EP0241697B1 - Fuel injection device for internal-combustion engines - Google Patents

Fuel injection device for internal-combustion engines Download PDF

Info

Publication number
EP0241697B1
EP0241697B1 EP19870103241 EP87103241A EP0241697B1 EP 0241697 B1 EP0241697 B1 EP 0241697B1 EP 19870103241 EP19870103241 EP 19870103241 EP 87103241 A EP87103241 A EP 87103241A EP 0241697 B1 EP0241697 B1 EP 0241697B1
Authority
EP
European Patent Office
Prior art keywords
valve
stop
valve element
switching
fuel injection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP19870103241
Other languages
German (de)
French (fr)
Other versions
EP0241697A1 (en
Inventor
Henri Paganon
Werner Dipl.-Ing. Pape
Néstor Dipl.-Ing. Rodriguez-Amaya
Alfred Dr.-Ing. Schmitt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP0241697A1 publication Critical patent/EP0241697A1/en
Application granted granted Critical
Publication of EP0241697B1 publication Critical patent/EP0241697B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M59/00Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
    • F02M59/44Details, components parts, or accessories not provided for in, or of interest apart from, the apparatus of groups F02M59/02 - F02M59/42; Pumps having transducers, e.g. to measure displacement of pump rack or piston
    • F02M59/46Valves
    • F02M59/466Electrically operated valves, e.g. using electromagnetic or piezoelectric operating means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M59/00Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
    • F02M59/20Varying fuel delivery in quantity or timing
    • F02M59/36Varying fuel delivery in quantity or timing by variably-timed valves controlling fuel passages to pumping elements or overflow passages
    • F02M59/366Valves being actuated electrically
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M65/00Testing fuel-injection apparatus, e.g. testing injection timing ; Cleaning of fuel-injection apparatus
    • F02M65/005Measuring or detecting injection-valve lift, e.g. to determine injection timing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/24Fuel-injection apparatus with sensors

Definitions

  • the invention is based on a fuel injection device for internal combustion engines according to the preamble of claim 1.
  • a fuel injection device known from FR-A-2 534 975
  • an electromagnetic valve is used to control the start of injection and the injection quantity.
  • Such valves have switching times that are essentially constant and are determined by the valve construction. However, these switching times are also dependent on fluctuations in the supply voltage and aging processes, such as, for. B. the fatigue of the valve spring, depending.
  • other misconduct can also occur, such as: B. a hang or jamming of a valve member, which can lead to destruction of the internal combustion engine if this error is not detected, depending on the circumstances.
  • the known fuel injection device it is known to assign a valve to the valve member with a coil that cooperates with a core that is part of the valve member.
  • This is followed by two detectors, which form signals for opening and closing the solenoid valve and pass them on to an evaluation circuit.
  • the signals are formed at 90% of the closing movement and 10% of the opening movement of the valve and the time interval between these two signals is used to determine the injection phase and the time interval of the first signal from a reference mark is used to determine the start of injection.
  • This embodiment is based on the idea that by throttling the overflow cross section on the solenoid valve, the valve is considered closed shortly before closing and shortly after opening after 10% of its opening movement again is considered open.
  • This known device thus detects approximately the closed state of the solenoid valve combined with the thereby controlled approximate duration of the injection phase with a correspondingly high fuel pressure in the pump work space.
  • the object of the invention is to develop the generic fuel injection device so that the time of the injection can be detected more precisely and with simple means. This object is achieved by the characterizing part of claims 1, 3 and 8.
  • the fuel injection device according to the invention has the advantage over the known that the exact moment at which the valve member of the valve has reached its closed position and its open position is detected, so that the time period from the start of the opening to the reaching of the open position can be determined exactly .
  • the opening process and the closing process of the valve or one of the two can also be detected and, in each case, via an empirically determined factor of the effective control time for the amount of fuel actually being injected are added.
  • the detection of the time period relevant for the measurement of the fuel injection quantity becomes even more precise, so that the control device can continuously correct the switching times of the valve. This plays an important role in particular when using a solenoid valve, in which the final phase, in which the magnet excitation is switched off, has a great influence on the effective control time of the solenoid valve.
  • the electrically controlled valve can be used both as a metering valve, with which, during the suction phase of the pump piston, the amount of fuel which is to be injected during the subsequent delivery stroke of the pump piston is metered from the low-pressure fuel chamber to the pump work chamber, and also as Use the spray duration control valve or control valve, in which no injection pressure can build up in the pump workspace as long as the valve is open.
  • a bushing 2 is arranged in a housing 1, in the cylinder bore 19 of which a pump piston 3 executes a reciprocating and at the same time rotating movement in a known manner.
  • the pump piston 3 is driven by a cam drive 4 via a shaft 5, which rotates synchronously with the speed of the internal combustion engine supplied with fuel by the fuel injection pump.
  • a pump working space 6 is delimited by the end face of the pump piston 3 and by the bushing 2 and is connected via a supply channel 7 to a fuel low pressure space or suction space 8 in the housing 1 of the fuel injection pump.
  • the suction chamber 8 is supplied with fuel from a fuel reservoir 10 via a feed pump 9.
  • the pump working space 6 is continuously connected to the pump working space 6 via a distributor opening 11, which opens out on the circumference of the pump piston 3 within the bushing 2 and is permanently connected to the pump working space 6 via a pressure channel 12 running longitudinally in the pump piston 3 distributed there.
  • the pressure lines 13 lead via the bushing 2 and the housing 1 to injection nozzles 14 of the internal combustion engine.
  • the number of pressure lines 13 supplied by the distributor opening 11 corresponds to the number of injection nozzles 14 of the internal combustion engine to be supplied.
  • the pressure lines 13 are arranged in a radial plane around the pump piston 3 in accordance with the supply frequency.
  • a fuel injection pump of the known series type or the pump nozzle type can also be used.
  • longitudinal grooves 15 on the pump piston 3, which are open towards the end face and thus towards the pump working chamber 6, are provided, via which a connection between the supply channel 7 and the pump working chamber 6 is established during the suction stroke of the pump piston.
  • the connecting line 16 can also be led directly to the suction side of the pump piston 3 or directly to the suction chamber 8.
  • the connecting line 16 is delimited at the end by a flow opening 46 which is surrounded by a valve seat 17.
  • a valve member 18 of an electrically controlled valve 2O which in the exemplary embodiments is designed as a 2/2-way solenoid valve, works together with the valve seat 17. Depending on the switching position of the valve 20, the flow opening 46 is opened or closed, and thus the connecting line 16 to the supply channel 7 and thus to the suction chamber 8 is opened or closed.
  • a switching position transmitter 21 is assigned to the valve member 18 of the valve 20, which detects the current switching position of the valve 20 and feeds a corresponding electrical signal 47 to an electronic control device 22. This switches the valve 2O as a function of various operating parameters of the internal combustion engine, such as load 23, speed 24, temperature 25, taking into account the electrical signals 47 coming from the switching position transmitter 21 and characterizing the actual switching position of the valve 2O and thus its switching time.
  • the electrically controlled valve 2O in the embodiment of a 2/2-way solenoid valve is shown in Fig. 2 in longitudinal section and enlarged.
  • the valve 2O can be screwed into the socket 2 with its valve housing 4O and at the same time thus delimits the pump working space 6.
  • the connecting line 16 then runs in the screw part 27 which is integral with the valve housing 40 and serves to connect to the housing 1 of the fuel injection pump to the valve seat 17 surrounding the flow opening 46 and from there downstream via a valve chamber 29 and further sections of the connecting line 16 to the supply channel 7.
  • a conical or mushroom-shaped section 28 of the valve member 18 cooperates with the valve seat 17, which section is connected to a cylindrical section 30 is guided in a guide bore 31.
  • the guide bore 31 is located within a central core 33 which is integral with the valve housing 40 and which is surrounded by a magnet coil 34.
  • the cylindrical section 30 of the valve member 18 is electrically insulated from the guide bore 31, which can be done with a corresponding coating 35.
  • the valve member 18 is connected to an anchor plate 36.
  • a compression spring 37 acting in the valve opening direction is clamped between the anchor plate 36 and the core 33, which brings the armature plate 36 into contact with a stop 39 to limit the stroke of the valve member 18 when the solenoid 34 is not energized.
  • the stop 39 is fastened in the metallic valve housing 4O and connected to it in an electrically conductive manner, while the compression spring 37 is electrically separated from the core 33 or the valve housing 4O by insulation 38.
  • the solenoid 34 When the solenoid 34 is de-energized, the valve member 18 has electrical contact via the armature plate 36 and the stop 39 with the housing 40.
  • the solenoid 34 When the solenoid 34 is energized, the valve member 18 is in the closed position shown in FIG. 2 and then has electrical contact via the mushroom-shaped section 28 and the valve seat 17 to the housing 40.
  • an electrically insulated feed line 41 is provided, which is guided in an insulated manner through the housing 40 to the compression spring 37. There is an electrical contact between the electrical supply line 41 and the compression spring 37 and thus via the latter to the armature plate 36 and the valve member 18.
  • the supply line 41 is connected to one pole of a measuring voltage source 42 with the interposition of a resistor 43.
  • the other pole of the measuring voltage source 42 is connected to the housing 40.
  • a measuring voltage is tapped between the connection point 44 of the supply line 41 and the resistor 43 and the housing 40, which is characteristic of the current position of the valve member 18. The voltage tap is symbolized by the measuring instrument 45 in FIG. 2.
  • FIG. 3 shows the stroke S or adjustment path of the valve member 18 as a function of time in the upper diagram.
  • the control voltage measured by the measuring instrument 45 is at the connection point 44, which forms the output signal 47 of the switch position transmitter 21 in FIG. 1.
  • connection to ground is interrupted and the voltage tapped at connection point 44 rises to a value U1 (lower diagram in FIG. 3).
  • the stroke of the valve member 18 and thus the closing process of the valve 20 is ended at point BEP (beginning of the injection period).
  • the section 28 of the valve member 18 is seated on the valve seat 17, so that contact with ground is restored and the measuring voltage source 42 is short-circuited again.
  • the voltage detected by the measuring instrument 45 breaks down again.
  • the fuel is injected in the following period, which may already have started in the BSP - BEP area after reaching a certain pressure level.
  • the excitation of the magnet coil 34 is switched off.
  • the point B ⁇ P start of the opening period
  • the valve member 18 begins to lift off from the valve seat 17 under the action of the compression spring 37.
  • the voltage tapped at the connection point 44 rises again to the value U1 and does not collapse again until the anchor plate 36 connected to the valve member 18 has reached the stop 39.
  • the switch position transmitter 21 thus provides very exact signals for the actual movement of the valve member 18 from its two end positions, the closed position and the open position, regardless of the control time of the energizing pulse of the solenoid 34.
  • the latter phase is referred to as the first movement phase, which is evaluated with a first factor, while the aforementioned phase between B ⁇ P and EEP is referred to as the second movement phase and is evaluated with a higher, second factor. Both movement phases therefore go proportionately into the opening time of the valve 20 that is effective for metering the fuel injection quantity.
  • the control device 22 can now detect the exact opening and closing course of the valve 20 and use it to calculate the actually metered fuel injection quantity. Variations in design and tolerance as well as drift vibrations and malfunctions of valve 2O can be taken into account, since the exact time of valve closing or valve opening is always recorded. A sticking of the valve member 18 in any position along the stroke can also be detected. E.g. It can be determined from the time sequence of the movement start signals and movement end signals occurring, preferably if these are compared with the time sequence of the control pulse edges driving the valve, whether the functionality of the valve 20 is restricted or not. A functional or non-functional signal is generated in this way. The signals output by the switch position transmitter 21 described can be clearly removed.
  • the switch position transmitter 21 is constructed from simple switching elements.
  • the stop 39 for the anchor plate 36 can be made of steel. Conductive plastic can also be used for this.
  • valve 20 When the valve 20 is used as a so-called metering valve, it is arranged in the supply channel 7, which then replaces the connecting line 16. In this case, reverse switching logic is used.
  • the stroke course of the valve member 18 would then have the same course as shown in FIG. 3 in the upper diagram, only the valve would be closed in BSP, open in BEP-B ⁇ P and closed again in EEP.
  • These Points then describe accordingly the fuel metering phase in which the pump work space 6 is filled with the metered amount of fuel.
  • the solenoid 34 is excited accordingly with different control times or the compression spring 37 is given a different direction of action.
  • the fuel injection pump can advantageously also be implemented as a radial piston pump.
  • valve 2O in FIG. 1 shown in longitudinal section in FIG. 4 differs from the valve 2O shown in FIG. 2 only by a different design of the switching position transmitter 21 ⁇ . Except for the missing insulating layers 35 and 38 and a different connection of the supply line 41, the structure of the valve designated 2O ⁇ is identical to the valve 2O described in FIG. 2, so that the same components are provided with the same reference numerals.
  • the switching position transmitter 21 ⁇ shown in FIG. 5 is attached to the stop 39 to limit the stroke of the valve member 18.
  • the stop 39 is designed here as a bolt 50, which is screwed with its shaft 51 by means of an external thread 53 in the valve housing 40 and with its head 52 the anchor plate 36 rigidly connected to the valve member 18 faces.
  • the shaft 51 has a blind bore 54 which extends axially from the shaft end and has an internal thread 55.
  • a disk 57 made of piezoelectric ceramic, hereinafter referred to as piezo disk 57, of the switch position transmitter 21 ⁇ is arranged at the bottom 56 of the bore.
  • the piezo disk 57 has metallized electrodes 58, 59 on both end faces.
  • the piezo disk 57 lies with the one electrode 58 producing one electrical contact on the bore base 56 and is clamped on the other electrode 59 on the pressure ring 6O made of insulating material on the bore base 56.
  • the bracing takes place via a hollow cylindrical locking screw 61 which is screwed into the internal thread 55 and presses with its end-shaped annular surface 62 onto the pressure ring 60.
  • a disk-shaped contact ring 63 which is mechanically and electrically connected to a plug contact 64, is arranged between the end face of the pressure ring 60 and the electrode 59 of the piezo disk 57 facing it.
  • the plug contact 64 passes through the ring opening of the pressure ring 60 and extends axially in the interior of the locking screw 61.
  • the contact ring 63, the plug contact 64 and the pressure ring 60 are designed as a structural unit.
  • a plug 65 sits on the plug contact 64 and is connected in an electrically conductive manner to a supply line 66 which is insulated and passed through the valve housing 40.
  • the feed line is connected to a connection of a voltage measuring device 67, the other connection of which lies on the valve housing 40.
  • the piezo disk 57 of the switch position transmitter 21 ⁇ can also be arranged directly in the head 52 of the bolt 5O instead of near the free end of the shaft 51 of the bolt 5O.
  • Diagram a shows the voltage curve of the control pulse applied to the magnet coil 34 for valve control
  • diagram b shows the curve of the excitation current of the magnet coil 34
  • diagram c shows the voltage curve detected by the voltage measuring device 67 after amplification as the output signal of the switch position transmitter.
  • the solenoid 34 is activated by means of the control pulse.
  • the valve member 18 hits the valve seat 17.
  • the structure-borne sound wave causes a change in the output signal of the switching actuator 21 ⁇ , which can be clearly seen in diagram c in FIG. 6 at the time BEP.
  • the magnetic excitation is switched off.
  • valve member 18 begins to open and stops at the stop 39 at the time EEP.
  • the striking of the anchor plate 36 connected to the valve member 18 on the stop 39 again triggers a structure-borne sound wave, which again mechanically stresses the piezo disk 57 and thereby causes a change in the output signal of the switch position transmitter 21 ⁇ .
  • the signal change at time EEP can be clearly seen in diagram c of FIG. 6.
  • the control device 22 of the fuel injection device can now, in the same manner as described above, with the aid of the voltage signal output by the voltage measuring device 67 (diagram c in FIG. 6) the exact one Record the opening and closing curve of valve 2O ⁇ and use it to calculate the actually metered fuel injection quantity.
  • the stop 39 for limiting the stroke of the valve member 18 is surrounded by an insulated metallic washer 7O arranged in the valve housing 40, which is connected via an electrical lead 71, which is isolated through the valve housing 40, to a connection of a measuring device 72, the other connection of which lies on the valve housing 40 .
  • the annular disk 70 together with the anchor plate 36 connected to the valve member 18 forms an annular capacitor, the capacitance of which is proportional to the area of the annular disk 70 and inversely proportional to the distance between the annular disk 70 and the anchor plate 36.
  • the measuring device 72 uses known evaluation methods (e.g.
  • the valve member 18 is seated on the valve seat 17 and the valve 2O ⁇ is closed.
  • the capacitance of the ring capacitor has reached a minimum, and the change in capacitance detected by the measuring device 72 has reached a maximum.
  • the maximum of the change in capacity is thus a measure for reaching the closed position of the valve 2O ⁇ .
  • the ring capacitor has again reached its greatest capacity.
  • the change in capacity detected in the measuring device 72 has again reached a maximum and signals the reaching of the end position of the valve member 18 and thus the open position of the valve 20 ". Since the valve 2O ⁇ also like the other two valves 2O and 2O ⁇ as a control valve in the connecting line 16 from Pump working chamber 6 to the suction chamber 8, the fuel metering phase is initiated when valve 2O ⁇ is closed and the fuel metering phase is ended when valve 2O ⁇ is opened, so that the maximum change in capacity always represents a movement end signal of valve member 18. The first movement end signal thus indicates the closed state and the second End of movement signal indicates the opening state of the valve 20.
  • the beginning of the change in capacity characterizes the start of movement of the valve member 18.
  • the control device 22 in turn detects the time interval between a first end of movement signal and a subsequent start of movement Signal as actual value for the effective control time of valve 2O ⁇ . During this control time, the valve 2Oclude is kept in its closed state.
  • the first movement phase of the valve member 18 between the points BSP and BEP, the so-called switch-on flight time, and the second movement phase between the points B ⁇ P and EEP, the so-called switch-off flight time can also be carried out after a corresponding evaluation a first and a second factor of the effective control time are added.
  • the valve 2O ⁇ with the switch position transmitter 21 ⁇ can be used as a so-called metering valve, which is then to be arranged in the supply channel 7 with the elimination of the connecting line 16.
  • the first movement end signal (in points BEP) identifies the opening state and the second movement end signal (in points EEP) the closing state of valve 2O ⁇ .
  • the effective control time of the valve 2O ⁇ between the first movement end signal (in points BEP) and the following movement start signal (in points B ⁇ P) keeps the valve 2O ⁇ in its open state during the suction stroke of the pump piston 3.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Fuel-Injection Apparatus (AREA)

