EP0242497B1 - Tunnelbauverfahren - Google Patents

Tunnelbauverfahren Download PDF

Info

Publication number
EP0242497B1
EP0242497B1 EP86870058A EP86870058A EP0242497B1 EP 0242497 B1 EP0242497 B1 EP 0242497B1 EP 86870058 A EP86870058 A EP 86870058A EP 86870058 A EP86870058 A EP 86870058A EP 0242497 B1 EP0242497 B1 EP 0242497B1
Authority
EP
European Patent Office
Prior art keywords
tunnel
elements
vertical
successive
vertical elements
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP86870058A
Other languages
English (en)
French (fr)
Other versions
EP0242497A1 (de
Inventor
Paul Hemberg
Bonfils Koeckelberg
Henri Stassens
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sa Entreprises Koeckelberg
Original Assignee
Sa Entreprises Koeckelberg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sa Entreprises Koeckelberg filed Critical Sa Entreprises Koeckelberg
Priority to DE8686870058T priority Critical patent/DE3660932D1/de
Priority to EP86870058A priority patent/EP0242497B1/de
Priority to AT86870058T priority patent/ATE37929T1/de
Publication of EP0242497A1 publication Critical patent/EP0242497A1/de
Application granted granted Critical
Publication of EP0242497B1 publication Critical patent/EP0242497B1/de
Expired legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D29/00Independent underground or underwater structures; Retaining walls
    • E02D29/045Underground structures, e.g. tunnels or galleries, built in the open air or by methods involving disturbance of the ground surface all along the location line; Methods of making them
    • E02D29/05Underground structures, e.g. tunnels or galleries, built in the open air or by methods involving disturbance of the ground surface all along the location line; Methods of making them at least part of the cross-section being constructed in an open excavation or from the ground surface, e.g. assembled in a trench
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D29/00Independent underground or underwater structures; Retaining walls
    • E02D29/045Underground structures, e.g. tunnels or galleries, built in the open air or by methods involving disturbance of the ground surface all along the location line; Methods of making them

