03-14 成都国光电气股份有限公司 Mixed filling powder for hot wire component and preparation method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1315581A (en) * 1961-02-24 1963-01-18 Siemens Ag Process for manufacturing vacuum-holding insulating sintered bodies
US3400294A (en) * 1964-12-07 1968-09-03 Gen Electric Heated cathode and method of manufacture
DE1805821A1 (en) * 1968-10-29 1970-06-04 Telefunken Patent Indirectly heated emission electrode
US3803441A (en) * 1972-04-28 1974-04-09 Tokyo Shibaura Electric Co Indirectly heated type cathode devices using foil heater embedded in mixture of heat resistant dielectric and a metal

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1315581A (en) * 1961-02-24 1963-01-18 Siemens Ag Process for manufacturing vacuum-holding insulating sintered bodies
US3400294A (en) * 1964-12-07 1968-09-03 Gen Electric Heated cathode and method of manufacture
DE1805821A1 (en) * 1968-10-29 1970-06-04 Telefunken Patent Indirectly heated emission electrode
US3803441A (en) * 1972-04-28 1974-04-09 Tokyo Shibaura Electric Co Indirectly heated type cathode devices using foil heater embedded in mixture of heat resistant dielectric and a metal

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2664427A1 (en) * 1990-07-03 1992-01-10 Thomson Tubes Electroniques Indirect-heating cathode with integrated filament for linear beam tube
WO2001015206A1 (en) * 1999-08-22 2001-03-01 Ip2H Ag Light source
US6777859B1 (en) 1999-08-22 2004-08-17 Ip2H Ag Light source

Also Published As

Publication number Publication date
FR2476386A1 (en) 1981-08-21
US4427916A (en) 1984-01-24
FR2476386B1 (en) 1982-08-20
EP0034512A3 (en) 1982-05-26

Similar Documents

Publication Publication Date Title
US5585694A (en) Low pressure discharge lamp having sintered "cold cathode" discharge electrodes
US4602956A (en) Cermet composites, process for producing them and arc tube incorporating them
US5742123A (en) Sealing structure for light-emitting bulb assembly and method of manufacturing same
FR2462018A1 (en) CATHODE RESERVED
EP0034512A2 (en) Heating element for indirectly heated cathodes, process for manufacturing such an element and indirectly heated cathode comprising the same
HU225336B1 (en) Smelted foil and electric lamp with that smelted foil and method for production of contact between molibden foil and current leadthrough conductor
US3964943A (en) Method of producing electrical resistor
US20020033671A1 (en) Joined body and a high pressure discharge lamp
EP1001453B1 (en) Electricity lead-in body for bulb and method for manufacturing the same
US6597114B1 (en) Lamp and lamp package made of functionally gradient material
KR0128730B1 (en) Electric camp provided with a getter
EP0318921B1 (en) High critical temperature superconducting composite wire, and method of making the same
US7126280B2 (en) Joined bodies, assemblies for high pressure discharge lamps and high pressure discharge lamps
EP0489463A2 (en) Low pressure discharge lamp
JP3384513B2 (en) Electron tube sealing structure using functionally graded material
US7132798B2 (en) Joined bodies, high pressure discharge lamps and assemblies therefor
KR100189035B1 (en) Scandate cathode and method of making it
US7538058B2 (en) Sintered body and electric lamp
JPS6035422B2 (en) Conductive cermet and its manufacturing method
EP0441698B1 (en) Impregnated cathode manufacturing procedure and cathode obtained therewith
EP1170770B1 (en) Joined bodies and high-pressure discharge lamps
EP0424399A1 (en) Superconductive cable and method of manufacturing a superconductive cable
JP3523617B2 (en) SiO2 glass sphere with at least one current inlet, a high-power discharge lamp with the glass sphere and a method for producing a gas-tight connection between the glass sphere and a socket
US20040119392A1 (en) Joined body and high pressure discharge lamp
JP3460537B2 (en) Functionally graded material

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): DE GB IT

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Designated state(s): DE GB IT

17P Request for examination filed

Effective date: 19820608

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Withdrawal date: 19860206

RIN1 Information on inventor provided before grant (corrected)

Inventor name: SHROFF, ARVIND