Description

Die Erfindung geht von einer Kraftstoffeinspritzvorrichtung für Brennkraftmaschinen gemäß der Gattung des Patentanspruchs 1 aus. Bei einer solchen, durch die FR-A-2 534 975 bekannten Kraftstoffeinspritzvorrichtung wird zur Steuerung von Spritzbeginn und Einspritzmenge ein Elektromagnetventil verwendet. Solche Ventile weisen Schaltzeiten auf, die im wesentlichen konstant sind und durch die Ventilkonstruktion bestimmt sind. Diese Schaltzeiten sind aber auch von Schwankungen der Versorgungsspannung und Alterungsprozessen, wie z. B. die Ermüdung der Ventilfeder, abhängig. Schließlich können auch noch andere Fehlverhalten auftreten, wie z. B. ein Hängen-bleiben oder Klemmen eines Ventilglieds, was dann je nach Umständen zu einer Zerstörung der Brennkraftmaschine führen kann, wenn dieser Fehler nicht erfaßt wird. Gemäß der bekannten Kraftstoffeinspritzvorrichtung ist es bekannt, dem Ventilglied einen Wandler zuzuordnen mit einer Spule, die mit einem Kern, der Teil des Ventilglieds ist, zusammenarbeitet. Diesem sind zwei Detektoren nachgeordnet, die Signale für das Öffnen und das Schließen des Magnetventiles bilden und an eine Auswerteschaltung weitergeben. Dabei werden die Signale bei 90% der Schließbewegung und 10% der Öffnungsbewegung des Ventils gebildet und der Zeitabstand dieser beiden Signale voneinander zur Ermittlung der Einspritzphase und der Zeitabstand des ersten Signals von einer Referenzmarke zur Ermittlung des Spritzbeginns verwendet. Diese Ausgestaltung geht von der Vorstellung aus, daß durch Androsselung des Überströmquerschnitts am Magnetventil das Ventil kurz vor dem Schließen bereits als geschlossen gilt und schon kurz nach dem Öffnen nach 10% seiner Öffnungsbewegung schon wieder als geöffnet gilt. Diese bekannte Einrichtung erfaßt also nährungsweise den Schließzustand des Magnetventils verbunden mit der dadurch gesteuerten annähernden Dauer der Einspritzphase bei entsprechend hohem Kraftstoffdruck im Pumpenarbeitsraum.The invention is based on a fuel injection device for internal combustion engines according to the preamble of claim 1. In such a fuel injection device known from FR-A-2 534 975, an electromagnetic valve is used to control the start of injection and the injection quantity. Such valves have switching times that are essentially constant and are determined by the valve construction. However, these switching times are also dependent on fluctuations in the supply voltage and aging processes, such as, for. B. the fatigue of the valve spring, depending. Finally, other misconduct can also occur, such as: B. a hang or jamming of a valve member, which can lead to destruction of the internal combustion engine if this error is not detected, depending on the circumstances. According to the known fuel injection device, it is known to assign a valve to the valve member with a coil that cooperates with a core that is part of the valve member. This is followed by two detectors, which form signals for opening and closing the solenoid valve and pass them on to an evaluation circuit. The signals are formed at 90% of the closing movement and 10% of the opening movement of the valve and the time interval between these two signals is used to determine the injection phase and the time interval of the first signal from a reference mark is used to determine the start of injection. This embodiment is based on the idea that by throttling the overflow cross section on the solenoid valve, the valve is considered closed shortly before closing and shortly after opening after 10% of its opening movement again is considered open. This known device thus detects approximately the closed state of the solenoid valve combined with the thereby controlled approximate duration of the injection phase with a correspondingly high fuel pressure in the pump work space.

Aufgabe der Erfindung ist es, die gattungsgemäße Kraftstoffeinspritzvorrichtung so weiterzubilden, daß die Zeit der Einspritzung noch exakter und mit einfachen Mitteln erfaßt werden kann. Diese Aufgabe wird erfindungsgemäß durch die Kennzeichen der Patentansprüche 1, 3 und 8 gelöst. Die erfindungsgemäße Kraftstoffeinspritzvorrichtung gemäß diesen Ansprüche hat gegenüber dem Bekannten den Vorteil, daß exakt der Augenblick erfaßt wird, in dem das Ventilglied des Ventils seine Schließstellung und seine Öffnungsstelle erreicht hat, so daß auch die Zeitdauer des Öffnungsbeginns bis zum Erreichen der Öffnungsstellung exakt ermittelt werden kann.The object of the invention is to develop the generic fuel injection device so that the time of the injection can be detected more precisely and with simple means. This object is achieved by the characterizing part of claims 1, 3 and 8. The fuel injection device according to the invention has the advantage over the known that the exact moment at which the valve member of the valve has reached its closed position and its open position is detected, so that the time period from the start of the opening to the reaching of the open position can be determined exactly .

Durch die in den weiteren Ansprüchen aufgeführten Maßnahmen sind vorteilhafte Weiterbildungen und Verbesserungen der im Anspruch 1 angegebenen Kraftstoffeinspritzvorrichtung möglich.Advantageous further developments and improvements of the fuel injection device specified in claim 1 are possible through the measures listed in the further claims.