Definitions

  • the present invention relates to a process for constructing tunnels by means of prefabricated concrete elements, joined together on site by concreting (see our EP-A-0 197 921 which represents the state of the art according to the article 54 (3) of the EPC).
  • the tunnels are produced either by pouring successive tunnel sections in place, or by aligning prefabricated tunnel sections.
  • the tunneling process which consists of aligning prefabricated tunnel sections allows the length of the site to be reduced.
  • the prefabricated sections are placed, the backfilling and finishing work can be carried out.
  • Yet another problem is the long-term inconvenience caused to residents, caused by the activity of the site, the movement of large lifting equipment and the difficulty of access caused by the breaking up of the roadways.
  • the process according to the present invention in fact calls upon a certain number of standardized prefabricated elements, of relatively reduced weight (approximately 10 tonnes), the handling of which requires only more mobile lifting devices, of the type commonly used on most Construction sites.
  • These lifting devices can be automobile cranes, which do not need to be mounted on rails.
  • the use of standardized prefabricated elements allows the process of the invention to make either small section tunnels or larger section tunnels, for example for large gauge metro, railway underground iron, etc., by juxtaposing a greater or lesser number of these standardized elements.
  • the method according to the invention makes it possible to vary the section of the tunnels, which can thus pass from a minimum section (for a single tunnel section of line) to a maximum section (sections of tunnel comprising stations, with landing platforms, waiting rooms, etc.) passing through intermediate sections. It is even possible to produce, according to the method of the invention, two-level tunnels.
  • the present invention relates to a method for the construction of a tunnel by means of prefabricated concrete elements, which are joined together by concreting, after placement.
  • the construction of a tunnel according to the present invention comprises the following phases:
  • the successive phases of realization of the tunnel are executed in order along the construction site, from the installation of the vertical elements to the zone of completion where the backfilling and the covering take place. of the completed tunnel.
  • the installation of two contiguous elements is separated by a time interval ensuring the stabilization of the fill material.
  • a pair of two vertical elements facing each other is successively placed on a section, in two passes.
  • a section of site extends over the length corresponding to the installation of six successive vertical elements.
  • the vertical elements partially constituting the side walls of the tunnel are oblong shells of reinforced concrete having a cylindrical arch whose generator is parallel to the major axis of the shells; these shells are closed at each of their ends by a base, perpendicular to their major axis.
  • These shells are arranged in such a way that their concave side is directed towards the interior of the tunnel, and that their arch is directed towards the walls of the trench.
  • a vertical element is advantageously extended, at its lower part, by a heel which remains stuck in the ground during the excavation of the volume of the tunnel, so as to maintain the element in place before the installation of a beam shoring.
  • the shells have two flat and parallel side panels extending the arch on each side thereof.
  • the lateral faces of a shell have, on the side of the interior of the tunnel, a rebate intended for the installation of formwork plates and cells intended for the introduction of pins for the maintenance of these plates.
  • the shells have on the outer faces of the side panels, near their edge directed towards the outside of the tunnel, a groove parallel to the long axis of the shells, capable of receiving the lateral edge of a formwork plate.
  • the rear face of a shell is extended upwards by a shoulder forming a cof frage during the concreting of the upper slab of the tunnel.
  • the face of a shell turned towards the outside of the tunnel is substantially planar and is connected perpendicularly to its lateral faces.
  • the shells have vertical grooves on the lateral external faces which improve their connection with the elements of the tunnel cast on site.
  • the shell is provided, in its lower part, with openings, the axis of which is parallel to the axis of the tunnel, which are intended for the passage of concrete reinforcing pieces intended to be embedded in concrete during pouring.
  • the edge of the side panels of the shells has at its upper part, a recess intended to support the end of a lintel held in place by bolting.
  • the concave face of the shells is closed during their installation.
  • the shells are closed by a cover made of a steel sheet.
  • the assembly of a beam, of the two reinforced concrete columns which support each of the ends of this beam and the raft supporting each of these reinforced concrete columns, forms a framework capable of taking up the vertical pressures exerted by the land and the road network higher, as well as the horizontal earth pressure.
  • the method according to the invention has a number of advantages.
  • the arched shape of the hulls preferably used offers the advantage of taking up the horizontal loads of pushing the earth with relatively thin partitions and not requiring additional reinforcements.
  • the number of prefabricated elements used being reduced (indeed, it mainly includes only shoring beams, vertical elements forming the vertical walls, lintels, upper beams and slabs), the installation of these elements is a following repeated operations, which promotes speed of execution.
  • the method also makes it possible to spread the working times over successive sections at different stages of completion in such a way that the progression of the tunnel continues continuously, with no downtime for the workforce, even during the lapse of time required for hardening of the concrete or during drying of the products applied for the waterproofing cover.
  • the process provides for a first phase of placing vertical elements in the ground, a phase which can progress at its own pace ahead of the site itself, which allows a large spread of tasks depending on time constraints.
  • the site installations themselves also occupy a reduced floor area due to the mobility of the site and the use of a maximum of prefabricated elements off site.
  • the process also allows to marry the various unevenness of the terrain as well as the changes of direction imposed by the layout, while using the majority of the prefabricated elements above.
  • the method also lends itself to the construction of tunnels of various widths; one can for example, make narrow passages for straight sections, or wider sections for stations, or even intermediate sections connecting the narrow sections and the wide sections. As will be described later, these different widths are produced without problem with the prefabricated elements already described.
  • the process according to the invention makes it possible to combine the structural work and the finishing touches; in particular inside the stations one can take advantage of the shape of the hulls.
  • the dimensions of these shells can vary between relatively wide limits, but according to a particular and advantageous embodiment of the invention, the width of these shells is between 2 and 3 meters.
  • the walls of the stations are presented as a succession of niches, which can be arranged as required.
  • the benches can advantageously be ribs of any shape forming one body with the shells, produced during the factory manufacture of these.
  • the shells forming the walls of the tunnel between the stations can be arranged to receive electrical devices such as junction boxes, lighting, signaling devices, etc.
  • the particular configuration of the walls can also be used advantageously acoustically. Indeed, sounds are picked up by the surface of the walls, which considerably lowers the acoustic level and thus improves the comfort of tunnel users, especially passengers waiting at stations.
  • Figs. 1 and 2 show two cross-sectional views of the tunnel during the prior positioning of the vertical elements 1.
  • a dig 2 On either side of the tunnel, at the base of the space provided for the vertical walls, a dig 2 has been dug so large that it is possible to introduce a vertical element in the form of a shell 1 of reinforced concrete intended to constitute a part of the side walls.
  • This excavation 2 can be carried out in any way, but it is advantageously possible to use a rapid digging method where the excavation is propped up by interlocking metallic shields 3 slid in place as the digging progresses.
  • a seat 4 is produced which is intended to facilitate the positioning of the shell 1 which is placed vertically in the excavation 2.
  • a closure means 7 such as a sheet of suitable shape .
  • Fig. 2 shows in cross section two final stages of the prior placement of the shells 1.
  • the shield 3 is progressively reassembled, while introducing into the remaining space between the shell 1 and the sides of the excavation 8, a backfill material 9 such as, for example, stabilized slag or stabilized sand.
  • Fig. 4 shows a perspective view, with cutaway, of a particular shape of a vertical shell-shaped element 1 used in the construction method according to the invention.
  • This element has a cylindrical arch 10 whose generator is parallel to the axis of the shell. It is enclosed at each of its ends by a base 11 perpendicular to its major axis.
  • Two side panels 12 extend the vault 10 on each side thereof.
  • the rear face 13 of the shell 1 is practically flat and is connected perpendicularly to the side faces 14.