Gemäß den in Anspruch 11 und 12 angegebenen Ausführungsbeispielen der Erfindung kann zusätzlich der Öffnungsvorgang und der Schließvorgang des Ventils oder einer der beiden mit erfaßt werden und über jeweils einen empirisch ermittelten Faktor der zumeßwirksamen Steuerzeit für die tatsächlich zur Einspritzung gelangende Kraftstoffmenge hinzuaddiert werden. Dadurch wird die Erfassung des für die Bemessung der Kraftstoffeinspritzmenge relevanten Zeitraumes noch genauer, so daß die Steuereinrichtung die Schaltzeitpunkte des Ventils laufend korrigieren kann. Dies spielt insbesondere bei der Verwendung eines Magnetventils eine wesentliche Rolle, bei dem die Schlußphase, bei der die Magneterregung abgeschaltet wird, von großem Einfluß auf die effektive Steuerzeit des Magnetventils ist.According to the exemplary embodiments of the invention specified in claims 11 and 12, the opening process and the closing process of the valve or one of the two can also be detected and, in each case, via an empirically determined factor of the effective control time for the amount of fuel actually being injected are added. As a result, the detection of the time period relevant for the measurement of the fuel injection quantity becomes even more precise, so that the control device can continuously correct the switching times of the valve. This plays an important role in particular when using a solenoid valve, in which the final phase, in which the magnet excitation is switched off, has a great influence on the effective control time of the solenoid valve.

Gemäß den weiteren Ausführungsbeispielen in Anspruch 13 oder 14 läßt sich bei der erfindungsgemäßen Kraftstoffeinspritzvorrichtung das elektrisch gesteuerte Ventil sowohl als Zumeßventil, mit dem während der Saugphase des Pumpenkolbens die beim anschließenden Förderhub des Pumpenkolbens zur Einspritzung gelangende Kraftstoffmenge vom Niederdruckkraftstoffraum dem Pumpenarbeitsraum zugemessen wird, als auch als Spritzdauer-Steuerventil oder Absteuerventil verwenden, bei dem sich im Pumpenarbeitsraum solange kein Einspritzdruck aufbauen kann, solange das Ventil geöffnet ist.According to the further exemplary embodiments in claim 13 or 14, in the fuel injection device according to the invention, the electrically controlled valve can be used both as a metering valve, with which, during the suction phase of the pump piston, the amount of fuel which is to be injected during the subsequent delivery stroke of the pump piston is metered from the low-pressure fuel chamber to the pump work chamber, and also as Use the spray duration control valve or control valve, in which no injection pressure can build up in the pump workspace as long as the valve is open.

Die Erfindung ist anhand von in der Zeichnung dargestellten Ausführungsbeispielen in der nachfolgenden Beschreibung näher erläutert. Es zeigen jeweils in schematischer Darstellung:

Fig. 1
eine Kraftstoffeinspritzvorrichtung mit einer im Längsschnitt dargestellten Kraftstoffeinspritzverteilerpumpe und einem als Absteuerventil verwendeten 2/2-Wege-Magnetventil,
Fig. 2
einen Längsschnitt des 2/2-Wege-Magnetventils in Fig. 1 in vergrößerter Darstellung,
Fig. 3
ein Diagramm des Magnetventilhubs und ein Diagramm des Ausgangssignals eines Schaltstellungsgebers im 2/2-Wege-Magnetventil in Fig. 1, jeweils in Abhängigkeit von der Zeit,
Fig. 4
einen Längsschnitt eines 2/2-Wege-Magnetventils der Kraftstoffeinspritzvorrichtung in Fig. 1 gemäß einem weiteren Ausführungsbeispiel, vergrößert dargestellt.
Fig. 5
eine vergrößerte Darstellung des Ausschnittes A in Fig. 4,
Fig. 6
drei Zeitdiagramme, und zwar jeweils der Verlauf der Erregerspannung des 2/2-Wege-Magnetventils (a), des Magneterregerstroms (b) und des Ausgangssignals des Schaltstellungsgebers im 2/2-Wege-Magnetventil in Fig. 4,
Fig. 7
einen Längsschnitt des 2/2-Wege-Magnetventils der Kraftstoffeinspritzvorrichtung in Fig. 1 gemäß einem dritten Ausführungsbeispiel, vergrößert dargestellt,
Fig. 8
eine vergrößerte Darstellung des Ausschnittes B in Fig. 7.
The invention is explained in more detail in the following description with reference to exemplary embodiments shown in the drawing. Each shows in a schematic representation:
Fig. 1
a fuel injection device with a fuel injection distributor pump shown in longitudinal section and a 2/2-way solenoid valve used as a control valve,
Fig. 2
2 shows a longitudinal section of the 2/2-way solenoid valve in FIG. 1 on an enlarged scale,
Fig. 3
2 shows a diagram of the solenoid valve stroke and a diagram of the output signal of a switch position transmitter in the 2/2-way solenoid valve in FIG. 1, in each case as a function of time,
Fig. 4
a longitudinal section of a 2/2-way solenoid valve of the fuel injection device in Fig. 1 according to another embodiment, shown enlarged.
Fig. 5
3 shows an enlarged illustration of section A in FIG. 4,
Fig. 6
three time diagrams, namely the course of the excitation voltage of the 2/2-way solenoid valve (a), the magnet excitation current (b) and the output signal of the switch position transmitter in the 2/2-way solenoid valve in Fig. 4,
Fig. 7
2 shows a longitudinal section of the 2/2-way solenoid valve of the fuel injection device in FIG. 1 according to a third exemplary embodiment, shown enlarged,
Fig. 8
7 shows an enlarged view of section B in FIG. 7.

Beschreibung der AusführungsbeispieleDescription of the embodiments

Bei der in Fig. 1 als Beispiel einer Kraftstoffeinspritzpumpe der Kraftstoffeinspritzvorrichtung im Längsschnitt dargestellten Kraftstoffverteilereinspritzpumpe ist in einem Gehäuse 1 eine Buchse 2 angeordnet, in deren Zylinderbohrung 19 ein Pumpenkolben 3 in bekannter Weise eine hin- und hergehende und zugleich rotierende Bewegung ausführt. Der Pumpenkolben 3 ist durch einen Nockenantrieb 4 über eine Welle 5 angetrieben, welche synchron zu der Drehzahl der von der Kraftstoffeinspritzpumpe mit Kraftstoff versorgten Brennkraftmaschine rotiert. Durch die Stirnfläche des Pumpenkolbens 3 und durch die Buchse 2 wird ein Pumpenarbeitsraum 6 begrenzt, welcher über einen Versorgungskanal 7 mit einem Kraftstoffniederdruckraum oder Saugraum 8 im Gehäuse 1 der Kraftstoffeinspritzpumpe verbunden ist. Der Saugraum 8 wird über eine Förderpumpe 9 mit Kraftstoff aus einem Kraftstoffvorratsbehälter 1O versorgt. Aus dem Pumpenarbeitsraum 6 wird über eine Verteileröffnung 11, die am Umfang des Pumpenkolbens 3 innerhalb der Buchse 2 mündet und über einen längs im Pumpenkolben 3 verlaufenden Druckkanal 12 ständig mit dem Pumpenarbeitsraum 6 verbunden ist, der Kraftstoff bei entsprechender Drehung des Pumpenkolbens 3 zu Druckleitungen 13 hin verteilt. Die Druckleitungen 13 führen über die Buchse 2 und das Gehäuse 1 zu Einspritzdüsen 14 der Brennkraftmaschine.In the fuel distributor injection pump shown in longitudinal section in FIG. 1 as an example of a fuel injection pump of the fuel injection device, a bushing 2 is arranged in a housing 1, in the cylinder bore 19 of which a pump piston 3 executes a reciprocating and at the same time rotating movement in a known manner. The pump piston 3 is driven by a cam drive 4 via a shaft 5, which rotates synchronously with the speed of the internal combustion engine supplied with fuel by the fuel injection pump. A pump working space 6 is delimited by the end face of the pump piston 3 and by the bushing 2 and is connected via a supply channel 7 to a fuel low pressure space or suction space 8 in the housing 1 of the fuel injection pump. The suction chamber 8 is supplied with fuel from a fuel reservoir 10 via a feed pump 9. The pump working space 6 is continuously connected to the pump working space 6 via a distributor opening 11, which opens out on the circumference of the pump piston 3 within the bushing 2 and is permanently connected to the pump working space 6 via a pressure channel 12 running longitudinally in the pump piston 3 distributed there. The pressure lines 13 lead via the bushing 2 and the housing 1 to injection nozzles 14 of the internal combustion engine.

Die Anzahl der von der Verteileröffnung 11 versorgten Druckleitungen 13 entspricht der Zahl der zu versorgenden Einspritzdüsen 14 der Brennkraftmaschine. Die Druckleitungen 13 sind entsprechend der Versorgungsfrequenz in einer radialen Ebene um den Pumpenkolben 3 herum verteilt angeordnet. Anstelle einer Verteilereinspritzpumpe kann aber auch eine Kraftstoffeinspritzpumpe der bekannten Reihenbauart bzw. der Pumpendüsenbauart verwendet werden.The number of pressure lines 13 supplied by the distributor opening 11 corresponds to the number of injection nozzles 14 of the internal combustion engine to be supplied. The pressure lines 13 are arranged in a radial plane around the pump piston 3 in accordance with the supply frequency. Instead of a distributor injection pump, a fuel injection pump of the known series type or the pump nozzle type can also be used.

In dem dem Pumpenarbeitsraum 6 zugewandten Endbereich des Pumpenkolbens 3 sind zur Stirnfläche und damit zum Pumpenarbeitsraum 6 hin offene Längsnuten 15 am Pumpenkolben 3 vorgesehen, über die während des Saughubes des Pumpenkolbens eine Verbindung zwischen dem Versorgungskanal 7 und dem Pumpenarbeitsraum 6 hergestellt wird. Von dem Pumpenarbeitsraum 6 zweigt an einer durch den Pumpenkolben 3 nicht beeinflußbaren Stelle eine Verbindungsleitung 16 ab, die zum Versorgungskanal 7 hin führt. Die Verbindungsleitung 16 kann aber auch unmittelbar zur Saugseite des Pumpenkolbens 3 oder direkt zum Saugraum 8 geführt sein. Die Verbindungsleitung 16 ist endseitig von einer Durchflußöffnung 46 begrenzt, die von einem Ventilsitz 17 umgeben ist. Mit dem Ventilsitz 17 arbeitet ein Ventilglied 18 eines elektrisch gesteuerten Ventils 2O zusammen, das in den Ausführungsbeispielen als 2/2-Wege-Magnetventil ausgebildet ist. Je nach Schaltstellung des Ventils 2O wird die Durchflußöffnung 46 freigegeben oder abgesperrt und damit die Verbindungsleitung 16 zu dem Versorgungskanal 7 und damit zu dem Saugraum 8 geöffnet oder geschlossen.In the end region of the pump piston 3 facing the pump working chamber 6, longitudinal grooves 15 on the pump piston 3, which are open towards the end face and thus towards the pump working chamber 6, are provided, via which a connection between the supply channel 7 and the pump working chamber 6 is established during the suction stroke of the pump piston. A connecting line 16, which leads to the supply duct 7, branches off from the pump work chamber 6 at a point that cannot be influenced by the pump piston 3. The connecting line 16 can also be led directly to the suction side of the pump piston 3 or directly to the suction chamber 8. The connecting line 16 is delimited at the end by a flow opening 46 which is surrounded by a valve seat 17. A valve member 18 of an electrically controlled valve 2O, which in the exemplary embodiments is designed as a 2/2-way solenoid valve, works together with the valve seat 17. Depending on the switching position of the valve 20, the flow opening 46 is opened or closed, and thus the connecting line 16 to the supply channel 7 and thus to the suction chamber 8 is opened or closed.

Dem Ventilglied 18 des Ventils 2O ist ein Schaltstellungsgeber 21 zugeordnet, der die momentane Schaltstellung des Ventils 2O erfaßt und ein entsprechendes elektrisches Signal 47 einer elektronischen Steuereinrichtung 22 zuführt. Diese schaltet in Abhängigkeit von verschiedenen Betriebskenngrößen der Brennkraftmaschine, wie Last 23, Drehzahl 24, Temperatur 25, unter Berücksichtigung der vom Schaltstellungsgeber 21 kommenden, die tatsächliche Schaltstellung des Ventils 2O und damit dessen Schaltzeitpunkt kennzeichnenden elektrischen Signale 47 das Ventil 2O.A switching position transmitter 21 is assigned to the valve member 18 of the valve 20, which detects the current switching position of the valve 20 and feeds a corresponding electrical signal 47 to an electronic control device 22. This switches the valve 2O as a function of various operating parameters of the internal combustion engine, such as load 23, speed 24, temperature 25, taking into account the electrical signals 47 coming from the switching position transmitter 21 and characterizing the actual switching position of the valve 2O and thus its switching time.

Das elektrisch gesteuerte Ventil 2O in der Ausführungsform eines 2/2-Wege-Magnetventils ist in Fig. 2 im Längsschnitt und vergrößert dargestellt. Das Ventil 2O kann mit seinem Ventilgehäuse 4O in die Buchse 2 eingeschraubt werden und begrenzt damit gleichzeitig den Pumpenarbeitsraum 6. In dem mit dem Ventilgehäuse 4O einstückigen Schraubteil 27, das der Verbindung mit dem Gehäuse 1 der Kraftstoffeinspritzpumpe dient, verläuft dann die Verbindungsleitung 16 bis hin zu dem die Durchflußöffnung 46 umgebenden Ventilsitz 17 und von diesem stromabwärts über einen Ventilraum 29 und weitere Abschnitte der Verbindungsleitung 16 zum Versorgungskanal 7. Mit dem Ventilsitz 17 arbeitet ein kegel-oder pilzförmig ausgebildeter Abschnitt 28 des Ventilgliedes 18 zusammen, das mit einem zylindrischen Abschnitt 3O in einer Führungsbohrung 31 geführt wird. Die Führungsbohrung 31 befindet sich innerhalb eines mit dem Ventilgehäuse 4O einstückigen zentralen Kerns 33, der von einer Magnetspule 34 umgeben ist. Im Bereich der Führungsbohrung 31 ist der zylindrische Abschnitt 3O des Ventilglieds 18 gegenüber der Führungsbohrung 31 elektrisch isoliert,was mit einer entsprechenden Beschichtung 35 erfolgen kann. An dem dem kegel- oder pilzförmigen Abschnitt 28 des Ventilsglieds 18 abgewandten Ende ist das Ventilglied 18 mit einer Ankerplatte 36 verbunden. Zwischen der Ankerplatte 36 und dem Kern 33 ist eine in Ventilöffnungsrichtung wirkende Druckfeder 37 eingespannt, welche die Ankerplatte 36 bei nicht erregter Magnetspule 34 zur Anlage an einem Anschlag 39 zur Hubbegrenzung des Ventilglieds 18 bringt. Der Anschlag 39 ist in dem metallischen Ventilgehäuse 4O befestigt und mit diesem elektrisch leitend verbunden, während die Druckfeder 37 von dem Kern 33 bzw. dem Ventilgehäuse 4O durch eine Isolierung 38 elektrisch getrennt ist. Bei stromloser Magnetspule 34 hat also das Ventilglied 18 elektrischen Kontakt über die Ankerplatte 36 und den Anschlag 39 mit dem Gehäuse 4O. Bei bestromter Magnetspule 34 befindet sich das Ventilglied 18 in der in Fig. 2 dargestellten Schließstellung und hat dann elektrischen Kontakt über den pilzförmigen Abschnitt 28 und den Ventilsitz 17 zum Gehäuse 40.The electrically controlled valve 2O in the embodiment of a 2/2-way solenoid valve is shown in Fig. 2 in longitudinal section and enlarged. The valve 2O can be screwed into the socket 2 with its valve housing 4O and at the same time thus delimits the pump working space 6. The connecting line 16 then runs in the screw part 27 which is integral with the valve housing 40 and serves to connect to the housing 1 of the fuel injection pump to the valve seat 17 surrounding the flow opening 46 and from there downstream via a valve chamber 29 and further sections of the connecting line 16 to the supply channel 7. A conical or mushroom-shaped section 28 of the valve member 18 cooperates with the valve seat 17, which section is connected to a cylindrical section 30 is guided in a guide bore 31. The guide bore 31 is located within a central core 33 which is integral with the valve housing 40 and which is surrounded by a magnet coil 34. In the area of the guide bore 31, the cylindrical section 30 of the valve member 18 is electrically insulated from the guide bore 31, which can be done with a corresponding coating 35. At the end facing away from the conical or mushroom-shaped section 28 of the valve member 18, the valve member 18 is connected to an anchor plate 36. A compression spring 37 acting in the valve opening direction is clamped between the anchor plate 36 and the core 33, which brings the armature plate 36 into contact with a stop 39 to limit the stroke of the valve member 18 when the solenoid 34 is not energized. The stop 39 is fastened in the metallic valve housing 4O and connected to it in an electrically conductive manner, while the compression spring 37 is electrically separated from the core 33 or the valve housing 4O by insulation 38. When the solenoid 34 is de-energized, the valve member 18 has electrical contact via the armature plate 36 and the stop 39 with the housing 40. When the solenoid 34 is energized, the valve member 18 is in the closed position shown in FIG. 2 and then has electrical contact via the mushroom-shaped section 28 and the valve seat 17 to the housing 40.

Weiterhin ist eine elektrisch isolierte Zuleitung 41 vorgesehen, die isoliert durch das Gehäuse 4O hindurch bis zur Druckfeder 37 geführt ist. Dort besteht ein elektrischer Kontakt zwischen der elektrischen Zuleitung 41 und der Druckfeder 37 und über letztere damit zur Ankerplatte 36 und dem Ventilglied 18. Die Zuleitung 41 ist mit dem einen Pol einer Meßspannungsquelle 42 unter Zwischenschaltung eines Widerstandes 43 verbunden. Der andere Pol der Meßspannungsquelle 42 ist an dem Gehäuse 4O angeschlossen. Zwischen dem Verbindungspunkt 44 von Zuleitung 41 und Widerstand 43 und dem Gehäuse 4O wird eine Meßspannung abgegriffen, die für die momentane Stellung des Ventilgliedes 18 kennzeichnend ist. Der Spannungsabgriff ist durch das Meßinstrument 45 in Fig. 2 versinnbildlicht.Furthermore, an electrically insulated feed line 41 is provided, which is guided in an insulated manner through the housing 40 to the compression spring 37. There is an electrical contact between the electrical supply line 41 and the compression spring 37 and thus via the latter to the armature plate 36 and the valve member 18. The supply line 41 is connected to one pole of a measuring voltage source 42 with the interposition of a resistor 43. The other pole of the measuring voltage source 42 is connected to the housing 40. A measuring voltage is tapped between the connection point 44 of the supply line 41 and the resistor 43 and the housing 40, which is characteristic of the current position of the valve member 18. The voltage tap is symbolized by the measuring instrument 45 in FIG. 2.

In Fig. 3 ist im oberen Diagramm der Hub S oder Verstellweg des Ventilglieds 18 in Abhängigkeit von der Zeit dargestellt. Im unteren Diagramm der Fig. 3 ist die vom Meßinstrument 45 gemessene Steuerspannung am Verbindungspunkt 44 dargestellt, welche das Ausgangssignal 47 des Schaltstellungsgebers 21 in Fig. 1 bildet. Zunächst ist bei stromloser Magnetspule 34 das Ventilglied 18 in Offenstellung. Dabei liegt die Ankerplatte 36 am Anschlag 39 an, so daß der Masseschluß der elektrischen Zuleitung 41 hergestellt ist und die Spannung am Verbindungspunkt 44 zusammenbricht. Im Punkt BSP (Beginn der Schließperiode) hebt nun nach einer vorangegangenen Einschaltverzugszeit, gemessen von Anlegen eines Stromimpulses an die Magnetspule 34, die Ankerplatte 36 von dem Anschlag 39 ab. In diesem Augenblick wird die Verbindung zur Masse unterbrochen und die am Verbindungspunkt 44 abgegriffene Spannung steigt auf einen Wert U1 an (unteres Diagramm in Fig. 3). Der Hub des Ventilgliedes 18 und damit der Schließvorgang des Ventils 2O ist im Punkt BEP (Beginn der Einspritzperiode) beendet. Der Abschnitt 28 des Ventilgliedes 18 sitzt auf dem Ventilsitz 17, so daß der Kontakt zur Masse wieder hergestellt und die Meßspannungsquelle 42 wieder kurzgeschlossen ist. Die mit dem Meßinstrument 45 erfaßte Spannung bricht wieder zusammen. Im folgenden Zeitraum erfolgt die Kraftstoffeinspritzung, die bereits unter Umständen auch schon im Bereich BSP - BEP nach Erreichen einer bestimmten Druckhöhe begonnen haben kann.3 shows the stroke S or adjustment path of the valve member 18 as a function of time in the upper diagram. In the lower diagram of FIG. 3, the control voltage measured by the measuring instrument 45 is at the connection point 44, which forms the output signal 47 of the switch position transmitter 21 in FIG. 1. First, when the solenoid 34 is de-energized, the valve member 18 is in the open position. The anchor plate 36 abuts the stop 39, so that the ground connection of the electrical lead 41 is established and the voltage at the connection point 44 breaks down. At the point BSP (start of the closing period), the armature plate 36 now lifts from the stop 39 after a previous switch-on delay, measured from the application of a current pulse to the solenoid 34. At this moment the connection to ground is interrupted and the voltage tapped at connection point 44 rises to a value U1 (lower diagram in FIG. 3). The stroke of the valve member 18 and thus the closing process of the valve 20 is ended at point BEP (beginning of the injection period). The section 28 of the valve member 18 is seated on the valve seat 17, so that contact with ground is restored and the measuring voltage source 42 is short-circuited again. The voltage detected by the measuring instrument 45 breaks down again. The fuel is injected in the following period, which may already have started in the BSP - BEP area after reaching a certain pressure level.

Auf ein Steuersignal der Steuerinrichtung 22 hin wird die Erregung der Magnetspule 34 abgeschaltet. Nach einer Ausschaltverzugszeit, während der Restkräfte des Magnetkreises das Ventilglied noch in Schließstellung halten, wird der Punkt BÖP (Beginn der Öffnungsperiode) erreicht. Hier beginnt das Ventilglied 18 unter Einwirkung der Druckfeder 37 vom Ventilsitz 17 abzuheben. In diesem Moment steigt die am Verbindungspunkt 44 abgegriffene Spannung wieder auf den Wert U1 an und bricht erst dann wieder zusammen, wenn die mit dem Ventilgied 18 verbundene Ankerplatte 36 den Anschlag 39 erreicht hat. Dies ist der Punkt EEP (Ende der Einspritzperiode). Durch den Schaltstellungsgeber 21 erhält man somit unabhängig von der Steuerzeit des Bestromungsimpulses der Magnetspule 34 sehr exakte Signale für die tatsächliche Bewegung des Ventilgliedes 18 aus seinen beiden Endstellungen, der Schließstellung und Offenstellung, heraus.In response to a control signal from the control device 22, the excitation of the magnet coil 34 is switched off. After a switch-off delay time while the residual forces of the magnetic circuit keep the valve member in the closed position, the point BÖP (start of the opening period) is reached. Here the valve member 18 begins to lift off from the valve seat 17 under the action of the compression spring 37. At this moment, the voltage tapped at the connection point 44 rises again to the value U1 and does not collapse again until the anchor plate 36 connected to the valve member 18 has reached the stop 39. This is the point EEP (end of the injection period). The switch position transmitter 21 thus provides very exact signals for the actual movement of the valve member 18 from its two end positions, the closed position and the open position, regardless of the control time of the energizing pulse of the solenoid 34.