  • Such a shape contributes to reducing the manufacturing costs of these elements which can be prefabricated in molds of standard shape.
  • the edge of the side panels 12 comprises, near the top of the element, a recess 15 intended to support the end of a lintel fixed by bolting, as will be seen in FIG. 5.
  • the lateral faces 14 of the shell 1 comprise; on the side facing the interior of the tunnel, a rebate 16 extending over the entire height of the element, as well as perforations 17 allowing the insertion of pins intended to hold formwork panels in the rebates 16, like this will be described later.
  • the side faces 14 of the shell 1 have, on the side facing the outside of the tunnel, a groove 18 which extends over the entire height of the shell 1.
  • This groove 18 makes it possible to insert a rear formwork panel over any or part of the height of the hull 1.
  • This formwork panel cooperates, at the time of concreting, with the shoulder 19 which extends like a crest the rear face 13 of the shell 1.
  • the lateral faces 14 of the shell 1 have vertical grooves 20 intended to improve the connection of the shell 1 with the adjacent reinforced concrete elements.
  • the shell 1 is pierced with openings 21 which pass through the side panels 12 right through.
  • the foot of the shell 1 is extended by a heel 22 whose function is described below.
  • a closure means 7 consisting of a plate 23 provided with stiffeners 24 is fixed, in this case by bolts, in front of the concave face 6 of the shell so as to close it during its installation.
  • This plate 23 is cut so that the lintels can be put in place without having to remove it.
  • Fig. 3 shows an advantageous sequence for the installation of the shells.
  • FIG. 3 The sequence described in FIG. 3 is designed in such a way that it avoids the successive laying of two contiguous elements, both to avoid ground movements and to allow the stabilization of the fill material 9.
  • a judicious distribution of the work, as shown in FIG . 3, allows the twelve hulls 1 corresponding to a section of the site to be installed without problems in four days.
  • Figs. 5 and 6 show in a sectional view along a vertical plane parallel to the axis of the tunnel, two successive stages of excavation of a tunnel produced according to the invention.
  • Fig. 5 shows the tunnel after pre-excavation of a first layer of soil 25 freeing the head of the shells 1 from a section.
  • the slope of the earthwork front 26 is gentle so that the base of the hulls 1 not yet secured is held in place despite the lateral thrust of the earth.
  • Fig. 6 shows the progression of the earthwork front 26 and the simultaneous joining of the hulls 1.
  • a lintel 27 is fixed in place between two successive shells 1; these lintels 27 support a transverse beam 28 which connects between them two lintels 27 facing each other on either side of the tunnel.
  • the earthwork front 26 thus successively releases each pair of shells 1 over their entire height.
  • the lateral thrust exerted by the earth is temporarily compensated by the heel 22 which remains buried in the ground.
  • the dimensions of this heel 22 are determined from the mechanical characteristics of the ground.
  • the shoring beam 29 is placed there, which then takes up the thrust exerted on the lateral faces of the tunnel.
  • the effects of lateral thrust from the ground may be temporarily taken up before the laying of the shoring beams 29 by a metal shoring placed at the base of a gantry.
  • the interval 30 separating two successive shells 1 is released from the backfill material 9.
  • a reinforcement 31 is introduced therein cooperating with longitudinal reinforcement elements 32 joining the bottom of the shells 1 in the same row.
  • the interval 30 between two successive shells 1 is then closed by a formwork plate 33 applied in the rebates 16.
  • the transverse upper beams 28 support pre-slabs 37 in reinforced concrete, arranged in such a way that each pre-slab 37 is supported by its front edge on a transverse upper beam 28, and by its rear edge on the following transverse upper beam 28.
  • Transverse beams 28 and slabs 27 form, by the way they adjust, a formwork for pouring the upper slab 38.
  • the side faces of this formwork are formed by the shoulder 19 which extends upwards the rear face 13 shells as well as by cofage panels 39 inserted in the grooves 18 formed near the rear edge of the side faces 14 of these elements.
  • the tunnel progress continues without interruption by a simple task transfer to the other sections at various stages of completion.
  • the upper part of the tunnel is coated with a sealing layer and backfilling is carried out.
  • Fig. 8 is a section through the tunnel, perpendicular to its axis, indicating the three successive concreting phases necessary to produce a gantry capable of taking up the lateral and vertical thrusts exerted by the earth on the tunnel.
  • Phase 1 concerns the raft 35 and the double longitudinal sole 36 which extends over the entire length of the tunnel.