Aus den bekannten Gründen des unterschiedlichen Verlaufs beim Aufbau und Abbau des Magnetfeldes in der Magnetspule 34 ergeben sich unterschiedliche Anstieg- und Abfallkurven zwischen BSP und BEP einerseits und BÖP und EEP andererseits. Dabei ist der Einfluß des letztgenannten Anteils auf die Menge aufgrund des im Druckraum herrschenden hohen Druckes größer und geht stärker in die Bemessung der Kraftstoffeinspritzmenge ein, weshalb der Schlußpunkt EEP auch als Ende der Kraftstoffeinspritzung bezeichnet wird. Über die Steuereinrichtung 22 kann nunmehr dieser Bereich, um einen Faktor korrigiert, der für die Zumessung der Kraftstoffeinspritzmenge wirksamen Einspritzperiode zugeordnet werden. Es kann auch zusätzlich neben der Periode BEP - BÖP noch ein Teil des Bereiches BSP - BEP durch Multiplikation mit einem Faktor berücksichtigt werden. Die letztgenannte Phase wird als erste Bewegungsphase bezeichnet, die mit einem ersten Faktor bewertet wird, während die zuvorgenannte Phase zwischen BÖP und EEP als zweite Bewegungsphase bezeichnet und mit einem höheren, zweiten Faktor bewertet wird. Beide Bewegungsphasen gehen damit anteilig in die für die Zumessung der Kraftstoffeinspritzmenge wirksame Öffnungszeit des Ventils 2O ein.For the well-known reasons of the different course during the build-up and breakdown of the magnetic field in the magnetic coil 34, different rise and fall curves result between BSP and BEP on the one hand and BÖP and EEP on the other. The influence of the last-mentioned portion on the quantity is greater due to the high pressure prevailing in the pressure chamber and is more important in the dimensioning of the fuel injection quantity, which is why the end point EEP is also referred to as the end of fuel injection. This area can now be corrected by the control device 22 by a factor which is assigned to the injection period effective for metering the fuel injection quantity. In addition to the period BEP - BÖP, a part of the area BSP - BEP can also be taken into account by multiplying by a factor. The latter phase is referred to as the first movement phase, which is evaluated with a first factor, while the aforementioned phase between BÖP and EEP is referred to as the second movement phase and is evaluated with a higher, second factor. Both movement phases therefore go proportionately into the opening time of the valve 20 that is effective for metering the fuel injection quantity.

Aufgrund der von dem Schaltstellungsgeber 21 gelieferten Signale 47 kann nun die Steuereinrichtung 22 den genauen Öffnungs- und Schließverlauf des Ventils 2O erfassen und für die Berechnung der tatsächlich zugemessenen Kraftstoffeinspritzmenge heranziehen. Dabei können Bauart- und Toleranzabweichungen ebenso wie Drifterscheingungen und Fehlfunktionen des Ventils 2O berücksichtigt werden, da stets der exakte Zeitpunkt der Ventilschließung bzw. Ventilöffnung erfaßt wird. Auch ein Hängenbleiben des Ventilgliedes 18 in irgendeiner Stellung längs des Hubweges kann erkannt werden. Z.B. kann aus der Zeitfolge der auftretenden Bewegungsbeginnsignale und Bewegungsendesignale, vorzugsweise wenn diese mit der Zeitfolge der das Ventil ansteuernden Steuerimpulsflanken verglichen werden, festgestellt werden, ob die Funktionsfähigkeit des Ventils 2O eingeschränkt ist oder nicht. Es wird so ein Funktions- bzw. ein Nichtfunktionssignal erzeugt. Die von dem beschriebenen Schaltstellungsgeber 21 ausgegebenen Signale sind eindeutig abnehmbar. Der Schaltstellungsgeber 21 ist aus einfachen Schaltgliedern aufgebaut. Der Anschlag 39 für die Ankerplatte 36 kann aus Stahl bestehen. Es kann dafür auch Leitplastik zur Anwendung kommen.On the basis of the signals 47 supplied by the switch position transmitter 21, the control device 22 can now detect the exact opening and closing course of the valve 20 and use it to calculate the actually metered fuel injection quantity. Variations in design and tolerance as well as drift vibrations and malfunctions of valve 2O can be taken into account, since the exact time of valve closing or valve opening is always recorded. A sticking of the valve member 18 in any position along the stroke can also be detected. E.g. It can be determined from the time sequence of the movement start signals and movement end signals occurring, preferably if these are compared with the time sequence of the control pulse edges driving the valve, whether the functionality of the valve 20 is restricted or not. A functional or non-functional signal is generated in this way. The signals output by the switch position transmitter 21 described can be clearly removed. The switch position transmitter 21 is constructed from simple switching elements. The stop 39 for the anchor plate 36 can be made of steel. Conductive plastic can also be used for this.

Bei einer Verwendung des Ventils 2O als sog. Zumeßventil wird dieses in dem Versorgungskanal 7 angeordnet, der dann die Verbindungsleitung 16 ersetzt. In diesem Fall kommt eine umgekehrte Schaltlogik zur Anwendung. Der Hubverlauf des Ventilgliedes 18 hätte dann denselben Verlauf wie in Fig. 3 im oberen Diagramm dargestellt ist, nur wäre das Ventil bei BSP geschlossen, bei BEP - BÖP offen und bei EEP wieder geschlossen. Diese Punkte beschreiben dann entsprechend die Kraftstoffzumeßphase, in der der Pumpenarbeitsraum 6 mit der zugemessenen Kraftstoffmenge gefüllt wird. Zur Erzielung dieser Schaltfunktionen wird entweder die Magnetspule 34 entsprechend mit anderen Steuerzeiten erregt oder es wird der Druckfeder 37 eine andere Wirkrichtung gegeben. Die Kraftstoffeinspritzpumpe kann vorteilhaft auch als Radialkolbenpumpe verwirklicht werden.When the valve 20 is used as a so-called metering valve, it is arranged in the supply channel 7, which then replaces the connecting line 16. In this case, reverse switching logic is used. The stroke course of the valve member 18 would then have the same course as shown in FIG. 3 in the upper diagram, only the valve would be closed in BSP, open in BEP-BÖP and closed again in EEP. These Points then describe accordingly the fuel metering phase in which the pump work space 6 is filled with the metered amount of fuel. To achieve these switching functions, either the solenoid 34 is excited accordingly with different control times or the compression spring 37 is given a different direction of action. The fuel injection pump can advantageously also be implemented as a radial piston pump.

Das in Fig. 4 im Längsschnitt dargestellte weitere Ausführungsbeispiel des Ventils 2O in Fig. 1 unterscheidet sich von dem in Fig. 2 dargestellten Ventil 2O lediglich durch eine andersartige Ausbildung des Schaltstellungsgebers 21ʹ. Der Aufbau des mit 2Oʹ bezeichneten Ventils ist bis auf die fehlenden Isolierschichten 35 und 38 und einen andersartigen Anschluß der Zuleitung 41 identisch mit dem in Fig. 2 beschriebenen Ventil 2O, so daß gleiche Bauteile mit gleichen Bezugszeichen versehen sind.The further embodiment of the valve 2O in FIG. 1 shown in longitudinal section in FIG. 4 differs from the valve 2O shown in FIG. 2 only by a different design of the switching position transmitter 21ʹ. Except for the missing insulating layers 35 and 38 and a different connection of the supply line 41, the structure of the valve designated 2Oʹ is identical to the valve 2O described in FIG. 2, so that the same components are provided with the same reference numerals.

Der in Fig. 5 im einzelnen dargestellte Schaltstellungsgeber 21ʹ ist an dem Anschlag 39 zur Hubbegrenzung des Ventilgliedes 18 befestigt. Der Anschlag 39 ist hier als Bolzen 5O ausgebildet, der mit seinem Schaft 51 mittels eines Außengewindes 53 im Ventilgehäuse 4O verschraubt ist und mit seinem Kopf 52 der mit dem Ventilglied 18 starr verbundene Ankerplatte 36 zugekehrt ist. Der Schaft 51 weist eine sich vom Schaftende her axial erstreckende Sackbohrung 54 mit einem Innengewinde 55 auf. Am Bohrungsgrund 56 ist eine Scheibe 57 aus piezoelektrischer Keramik, im folgenden Piezoscheibe 57 genannt, des Schaltstellungsgebers 21ʹ angeordnet. Die Piezoscheibe 57 trägt auf beiden Stirnflächen jeweils metallisierte Elektrode 58,59. Die Piezoscheibe 57 liegt mit der einen Elektrode 58 unter Herstellung eines elektrischen Kontaktes auf dem Bohrungsgrund 56 auf und wird über einen auf der anderen Elektrode 59 aufliegenden Anpreßring 6O aus Isoliermaterial am Bohrungsgrund 56 verspannt. Die Verspannung erfolgt dabei über eine hohlzylindrische Feststellschraube 61, die in dem Innengewinde 55 verschraubt ist und sich mit ihrer stirnförmigen Ringfläche 62 auf dem Anpreßring 6O aufpreßt. Zwischen der Stirnfläche des Anpreßrings 6O und der diesem zugekehrten Elektrode 59 der Piezoscheibe 57 ist ein scheibenförmiger Kontaktring 63 angeordnet, der mit einem Steckkontakt 64 mechanisch und elektrisch verbunden ist. Der Steckkontakt 64 tritt durch die Ringöffnung des Anpreßrings 6O hindurch und erstreckt sich axial im Innern der Feststellschraube 61. Der Kontaktring 63, der Steckkontakt 64 und der Anpreßring 6O sind als Baueinheit ausgebildet. Auf dem Steckkontakt 64 sitzt ein in Fig. 5 strichliniert angedeuteter Stecker 65, der mit einer durch das Ventilgehäuse 4O isoliert hindurchgeführten Zuleitung 66 elektrisch leitend verbunden ist. Die Zuleitung ist mit einem Anschluß eines Spannungsmeßgerätes 67 verbunden, dessen anderer Anschluß an dem Ventilgehäuse 4O liegt. Alternativ kann die Piezoscheibe 57 des Schaltstellungsgebers 21ʹ statt nahe des freien Endes des Schaftes 51 des Bolzens 5O auch unmittelbar im Kopf 52 des Bolzens 5O angeordnet werden.The switching position transmitter 21ʹ shown in FIG. 5 is attached to the stop 39 to limit the stroke of the valve member 18. The stop 39 is designed here as a bolt 50, which is screwed with its shaft 51 by means of an external thread 53 in the valve housing 40 and with its head 52 the anchor plate 36 rigidly connected to the valve member 18 faces. The shaft 51 has a blind bore 54 which extends axially from the shaft end and has an internal thread 55. A disk 57 made of piezoelectric ceramic, hereinafter referred to as piezo disk 57, of the switch position transmitter 21ʹ is arranged at the bottom 56 of the bore. The piezo disk 57 has metallized electrodes 58, 59 on both end faces. The piezo disk 57 lies with the one electrode 58 producing one electrical contact on the bore base 56 and is clamped on the other electrode 59 on the pressure ring 6O made of insulating material on the bore base 56. The bracing takes place via a hollow cylindrical locking screw 61 which is screwed into the internal thread 55 and presses with its end-shaped annular surface 62 onto the pressure ring 60. A disk-shaped contact ring 63, which is mechanically and electrically connected to a plug contact 64, is arranged between the end face of the pressure ring 60 and the electrode 59 of the piezo disk 57 facing it. The plug contact 64 passes through the ring opening of the pressure ring 60 and extends axially in the interior of the locking screw 61. The contact ring 63, the plug contact 64 and the pressure ring 60 are designed as a structural unit. A plug 65, indicated by dashed lines in FIG. 5, sits on the plug contact 64 and is connected in an electrically conductive manner to a supply line 66 which is insulated and passed through the valve housing 40. The feed line is connected to a connection of a voltage measuring device 67, the other connection of which lies on the valve housing 40. Alternatively, the piezo disk 57 of the switch position transmitter 21ʹ can also be arranged directly in the head 52 of the bolt 5O instead of near the free end of the shaft 51 of the bolt 5O.

Beim Aufschlagen des Ventilgliedes 18 einerseits auf den Ventilsitz 17 und andererseits auf den Anschlag 39 infolge der Bestromung der Magnetspule 34 oder der Stromunterbrechung zur Magnetspule 34 werden Körperschallwellen induziert, welche zu einer mechanischen Beanspruchung der Piezoscheibe 57 führen. Durch diese Beanspruchung der Piezoscheibe 57 bilden sich auf deren Elektroden 58,59 elektrische Ladungen. Diese elektrischen Ladungen werden über den Steckkontakt 64 und den Stecker 65 dem Meßgerät 67 zugeführt und nach Verstärkung als Signal 47 an die Steuereinrichtung 22 gegeben.When the valve member 18 strikes the valve seat 17 on the one hand and the stop 39 on the other hand as a result of the energization of the solenoid 34 or the current interruption to the solenoid 34, structure-borne sound waves are induced, which lead to mechanical stress on the piezo disk 57. As a result of this stress on the piezo disk 57, electrical charges are formed on its electrodes 58, 59. These electrical Charges are supplied to the measuring device 67 via the plug contact 64 and the plug 65 and, after amplification, are sent to the control device 22 as a signal 47.