  • Phase 2 concerns the vertical columns 34 located between the shells 1.
  • Phase 3 concerns the joining of these vertical columns 34, the transverse beams 28 and the upper slab 38 of the structure.
  • Figs. 9 and 10 show two sections, one in elevation, the other in plan, of the base of a column 34 joining two shells 1. This location constitutes a real knot in the structure of the tunnel since reinforcements join there. taking up stresses coming from three different directions, namely the reinforcements 31 of the vertical column 34, not shown, located between two shells 1, the reinforcement 32, the longitudinal "beam” 36 which connects all the shells of a row and the shoring beam 29 and raft 35 which transversely connects the two sides of the tunnel.
  • the method according to the invention has the advantage of allowing the tunnel to follow the various unevennesses of the terrain as well as the height changes imposed by the layout.
  • FIG. 11 and 12 An example of such a tunnel is illustrated in Figs. 11 and 12, in which the elements common to all the embodiments described have the same reference numbers.
  • Figs. 11 and 12 illustrate a straight-aligned tunnel whose slope is sloping.
  • the different production phases are the same as those described above for the construction of a straight and horizontal tunnel.
  • the successive hulls are placed at different levels depending on the slope of the tunnel to be built.
  • the shells are placed vertically since it is essential that the columns which will be cast in the spaces between the successive shells are vertical.
  • a lintel of this type as illustrated in FIG. 12, has at its upper surface two bearing surfaces 40 and 41 offset, separated by a rung 42 whose height is equal to the difference in level between two successive shells 1.
  • the ends of two half-beams 43 and 44 will come to bear respectively on the surfaces 40 and 41.
  • These beams 43 and 44 are, therefore, offset in height relative to each other.
  • the connection with the vertical columns 34 of the half-beams 43, 44 is done in the same way as in the case of a tunnel with a horizontal attitude, as described above.
  • Fig. 13 illustrates an example of a curved tunnel, in which the elements common to all the embodiments have the same reference numbers.
  • the construction phases of a curved tunnel are the same as before.
  • the interval between the shells 1 of the row situated outside the curve is greater than the interval between the shells 1 of the row situated inside the curve.
  • Fig. 14 illustrates an example of a tunnel constructed in an aquifer.
  • the section illustrated is in a straight line, but it goes without saying that the method applies as well to a tunnel in curved alignment as to a tunnel whose attitude is sloping.
  • the tunnel section then comprises shells 1, the vault 10 of which is provided with openings 47 placing the interior thereof in communication with the surrounding medium, and consequently allowing the passage of water.
  • the cavity 6 of these shells is closed over the entire height by a vertical partition 48 provided with an access hole 49 (FIG. 15). The interior of these shells thus fills with water to a level equal to the level of the sheet.
  • a transverse pipe 50 located below the raft 35 connects two shells 1 on each side of the tunnel.
  • This pipe 50 is connected to the lower part of each shell 1 by an orifice 51 and allows the passage of the groundwater and the establishment of the balance of the levels thereof on each side of the tunnel.
  • the method according to the invention is not limited to the production of simple tunnels, such as those described above, and an example of which is illustrated in section in FIG. 8, allowing circulation along two parallel lanes, but also lends itself to the production of tunnels of greater width, for example, a tunnel of double width, as illustrated in section in FIG. 16.
  • This tunnel comprises intermediate columns 52 arranged along the median axis of the tunnel. Each of these columns 52 supports the inner ends of two upper beams 53 perpendicular to the axis of the tunnel, the outer ends of which are supported by lintels 27 and concreted to vertical columns 34 (not shown) in the manner described above.
  • the beams 53 are joined together and with the column 52 which supports them, the assembly thus obtained forming a double gantry secured to the raft.
  • Fig. 17 shows a particular embodiment of a double tunnel, using upper beams 54 of greater length, which allows the development of a central landing platform 55, between the traffic lanes.
  • the width of the tunnel can be increased as desired, as required, thanks to the multiplication of intermediate elements (columns 52, upper beams, etc.).
  • the method according to the invention also lends itself to the production of intermediate tunnel sections, for joining, for example, a single tunnel section (line) to a double tunnel section (station), passing through intermediate widths .