In Fig. 6 ist die Wirkungsweise des Schaltstellungsgebers 21ʹ in drei Diagrammen erläutert. Diagramm a zeigt den Spannungsverlauf des an der Magnetspule 34 anliegenden Steuerimpulses zur Ventilsteuerung, Diagramm b zeigt den Verlauf des Erregerstromes der Magnetspule 34 und Diagramm c zeigt den vom Spannungsmeßgerät 67 nach Verstärkung erfaßten Spannungsverlauf als Ausgangssignal des Schaltstellungsgebers. Zum Zeitpunkt t = O wird mittels des Steuerimpulses die Magnetspule 34 angesteuert. Im Punkte BEP schlägt das Ventilglied 18 auf dem Ventilsitz 17 auf. Die Körperschallwelle verursacht im Ausgangssignal des Schaltstellgebers 21ʹ eine Veränderung, die im Diagramm c in Fig. 6 zum Zeitpunkt BEP deutlich zu erkennen ist. Zum Zeitpunkt t = t₁ wird die Magneterregung abgeschaltet. Nach einer Ausschaltverzugszeit wird der Punkt BÖP erreicht. Das Ventilglied 18 beginnt sich zu öffnen und schlägt im Zeitpunkt EEP an dem Anschlag 39 an. Das Anschlagen der mit dem Ventilglied 18 verbundenen Ankerplatte 36 an dem Anschlag 39 löst wieder eine Körperschallwelle aus,die erneut die Piezoscheibe 57 mechanisch beansprucht und dadurch eine Veränderung im Ausgangssignal des Schaltstellungsgebers 21ʹ verursacht. Die Signalveränderung zum Zeitpunkt EEP ist im Diagramm c der Fig. 6 deutlich zu erkennen. Die Steuereinrichtung 22 der Kraftstoffeinspritzvorrichtung kann nunmehr in gleicher Weise wie vorstehend beschrieben mit Hilfe des vom Spannungsmeßgeräts 67 ausgegebenen Spannungssignals (Diagramm c in Fig. 6) den genauen Öffnungs- und Schließverlauf des Ventils 2Oʹ erfassen und für die Berechnung der tatsächlich zugemessenen Kraftstoffeinspritzmenge heranziehen.In Fig. 6, the operation of the switch position sensor 21ʹ is explained in three diagrams. Diagram a shows the voltage curve of the control pulse applied to the magnet coil 34 for valve control, diagram b shows the curve of the excitation current of the magnet coil 34 and diagram c shows the voltage curve detected by the voltage measuring device 67 after amplification as the output signal of the switch position transmitter. At time t = 0, the solenoid 34 is activated by means of the control pulse. At the point BEP, the valve member 18 hits the valve seat 17. The structure-borne sound wave causes a change in the output signal of the switching actuator 21ʹ, which can be clearly seen in diagram c in FIG. 6 at the time BEP. At the time t = t 1, the magnetic excitation is switched off. After a switch-off delay, the point BÖP is reached. The valve member 18 begins to open and stops at the stop 39 at the time EEP. The striking of the anchor plate 36 connected to the valve member 18 on the stop 39 again triggers a structure-borne sound wave, which again mechanically stresses the piezo disk 57 and thereby causes a change in the output signal of the switch position transmitter 21ʹ. The signal change at time EEP can be clearly seen in diagram c of FIG. 6. The control device 22 of the fuel injection device can now, in the same manner as described above, with the aid of the voltage signal output by the voltage measuring device 67 (diagram c in FIG. 6) the exact one Record the opening and closing curve of valve 2Oʹ and use it to calculate the actually metered fuel injection quantity.

Das in Fig. 7 in einem weiteren Ausführungsbeispiel im Längsschnitt dargestellte Ventil 2Oʺ, das wiederum als 2/2-Wege-Magnetventil ausgebildet ist, stimmt bis auf den Schaltstellungsgeber 21ʺ mit den beiden vorstehend beschriebenen Ventilen 2O und 2Oʹ überein, so daß gleiche Bauteile mit gleichen Bezugszeichen versehen sind. Der Anschlag 39 zur Hubbegrenzung des Ventilgliedes 18 ist von einer isoliert im Ventilgehäuse 4O angeordneten metallischen Ringscheibe 7O umgeben, die über eine isoliert durch das Ventilgehäuse 4O hindurchgeführte elektrische Zuleitung 71 mit einem Anschluß einer Meßvorrichtung 72 verbunden ist, deren anderer Anschluß an dem Ventilgehäuse 4O liegt. Die Ringscheibe 7O bildet zusammen mit der mit dem Ventilglied 18 verbundenen Ankerplatte 36 einen Ringkondensator, dessen Kapazität proportional der Fläche der Ringscheibe 7O und umgekehrt proportional dem Abstand zwischen Ringscheibe 7O und Ankerplatte 36 ist. Mit sich änderndem Abstand der Ankerplatte 36 von dem Anschlag 39 ändert sich damit auch die Kapazität des Ringkondensators, die somit in direkter Abhängigkeit zum Hub des Ventilgliedes 18 steht. Die Meßvorrichtung 72 erfaßt mittels bekannter Auswertemethoden (z.B. Trägerfrequenz, LC-Schwingkreis, Frequenzdiskriminator, Ladungsverstärker etc.) die Kapazitätsänderung des Ringkondensators und gibt ein entsprechendes Spannungssignal 47, das ein Maß für die momentane Schaltstellung des Ventils ist, an die Steuereinrichtung 22, die dieses Spannungssignal in gleicher Weise auswertet, wie vorstehend beschrieben. Der Aufbau des Schaltstellungsgebers 21ʺ als Ringkondensator ist in Fig. 8 vergrößert dargestellt, in welcher auch deutlich zu sehen ist, daß zur isolierten Befestigung der Ringscheibe 7O diese auf einem ringförmigen Träger 73 stirnseitig aufgesetzt ist, der seinerseits im Ventilgehäuse 4O befestigt ist.The valve 2Oʺ shown in a further exemplary embodiment in longitudinal section in FIG. 7, which in turn is designed as a 2/2-way solenoid valve, corresponds to the switching position transmitter 21ʺ with the two valves 2O and 2Oʹ described above, so that the same components also are provided with the same reference numerals. The stop 39 for limiting the stroke of the valve member 18 is surrounded by an insulated metallic washer 7O arranged in the valve housing 40, which is connected via an electrical lead 71, which is isolated through the valve housing 40, to a connection of a measuring device 72, the other connection of which lies on the valve housing 40 . The annular disk 70 together with the anchor plate 36 connected to the valve member 18 forms an annular capacitor, the capacitance of which is proportional to the area of the annular disk 70 and inversely proportional to the distance between the annular disk 70 and the anchor plate 36. With changing distance of the armature plate 36 from the stop 39, the capacitance of the ring capacitor also changes, which is thus directly dependent on the stroke of the valve member 18. The measuring device 72 uses known evaluation methods (e.g. carrier frequency, LC resonant circuit, frequency discriminator, charge amplifier, etc.) to detect the change in capacitance of the ring capacitor and sends a corresponding voltage signal 47, which is a measure of the instantaneous switching position of the valve, to the control device 22, which does this Evaluates voltage signal in the same way as described above. The construction of the switch position sensor 21ʺ as a ring capacitor is shown enlarged in Fig. 8, in which it can also be clearly seen that for the insulated fastening of the annular disc 70, it is placed on the end face on an annular carrier 73, which in turn is fastened in the valve housing 40.

Der Hubverlauf des Ventilglieds 18 des Ventils 2Oʺ bei Bestromung der Magnetspule 34 bzw. bei Unterbrechung der Bestromung entspricht exakt dem oberen Diagramm in Fig. 3. Bei stromloser Magnetspule 34 ist das Ventilglied 18 in Offenstellung und liegt über die Ankerplatte 36 an dem Anschlag 39 an. Die Kapazität des Ringkondensators ist am größten und dient als Bezugskapazität für die Meßvorrichtung 72. Bei Bestromung der Magnetspule 34 beginnt im Punkte BSP nach einer Einschaltverzugszeit die Ankerplatte 36 sich von dem Anschlag 39 abzuheben. Bei sich zunehmend auf den Ventilsitz 17 zu bewegenden Ventilglied 18 nimmt der Abstand der Ankerplatte 36 von der Ringscheibe 7O zu, wodurch sich die Kapazität des Ringkondensators verkleinert. Im Punkte BEP sitzt das Ventilglied 18 auf dem Ventilsitz 17 auf und das Ventil 2Oʺ ist geschlossen. Die Kapazität des Ringkondensators hat ein Minimum erreicht, und die von der Meßvorrichtung 72 erfaßte Kapazitätsänderung ein Maximum. Das Maximum der Kapazitätsänderung ist damit ein Maß für das Erreichen der Schließstellung des Ventils 2Oʺ. Nach Abschaltung der Bestromung beginnt nach einer vorausgegangenen Ausschaltverzugszeit im Punkte BÖP sich das Ventilglied 18 vom Ventilsitz 17 abzuheben und sich unter der Wirkung der Druckfeder 37 von dem Ventilsitz 17 zu entfernen. Dabei verkleinert sich der Abstand der Ankerplatte 36 von der Ringscheibe 7O, und die Kapazität des Ringkondensators vergrößert sich zunehmend. Im Punkte EEP schlägt die Ankerplatte 36 auf dem Anschlag 39 auf, der Ringkondensator hat wieder seine größte Kapazität erreicht. Die in der Meßvorrichtung 72 erfaßte Kapazitätsänderung hat wiederum ein Maximum erreicht und signalisiert das Erreichen der Endstellung des Ventilgliedes 18 und damit die Offenstellung des Ventils 20". Da das Ventil 2Oʺ ebenfalls wie die beiden anderen Ventile 2O und 2Oʹ als Absteuerventil in der Verbindungsleitung 16 vom Pumpenarbeitsraum 6 zum Saugraum 8 liegt, wird mit Schließen des Ventils 2Oʺ die Kraftstoffzumeßphase eingeleitet und mit Öffnen des Ventils 2Oʺ die Kraftstoffzumeßphase beendet. Das Maximum der Kapazitätsänderung stellt damit immer ein Bewegungsendesignal des Ventilgliedes 18 dar. Das erste Bewegungsendesignal kennzeichnet damit den Schließzustand und das zweite Bewegungsendesignal den Öffnungszustand des Ventils 2Oʺ. Die beginnende Kapazitätsänderung kennzeichnet jeweils den Bewegungsbeginn des Ventilgliedes 18. Die Steuereinrichtung 22 erfaßt wiederum den Zeitabstand zwischen einem ersten Bewegungsendesignal und einem folgenden Bewegungsbeginnsignal als Istwert für die zumeßwirksame Steuerzeit des Ventils 2Oʺ. Während dieser Steuerzeit wird das Ventil 2Oʺ in seinem Schließzustand gehalten. Wie bereits zu Fig. 1 erwähnt, können auch hier die erste Bewegungsphase des Ventilglieds 18 zwischen den Punkten BSP und BEP, die sog. Einschaltflugzeit, und die zweite Bewegungsphase zwischen den Punkten BÖP und EEP, die sog. Ausschaltflugzeit, nach einer entsprechenden Bewertung mit einem ersten und zweiten Faktor der zumeßwirksamen Steuerzeit hinzuaddiert werden.The course of the stroke of the valve member 18 of the valve 2Oʺ when the solenoid 34 is energized or when the energization is interrupted corresponds exactly to the upper diagram in FIG. 3. When the solenoid 34 is de-energized, the valve member 18 is in the open position and lies against the stop 39 via the armature plate 36 . The capacitance of the ring capacitor is the largest and serves as a reference capacitance for the measuring device 72. When the solenoid 34 is energized, the armature plate 36 begins to lift off the stop 39 at the BSP point after a switch-on delay time. With valve member 18 increasingly moving toward valve seat 17, the distance of armature plate 36 from ring disk 70 increases, which reduces the capacitance of the ring capacitor. At points BEP, the valve member 18 is seated on the valve seat 17 and the valve 2Oʺ is closed. The capacitance of the ring capacitor has reached a minimum, and the change in capacitance detected by the measuring device 72 has reached a maximum. The maximum of the change in capacity is thus a measure for reaching the closed position of the valve 2Oʺ. After the current supply has been switched off, after a previous switch-off delay time in points BÖP, the valve member 18 begins to lift off the valve seat 17 and to move away from the valve seat 17 under the action of the compression spring 37. The distance between the armature plate 36 and the ring disk 70 decreases, and the capacitance of the ring capacitor increases increasingly. At point EEP the anchor plate 36 hits the stop 39, the ring capacitor has again reached its greatest capacity. The change in capacity detected in the measuring device 72 has again reached a maximum and signals the reaching of the end position of the valve member 18 and thus the open position of the valve 20 ". Since the valve 2Oʺ also like the other two valves 2O and 2Oʹ as a control valve in the connecting line 16 from Pump working chamber 6 to the suction chamber 8, the fuel metering phase is initiated when valve 2Oʺ is closed and the fuel metering phase is ended when valve 2Oʺ is opened, so that the maximum change in capacity always represents a movement end signal of valve member 18. The first movement end signal thus indicates the closed state and the second End of movement signal indicates the opening state of the valve 20. The beginning of the change in capacity characterizes the start of movement of the valve member 18. The control device 22 in turn detects the time interval between a first end of movement signal and a subsequent start of movement Signal as actual value for the effective control time of valve 2Oʺ. During this control time, the valve 2O wird is kept in its closed state. As already mentioned in relation to FIG. 1, the first movement phase of the valve member 18 between the points BSP and BEP, the so-called switch-on flight time, and the second movement phase between the points BÖP and EEP, the so-called switch-off flight time, can also be carried out after a corresponding evaluation a first and a second factor of the effective control time are added.