Landscapes

  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Paleontology (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Lining And Supports For Tunnels (AREA)
  • Underground Structures, Protecting, Testing And Restoring Foundations (AREA)

Claims (13)

1. Verfahren zum Bauen von Tunneln mittels vorgefertigter Elemente aus Beton, die nach dem Anordnen miteinander fest verbunden sind, dadurch gekennzeichnet, dass es die folgenden schritte umfasst:
- Ausheben, in der senkrechten Richtung des ortes für die vertikalen Wände, von abgesteiften Gruben (2) mit etwas grösseren Abmessungen als denjenigen von vorgefertigten Elementen (1) aus armiertem Beton, die bestimmt sind, teilweise die Wände des Tunnels zu bilden,
- Ausführen einer Fundamentplatte (4),
- Anordnen von vertikalen Elementen (1) in jeder Grube (2), wobei jedes Element (1), zum vorhergehenden mit Abstand befindlich, zur Rechten eines änhlichen, auf der anderen Seite des Tunnels angeordneten Elementes (1) angeordnet ist,
- Auffüllen der Gruben (2) mittels eines stabilisierten Füllmaterials (9) und gleichzeitiges Zurückziehen der Absteifungen (3),
- frontales Voranschütten (25) des Volumens des Tunnels, wobei fortschreitend der Scheitel der vertikalen Elemente (1) eines Tunnelteilstücks freigelegt wird,
- Anordnen von Sturzen (27) parallel zur Achse des Tunnels, zur Rechten der zwei vertikale Elemente (1) trennenden Zwischenräume derart, dass jeder Sturz (27) sich mit seinen Enden am oberen Teil zweier aufeinanderfolgender vertikaler Elemente (1) aufstützt,
- Anordnen oberer Querträger (28), wobei jeder Träger mit seinen Enden auf Sturzen (27) ruht, die einander gegenüber auf beiden Seiten des Tunnels angeordnet sind,
- frontales Ausheben (26) des Volumens des Tunnels, wobei fortschreitend jedes durch einen Querträger (28) fest verbundene Paar von vertikalen Elementen (1) freigelegt wird, wobei der untere Teil (22) der vertikalen Elemente im Boden gesteckt bleibt,
- Freilegen des zwei aufeinanderfolgende vertikale Elemente (1) trennenden Zwischenraums (30),
- Anordnen eines Absteifungsträgers (29) zur Rechten des zwei aufeinanderfolgende Elemente trennenden Zwischenraums,
- Einführen einen Armierung (31) in den zwei aufeinander folgende Elemente trennenden vertikalen Raum,
- Einsetzen einer Schalungsplatte (33) zwischen zwei aufeinanderfolgenden vertikalen Elementen (1) zum Innenraum des Tunnels hin,
- Einführen von Armierungselementen (32) parallel zur Achse des Tunnels durch unterhalb der Seitenwände (14) des vertikalen Elemente ausgesparte öffnungen (17),
- Giessen von Beton in die zwischen zwei aufeinanderfolgenden vertikalen Elementen (1) gebildeten Verschalungen,
- Egalisieren des Bodens der Ausschachtung,
- Anordnen einer Armierung und Giessen der Sohle (35),
- Anordnen von Vorplatten (37) aus armiertem Beton derart, dass jede Vorplatte auf zwei aufeinanderfolgenden, oberen Querträgern (28) aufliegt,
- Betonieren der oberen Platte (38) und festes Verbinden von dieser mit den vertikalen Stützen,
- Anordnen eines Dichtungsmittels,
- Auffüllen und Abdecken des Tunnels.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die aufeinanderfolgenden Schritte der Ausführung des Tunnels in der Reihenfolge längs der Baustelle ausgeführt werden, vom Ausheben der abgesteiften Gruben (2) bis zu den Endschritten des Auffüllens und Abdeckens des Tunnels.
3. Verfahren nach einem beliebigen der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die vertikalen Elemente (1) gemäss einer Abfolge angeordnet werden, wobei das aufeinanderfolgende Anordnen von zwei benachbarten Elementen vermieden wird.
4. Verfahren nach einem beliebigen der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die teilweise die Seitenwände des Tunnels bildenden vertikalen Elemente längliche Schalen aus armiertem Beton sind, aufweisend eine zylindrische Wölbung (10), deren Erzeugende zur grossen Achse der Schalen parallel ist; wobei diese Schalen an jedem ihrer Enden durch eine zu ihrer grossen Achse senkrechte Basis (11) verschlossen sind, wobei sich das untere Ende (5) einer Schale durch einen Absatz (22) verlängert, dessen Höhe sich abhängig von der Art des Geländes ändert, wobei diese Schalen derart angeordnet sind, dass ihre konkave Seite (6) dem Inneren des Tunnels zugewandt ist.
5. Verfahren nach Anspruch 4, dadurch gekennzeichnet, dass die Wölbung (10) einer Schale (1) auf jeder Seite durch zwei ebene und seitliche Wände (12) verlängert ist.
6. Verfahren nach einem beliebigen der Ansprüche 4 und 5, dadurch gekennzeichnet, dass die seitlichen Flächen (14) der Schalen auf der Seite des Inneren des Tunnels einen zur Anbringung von Schalungsplatten (33) bestimmten Anschlagfalz (16) sowie Haltemittel (17) für die Platten aufweisen.
7. Verfahren nach einem beliebigen der Ansprüche 4 bis 6, dadurch gekennzeichnet, dass die seitlichen Flächen eine Schale (1) ihre feste Verbindung mit den vertikalen Säulen verbesserende Rillen (20) aufweisen.
8. Verfahren nach einem beliebigen der Ansprüche 4 bis 7, dadurch gekennzeichnet, dass die seitlichen Flächen (14) einer Schale (1) auf der rückwärtigen Seite dieses Elementes eine zur Aufnahme der seitlichen Kante einer Schalungsplatte (39) geeignete vertikale Nut (18) umfassen.
9. Verfahren nach einem beliebigen der Ansprüche 4 bis 8, dadurch gekennzeichnet, dass die Aussenseite des Tunnels gewandte Seite (13) einer Schale im wesentlichen eben ist und sich senkrecht zu den seitlichen Flächen (14) der Elemente anschliesst.
10. Verfahren nach Anspruch 9, dadurch gekennzeichnet, dass die zur Aussenseite des Tunnels gewandte vertikale Seite (13) einer Schale nach oben durch einen Ansatz (19) verlängert ist, der als Verschalungselement zur Zeit des Giessens der oberen Platte (38) des Tunnels dient.
11. Verfahren nach einem beliebigen der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die konkave Seite (6) der Schalen (1) während ihrer Anbringung abgeschlossen wird.
12. Verfahren nach Anspruch 11, dadurch gekennzeichnet, dass die Schalen (1) durch einen durch eine mit Aussteifungen (24) versehene Platte (23) gebildeten Deckel verschlossen werden.
13. Tunnel, ausgefürht gemäss dem Verfahren nach einem beliebigen der Ansprüche 1 bis 12.
EP86870058A 1986-04-25 1986-04-25 Tunnelbauverfahren Expired EP0242497B1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE8686870058T DE3660932D1 (en) 1986-04-25 1986-04-25 Tunnel construction process
EP86870058A EP0242497B1 (de) 1986-04-25 1986-04-25 Tunnelbauverfahren
AT86870058T ATE37929T1 (de) 1986-04-25 1986-04-25 Tunnelbauverfahren.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP86870058A EP0242497B1 (de) 1986-04-25 1986-04-25 Tunnelbauverfahren