Auch das Ventil 2Oʺ mit dem Schaltstellungsgeber 21ʺ kann als sog. Zumeßventil verwendet werden, das dann unter Wegfall der Verbindungsleitung 16 in dem Versorgungskanal 7 anzuordnen ist. In dem identischen Hubverlauf des Ventilglieds 18, wie er in dem ersten Diagramm der Fig. 3 dargestellt ist, kennzeichnet dann das erste Bewegungsendesignal (im Punkte BEP) den Öffnungszustand und das zweite Bewegungsendesignal (im Punkte EEP) den Schließzustand des Ventils 2Oʺ. Die zumeßwirksame Steuerzeit des Ventils 2Oʺ zwischen dem ersten Bewegungsendesignal (im Punkte BEP) und dem folgenden Bewegungsbeginnsignal (im Punkte BÖP) hält das Ventil 2Oʺ während des Saughubs des Pumpenkolbens 3 in seinem Öffnungszustand.The valve 2Oʺ with the switch position transmitter 21ʺ can be used as a so-called metering valve, which is then to be arranged in the supply channel 7 with the elimination of the connecting line 16. In the identical stroke course of the valve member 18, as shown in the first diagram in FIG. 3, the first movement end signal (in points BEP) identifies the opening state and the second movement end signal (in points EEP) the closing state of valve 2Oʺ. The effective control time of the valve 2Oʺ between the first movement end signal (in points BEP) and the following movement start signal (in points BÖP) keeps the valve 2Oʺ in its open state during the suction stroke of the pump piston 3.

Claims (14)

  1. Fuel injection device for internal combustion engines with a fuel injection pump having a pump piston (3) and a pump working space (6) delimited by the latter, in particular a fuel injection pump of the distributor injection pump design having a valve (20), arranged between the pump working space (6) and a fuel low pressure space (8), with a valve element (18) which can be placed by an electrical switching drive in two switching positions, an open position determined by a stop on the valve housing and a closed position determined by a valve seat (17) of the valve, it being possible to determine the fuel quantity which is injected per pump piston delivery stroke by means of the times in which the valve element is located in the switching positions, and having a control device (22) for controlling the switching drive of the valve with a sensor (21) which is connected to the control device (22) and detects the switching of the valve element (20), the movable sensor component of said sensor being moved by the valve element and said sensor generating characterizing electrical signals whose timing interval from one another is identified as an actual value by the control device (22) as a measure of the fuel injection quantity and the switching times of the valve element (18) are corrected by said control device according to the difference between actual value and a reference value predetermined by operating parameters of the internal combustion engine, characterized in that the valve element (18) triggers a signal emission of the sensor (21), constructed as switching position sensor, as a result in each case of its coming to rest at the stop (39) and at the valve seat (17), the valve seat (17), the stop (39) and the valve element (18) being of electrically conductive construction and the valve element (18) being guided in the valve housing (40), electrically insulated in relation to the latter, and being connected to a pole of a measuring voltage source (42), to whose opposite pole the stop (39) and the valve seat (17) are connected.
  2. Device according to Claim 1, characterized in that the stop (39) consists of conductive plastic material and is electrically conductively connected to the valve housing (40).
  3. Fuel injection device for internal combustion engines with a fuel injection pump having a pump piston (3) and a pump working space (6) delimited by the latter, in particular a fuel injection pump of the distributor injection pump design having a valve (20') arranged in a connecting line between the pump working space (6) and a fuel low pressure space (8), with a valve element (18) which can be placed by an electrical switching drive in two switching positions, an open position determined by a stop on the valve housing and a closed position determined by a valve seat (17) of the valve, it being possible to determine the fuel quantity injected per pump piston delivery stroke by means of the times in which the valve element is located in the switching positions, and having a control device (22) for controlling the switching drive of the valve with a sensor (21') which is connected to the control device (22) and detects the switching of the valve element (20'), the movable sensor component of said sensor being moved by the valve element and said sensor generating characterizing electrical signals whose timing interval from one another is identified as actual value by the control device (22) as a measure for the fuel injection quantity, and the switching times of the valve element (18) are corrected by said control device according to the difference between actual value and a reference value predetermined by operating parameters of the internal combustion engine, characterized in that the valve element (18) triggers a signal emission of the sensor (21'), constructed as switching position sensor, in each case as a result of its coming to rest at the stop (39) and at the valve seat (17), the valve (20') having a metallic valve housing (40) in which the valve seat (17) and the stop are arranged and in which the valve element (18) is guided axially displaceably between valve seat (17) and stop (39), and in that a disc (57) of piezoelectric ceramic which detects the solid-borne sound when the valve element strikes the valve seat and the stop is secured on the stop (39) as fixed switching position sensor component, said disc bearing in each case a metallic electrode (58, 59) on both end sides, said electrodes being connected to a voltage measuring device (67).
  4. Device according to Claim 3, characterized in that the one electrode (58) is connected to the stop (39) and the other electrode (59) to a plug-in contact (64), which is insulated in respect of the stop (39) and the valve housing (40), in each case electrically conductively, and that the valve housing (40) is connected to the one pole, and the plug-in contact (64) to the other pole, of the voltage measuring device (67).
  5. Device according to Claim 4, characterized in that the stop (39) is constructed as bolt (50), secured in the valve housing (40), having an axial blind bore (54) having an internal thread (55), in that the piezodisc (57) rests with one of its electrodes (58) on the radially extending base (56) of the bore and is clamped on the latter by means of a hollow cylindrical fixing screw (61), screwed into the blind bore (54), via a contact ring (60), and in that the plug-in contact (64) connected to the other electrode (59) penetrates the annular orifice of the contact ring (60) and extends axially inside the fixing screw (61).
  6. Device according to Claim 5, characterized in that a disc-shaped contacting ring (63), connected to the plug-in contact (64), is arranged between the end face of the contact ring (60) and the electrode (59), turned towards the latter, of the piezodisc (57), and in that contact ring (60) and contacting ring (63) form one component with the plug-in contact (64).
  7. Device according to Claim 5 or 6, characterized in that the piezodisc (57) is arranged at one end of the bolt (50).
  8. Fuel injection device for internal combustion engines with a fuel injection pump having a pump piston (3) and a pump working space (6) delimited by the latter, in particular a fuel injection pump of the distributor injection pump design, having a valve (20"), arranged in a connecting line between the pump working space (6) and a fuel low pressure space (8), with a valve element (18) which can be placed by an electrical switching drive in two switching positions, an open position determined by a stop on the valve housing and a closed position determined by a valve seat (17) of the valve, it being possible to determine the fuel quantity injected per pump piston delivery stroke by means of the times in which the valve element is located in the switching positions, and having a control device (22) for controlling the switching drive of the valve with a sensor (21") which is connected to the control device (22) and detects the switching of the valve element (20"), the movable sensor component of said sensor being moved by the valve element and said sensor generating characterizing electrical signals, whose timing interval from one another is identified as actual value by the control device (22) as measure for the fuel injection quantity, and the switching times of the valve element (18) being corrected by said control device according to the difference between actual value and a reference value predetermined by operating parameters of the internal combustion engine, characterized in that valve element (18) triggers a signal emission of the sensor (21"), constructed as switching position sensor, in each case by means of its coming to rest at the stop (39) and at the valve seat (17), the valve (20") having a metallic valve housing (40) in which the valve seat (17) and the stop are arranged and in which the valve element (18) is axially displaceably guided between valve seat (17) and stop (39), in that the valve element (18) bears a metallic disc (36) at its end facing away from the valve seat (17), and in that the stop (39) is surrounded by a metallic annular disc (70), as fixed switching sensor component, arranged in an insulated manner, and with the metallic disc (36), as movable switching position sensor component, forms an annular capacitor which is connected to a measuring device (72) for measuring the capacitances, characterizing the valve element positions, of the annular capacitor.
  9. Device according to Claim 8, characterized in that the annular disc (70) is secured in an electrically insulated manner in the valve housing (40) and is conductively connected to a connection line (71), guided in an insulated manner through the valve housing (40), for the measuring device (72).
  10. Device according to one of the preceding claims, characterized in that the switching position sensor (21; 21', 21") outputs, as start of movement signal (BSP, BÖP) the start of movement of the valve element (18) with its lifting off from the valve seat or from the stop, and, as end of movement signal (BEP, EEP), the end of movement of the valve element (18) with its coming to rest on the valve seat or stop, and in that the control device (22) detects the timing interval between a first end of movement signal (BEP) and a subsequent start of movement signal (BÖP) as actual value for the control time, effective for metering, of the valve (20, 20', 20") and for the fuel quantity which is actually injected.
  11. Device according to Claim 10, characterized in that the control device measures the time between the occurrence of a second start of movement signal (BÖP) and a subsequent end of movement signal (EEP) as second movement phase and, after multiplication with a second factor, adds the latter to the control time, effective for metering, for the fuel quantity which is actually injected.
  12. Device according to Claim 10 or 11, characterized in that the control device (22) measures the time between the occurrence of a start of movement signal (BSP) and a subsequent first end of movement signal (BEP) as first movement phase and, after multiplication of a first factor, adds the latter to the control time, effective for metering, for the fuel quantity which is actually injected.
  13. Device according to one of Claims 10 to 11, characterized in that the first end of movement signal (BEP) characterizes the closed state and the second end of movement signal (EEP) characterizes the open state of the valve (20; 20'; 20"), and in that the valve (20; 20'; 20") is actuated in such a way that the control time, effective for metering, keeps the valve (20; 20'; 20") in its closed state during the pump piston delivery stroke.
  14. Device according to one of Claims 10 to 11, characterized in that the first end of movement signal (BEP) characterizes the open state and the second end of movement signal (EEP) characterizes the closed state of the valve (20; 20'; 20"), and in that the valve (20; 20'; 20") is actuated in such a way that the control time, effective for metering, keeps the valve (20; 20'; 20") in its open state during the pump piston induction stroke.
EP19870103241 1986-04-10 1987-03-06 Fuel injection device for internal-combustion engines Expired - Lifetime EP0241697B1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE3612152 1986-04-10
DE3612152 1986-04-10
DE3633107 1986-09-30
DE19863633107 DE3633107A1 (en) 1986-04-10 1986-09-30 FUEL INJECTION DEVICE FOR INTERNAL COMBUSTION ENGINES

Publications (2)

Publication Number Publication Date
EP0241697A1 EP0241697A1 (en) 1987-10-21
EP0241697B1 true EP0241697B1 (en) 1991-03-27

Family

ID=25842792

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19870103241 Expired - Lifetime EP0241697B1 (en) 1986-04-10 1987-03-06 Fuel injection device for internal-combustion engines

Country Status (4)