Publications (2)

Publication Number Publication Date
EP0242497A1 EP0242497A1 (de) 1987-10-28
EP0242497B1 true EP0242497B1 (de) 1988-10-12

Family

ID=8196539

Family Applications (1)

Application Number Title Priority Date Filing Date
EP86870058A Expired EP0242497B1 (de) 1986-04-25 1986-04-25 Tunnelbauverfahren

Country Status (3)

Country Link
EP (1) EP0242497B1 (de)
AT (1) ATE37929T1 (de)
DE (1) DE3660932D1 (de)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GR1001467B (el) * 1991-02-20 1994-01-31 Kosm Georgios Νέα μέ?οδος ταχύρυ?μης κατασκευής ηλεκτρικών σιδηροδρόμων(Μετρό) πόλεων.
ES2052433B1 (es) * 1992-02-13 1998-02-16 Codelfa Prefabbricati S P A Sistema para la construccion de galerias artificiales con elementos prefabricados de hormigon.
IL113262A0 (en) * 1995-04-05 1995-07-31 Yitshaq Lipsker Construction of holes and tunnels having support walls
CN110863515A (zh) * 2019-12-17 2020-03-06 中铁二局集团有限公司 一种共墙隧道群的底部回填结构及其施工方法
CN115492216B (zh) * 2022-09-30 2023-07-04 中铁八局集团电务工程有限公司 一种管道迁改至地下车站上方的支承装置及施工方法
CN115354693B (zh) * 2022-10-19 2023-03-17 中国铁路设计集团有限公司 一种明挖隧道装配式u型槽结构及施工方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE446535C (de) * 1927-07-05 Ignaz Beissel Dr Aus Eisenbeton bestehender Streckenausbau fuer Bergwerke
FR685548A (fr) * 1928-11-29 1930-07-11 éléments en béton-armé pour la construction des conduits, des puits, des galeries de mines, etc.
BE785886A (fr) * 1972-07-05 1972-11-03 Const & Entrepr Ind Procede de construction de murs d'ouvrages souterrains
IT1025608B (it) * 1974-11-12 1978-08-30 Alpina Spa Elementi prefabbricati per la co struzione di strutture in trincea e procedimento relativo