Country Link
US (1) US4793313A (en)
EP (1) EP0241697B1 (en)
JP (1) JP2585581B2 (en)
DE (2) DE3633107A1 (en)

Families Citing this family (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3711744A1 (en) * 1987-04-07 1988-10-27 Bosch Gmbh Robert METHOD AND DEVICE FOR CONTROLLING THE FUEL INJECTION AMOUNT
DE3730523A1 (en) * 1987-09-11 1989-03-30 Bosch Gmbh Robert METHOD AND DEVICE FOR DETECTING THE SWITCHING TIMES OF SOLENOID VALVES
DE3816165A1 (en) * 1988-05-11 1989-11-23 Bosch Gmbh Robert CONTROL SYSTEM FOR A DIESEL INTERNAL COMBUSTION ENGINE
DE3838599A1 (en) * 1988-11-15 1990-05-17 Bosch Gmbh Robert SOLENOID VALVE, ESPECIALLY FOR FUEL INJECTION PUMPS
DE3943245A1 (en) * 1989-12-29 1991-07-04 Bosch Gmbh Robert FUEL INJECTION PUMP
IT1241144B (en) * 1990-05-17 1993-12-29 Vittorio Stiatti ELECTROMAGNET FOR SOLENOID VALVES
US5133645A (en) * 1990-07-16 1992-07-28 Diesel Technology Corporation Common rail fuel injection system
US5230613A (en) * 1990-07-16 1993-07-27 Diesel Technology Company Common rail fuel injection system
DE4024369A1 (en) * 1990-08-01 1992-02-06 Daimler Benz Ag METHOD FOR CONTROLLING THE MIXTURED OR. QUANTITY OF FUEL
US6394072B1 (en) * 1990-08-31 2002-05-28 Yamaha Hatsudoki Kabushiki Kaisha Fuel injection device for engine
US5738071A (en) * 1991-05-22 1998-04-14 Wolff Controls Corporation Apparatus and method for sensing movement of fuel injector valve
JPH05248300A (en) * 1992-03-04 1993-09-24 Zexel Corp Fuel injection device
US5325837A (en) * 1992-11-19 1994-07-05 Robert Bosch Gmbh Fuel injection apparatus for internal combustion engines
US5345916A (en) * 1993-02-25 1994-09-13 General Motors Corporation Controlled fuel injection rate for optimizing diesel engine operation
DE4307111A1 (en) * 1993-03-06 1994-09-08 Bosch Gmbh Robert Fuel injection pump
DE4329976A1 (en) * 1993-09-04 1995-03-09 Bosch Gmbh Robert Method for measuring the travel (lift) of a valve and setting a valve
US5630440A (en) * 1995-02-21 1997-05-20 Applied Power Inc. Piezo composite sheet actuated valve
US5593134A (en) * 1995-02-21 1997-01-14 Applied Power Inc. Magnetically assisted piezo-electric valve actuator
US5551406A (en) * 1995-05-19 1996-09-03 Siemens Electric Limited Canister purge system having improved purge valve
EP0826105B1 (en) * 1995-05-19 2000-03-08 Siemens Canada Limited Canister purge system having improved purge valve control
US5775355A (en) * 1996-03-11 1998-07-07 Robert Bosch Gmbh Method for measuring the lift of a valve needle of a valve and for adjusting the volume of media flow of the valve
US5747684A (en) * 1996-07-26 1998-05-05 Siemens Automotive Corporation Method and apparatus for accurately determining opening and closing times for automotive fuel injectors
US6247456B1 (en) 1996-11-07 2001-06-19 Siemens Canada Ltd Canister purge system having improved purge valve control
US6102364A (en) * 1997-07-30 2000-08-15 Siemens Canada Limited Control accuracy of a pulse-operated electromechanical device
DE50000490D1 (en) 1999-03-01 2002-10-17 Siemens Ag ARRANGEMENT AND METHOD FOR CONTROLLING A CONTROL VALVE FOR A DIESEL INJECTION SYSTEM
US6836056B2 (en) 2000-02-04 2004-12-28 Viking Technologies, L.C. Linear motor having piezo actuators
DE10007691B4 (en) * 2000-02-19 2006-10-26 Robert Bosch Gmbh Method and device for storing and / or reading data from a fuel metering system
JP3842002B2 (en) * 2000-03-01 2006-11-08 三菱電機株式会社 Variable discharge fuel supply system
AU2001243481A1 (en) 2000-03-07 2001-09-17 Viking Technologies, Inc. Method and system for automatically tuning a stringed instrument
US6717332B2 (en) 2000-04-18 2004-04-06 Viking Technologies, L.C. Apparatus having a support structure and actuator
US6548938B2 (en) 2000-04-18 2003-04-15 Viking Technologies, L.C. Apparatus having a pair of opposing surfaces driven by a piezoelectric actuator
US6879087B2 (en) 2002-02-06 2005-04-12 Viking Technologies, L.C. Apparatus for moving a pair of opposing surfaces in response to an electrical activation
US6759790B1 (en) 2001-01-29 2004-07-06 Viking Technologies, L.C. Apparatus for moving folded-back arms having a pair of opposing surfaces in response to an electrical activation
DE10119984A1 (en) * 2001-04-24 2002-10-31 Bosch Gmbh Robert Fuel injection device for an internal combustion engine
WO2004001871A2 (en) * 2002-06-21 2003-12-31 Viking Technologies, L.C. Uni-body piezoelectric motor
CN1781196A (en) 2003-04-04 2006-05-31 瓦伊金技术有限公司 Apparatus and process for optimizing work from a smart material actuator product
US20070030618A1 (en) * 2003-07-31 2007-02-08 Micha Heinz Method and device for producing and/or adjusting and electromagnetically controllable actuator
CN100418817C (en) * 2003-07-31 2008-09-17 大陆-特韦斯贸易合伙股份公司及两合公司 Method for determining an actuation current of a control device
DE102005007327B4 (en) * 2005-02-17 2010-06-17 Continental Automotive Gmbh Circuit arrangement and method for operating an injector arrangement
JP4050287B2 (en) * 2005-08-10 2008-02-20 三菱電機株式会社 Energy-saving high-pressure fuel supply control system for internal combustion engines
DE102010027806B4 (en) * 2010-04-15 2024-01-18 Robert Bosch Gmbh Method for operating an internal combustion engine, in which a variable is determined
DE102010021169B4 (en) * 2010-05-21 2012-03-08 Continental Automotive Gmbh Method and device for determining the actual start of injection of a piezo fuel injector
EP3263869B1 (en) * 2016-06-30 2023-05-03 Hamilton Sundstrand Corporation Metering valve

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3244663A (en) * 1958-05-08 1966-04-05 Bendix Corp High temperature resistant rubber-like composition
US3779225A (en) * 1972-06-08 1973-12-18 Bendix Corp Reciprocating plunger type fuel injection pump having electromagnetically operated control port
IT1050083B (en) * 1974-12-21 1981-03-10 Cav Ltd FUEL INJECTION NOZZLES
DE2925418A1 (en) * 1979-06-23 1981-01-29 Bosch Gmbh Robert FUEL INJECTION PUMP FOR INTERNAL COMBUSTION ENGINES
JPS56113044A (en) * 1980-02-13 1981-09-05 Nissan Motor Co Ltd Injection timing sensor
DE3047078A1 (en) * 1980-12-13 1982-07-15 Robert Bosch Gmbh, 7000 Stuttgart METHOD FOR DETERMINING THE START OF DELIVERY IN INJECTION PUMPS
DE3123325A1 (en) * 1981-06-12 1982-12-30 Robert Bosch Gmbh, 7000 Stuttgart FUEL INJECTION DEVICE FOR INTERNAL COMBUSTION ENGINES
JPS5827882A (en) * 1981-08-11 1983-02-18 Mitsubishi Electric Corp Fuel controlling apparatus for internal combustion engine
JPS5915644A (en) * 1982-07-19 1984-01-26 Nissan Motor Co Ltd Fuel injection amount detector and electronic fuel injection amount control device for fuel injection type internal combustion engine
JPS5951139A (en) * 1982-09-17 1984-03-24 Nippon Soken Inc Fuel supply device
GB2129163B (en) * 1982-10-21 1986-07-30 Lucas Ind Plc Liquid fuel pumping apparatus
DE3243348A1 (en) * 1982-11-24 1984-05-24 Robert Bosch Gmbh, 7000 Stuttgart FUEL INJECTION PUMP
DE3302292A1 (en) * 1983-01-25 1984-07-26 Klöckner-Humboldt-Deutz AG, 5000 Köln Solenoid-operatable control valve for fuel injection devices
JPS59160040A (en) * 1983-03-01 1984-09-10 Diesel Kiki Co Ltd Electronically controlled fuel injection pump
JPS6066844U (en) * 1983-10-14 1985-05-11 株式会社ボッシュオートモーティブ システム Injection rate control device for distributed fuel injection pump
DE3343481A1 (en) * 1983-12-01 1985-06-13 Robert Bosch Gmbh, 7000 Stuttgart CORRECTION DEVICE FOR A FUEL METERING SYSTEM OF AN INTERNAL COMBUSTION ENGINE
JPS60162238U (en) * 1984-04-05 1985-10-28 株式会社ボッシュオートモーティブ システム fuel injector
DE3581160D1 (en) * 1984-09-14 1991-02-07 Bosch Gmbh Robert ELECTRICALLY CONTROLLED FUEL INJECTION PUMP FOR INTERNAL COMBUSTION ENGINES.

Also Published As

Publication number Publication date
EP0241697A1 (en) 1987-10-21
JPS62243963A (en) 1987-10-24
JP2585581B2 (en) 1997-02-26
DE3768842D1 (en) 1991-05-02
DE3633107A1 (en) 1987-10-15
US4793313A (en) 1988-12-27

Similar Documents

Publication Publication Date Title
EP0241697B1 (en) Fuel injection device for internal-combustion engines
DE2342109C2 (en) Electromechanically controlled fuel injection valve for internal combustion engines
EP1151190B1 (en) Fuel injection valve
EP0745764B1 (en) Fuel injection valve for internal combustion engines
EP0444055B1 (en) Solenoid valve, in particular for fuel injection pumps
EP1825124B1 (en) Method for controlling a piezoelectric actuator and control unit for controlling a piezoelectric actuator
EP0823017B1 (en) Process for driving the exciting coil of an electromagnetically driven reciprocating piston pump
DE69304234T2 (en) Fuel injector
DE2126653A1 (en) Fuel injection device for internal combustion engines
DE2815849C2 (en) Electromagnetically operated gas exchange valves for piston engines
WO2000052326A1 (en) System and method for controlling a control valve for a diesel fuel injection system
DE3609599A1 (en) METHOD FOR CONTROLLING THE DEACTIVATION TIME OF ELECTROMAGNETIC DEVICES, ESPECIALLY ELECTROMAGNETIC VALVES IN INTERNAL COMBUSTION ENGINES
EP1108120B1 (en) Device for controlling a regulator
EP1488088A1 (en) Method and device for detecting the moment of impact of the valve needle of a piezo control valve
DE3600113C2 (en)
DE19880737B4 (en) Method for monitoring the function of an electromagnetic actuator
EP0182109B1 (en) Solenoid valve for fluid control
DD147387A5 (en) ELECTRONICALLY CONTROLLED INJECTION SYSTEM WITH PUMP-DUESEN-EINRICHTUNG
DE10060657A1 (en) Fuel injection unit for internal combustion engine has valve element with moving core having coils at each end to magnetize fixed cores and pull moving core to open or close valve
DE3601710C2 (en) Fuel injection device for internal combustion engines
DE3338297C2 (en)
DE2946671C2 (en)
EP0309501B1 (en) Fuel injection pump for combustion engines
DE4018320C2 (en) Control circuit for an electromagnetic consumer
EP0356469A1 (en) Fuel injection pump for internal combustion engines.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT

17P Request for examination filed

Effective date: 19880315

17Q First examination report despatched

Effective date: 19880728

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
REF Corresponds to:

Ref document number: 3768842

Country of ref document: DE

Date of ref document: 19910502

ITF It: translation for a ep patent filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

RAP4 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: ROBERT BOSCH GMBH

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19920306

Year of fee payment: 6

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19920330

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19930306

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19930306

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19931130

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19960528

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19971202

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050306