Also Published As

Publication number Publication date
ATE37929T1 (de) 1988-10-15
DE3660932D1 (en) 1988-11-17
EP0242497A1 (de) 1987-10-28

Similar Documents

Publication Publication Date Title
CA1217349A (fr) Procede de realisation d'ouvrages en beton arme tels que galeries souterraines, tunnels routiers, etc.; elements en beton prefabriques pour la realisation de tels ouvrages
CH642416A5 (fr) Procede de construction d'ouvrages souterrains a parois verticales, dispositif pour l'execution du procede et ouvrage souterrain.
EP0489054B1 (de) Zellulare strukturen zum stützen von wänden
EP2649242A1 (de) Verfahren zur konstruktion von strukturen, insbesondere durchgängen unter befahrenen schienen oder ähnlichem
EP0463925B1 (de) Verfahren zur Herstellung eines halbunterirdischen Bauwerks an einem Bergabhang und auf diese Weise hergestelltes Bauwerk
CA1302111C (fr) Procede et appareillage pour la realisation d'une dalle rigide permettant de porter une construction
BE898381A (fr) Culee de pont.
EP0245155B1 (de) Verfahren für die Herstellung von Bauwerken unter in Betrieb befindlichen Eisenbahnstrecken
EP0242497B1 (de) Tunnelbauverfahren
EP0197021B1 (de) Verfahren zum Bauen eines Tunnels
EP0560660B1 (de) Mehrstöckige Untergrundgaragen und Bauverfahren dafür
BE1001360A3 (fr) Pont semi-prefabrique.
EP0165355A1 (de) Verfahren zum Ausbau eines Kellergeschosses unter einem bestehenden Gebäude
CH434335A (fr) Procédé de construction d'un passage sous voie et installation pour la mise en oeuvre de ce procédé
FR2824851A1 (fr) Appui de pont prefabrique
FR2727447A1 (fr) Ouvrage de passage sous remblai et son procede de realisation
EP0423105B1 (de) Fertigbauteil zur Verwendung als Keller
FR2839990A1 (fr) Ouvrage d'art prefabrique et procede de mise en place de l'ouvrage d'art
WO1990001089A1 (fr) Procede pour reparer une fondation comportant des tetes de pieux deteriorees, notamment de pieux en bois
JPS5851092B2 (ja) 先行支保枠による土留設置工法
BE894650R (fr) Procede de realisation d'ouvrages en beton arme tels que galeries souterraines, tunnels routiers etc. ; elements en beton prefabriques pour la realisation de tels ouvrages
EP0418162A1 (de) Verfahren zur Herstellung von Bauwerken, insbesondere von Eisenbahnunterführungen
FR3126717A1 (fr) Pièce de fondation pour des fondations ponctuelles notamment en limite de propriété et procédé de fabrication d’un plancher
FR2472074A1 (fr) Procede de realisation de galeries en fouille ouverte en terrain ebouleux et dispositif permettant d'appliquer ledit procede
FR2614052A1 (fr) Elements de construction prefabriques en beton arme, procede de fabrication de ceux-ci et murs obtenus

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

17P Request for examination filed

Effective date: 19871010

17Q First examination report despatched

Effective date: 19880129

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRE;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.SCRIBED TIME-LIMIT

Effective date: 19881012

Ref country code: SE

Effective date: 19881012

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19881012

Ref country code: AT

Effective date: 19881012

REF Corresponds to:

Ref document number: 37929

Country of ref document: AT

Date of ref document: 19881015

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3660932

Country of ref document: DE

Date of ref document: 19881117

GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19890430

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19900328

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19900330

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 19900406

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19900430

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19900613

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19900618

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Effective date: 19910430

Ref country code: LI

Effective date: 19910430

Ref country code: BE

Effective date: 19910430

BERE Be: lapsed

Owner name: S.A. ENTREPRISES KOECKELBERG

Effective date: 19910430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19911101

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19911230

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19920201

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST