EP0309501B1 - Fuel injection pump for combustion engines - Google Patents

Fuel injection pump for combustion engines Download PDF

Info

Publication number
EP0309501B1
EP0309501B1 EP88902423A EP88902423A EP0309501B1 EP 0309501 B1 EP0309501 B1 EP 0309501B1 EP 88902423 A EP88902423 A EP 88902423A EP 88902423 A EP88902423 A EP 88902423A EP 0309501 B1 EP0309501 B1 EP 0309501B1
Authority
EP
European Patent Office
Prior art keywords
valve
pump
fuel
fuel injection
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP88902423A
Other languages
German (de)
French (fr)
Other versions
EP0309501A1 (en
Inventor
Helmut Laufer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP0309501A1 publication Critical patent/EP0309501A1/en
Application granted granted Critical
Publication of EP0309501B1 publication Critical patent/EP0309501B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M59/00Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
    • F02M59/20Varying fuel delivery in quantity or timing
    • F02M59/36Varying fuel delivery in quantity or timing by variably-timed valves controlling fuel passages to pumping elements or overflow passages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M59/00Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
    • F02M59/20Varying fuel delivery in quantity or timing
    • F02M59/36Varying fuel delivery in quantity or timing by variably-timed valves controlling fuel passages to pumping elements or overflow passages
    • F02M59/366Valves being actuated electrically
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M41/00Fuel-injection apparatus with two or more injectors fed from a common pressure-source sequentially by means of a distributor
    • F02M41/08Fuel-injection apparatus with two or more injectors fed from a common pressure-source sequentially by means of a distributor the distributor and pumping elements being combined
    • F02M41/10Fuel-injection apparatus with two or more injectors fed from a common pressure-source sequentially by means of a distributor the distributor and pumping elements being combined pump pistons acting as the distributor
    • F02M41/12Fuel-injection apparatus with two or more injectors fed from a common pressure-source sequentially by means of a distributor the distributor and pumping elements being combined pump pistons acting as the distributor the pistons rotating to act as the distributor
    • F02M41/123Fuel-injection apparatus with two or more injectors fed from a common pressure-source sequentially by means of a distributor the distributor and pumping elements being combined pump pistons acting as the distributor the pistons rotating to act as the distributor characterised by means for varying fuel delivery or injection timing
    • F02M41/125Variably-timed valves controlling fuel passages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M45/00Fuel-injection apparatus characterised by having a cyclic delivery of specific time/pressure or time/quantity relationship
    • F02M45/12Fuel-injection apparatus characterised by having a cyclic delivery of specific time/pressure or time/quantity relationship providing a continuous cyclic delivery with variable pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B3/00Engines characterised by air compression and subsequent fuel addition
    • F02B3/06Engines characterised by air compression and subsequent fuel addition with compression ignition

Definitions

  • the invention is based on a fuel injection pump according to the preamble of claim 1.
  • a fuel injection pump of this type is known from FR-A-2 299 523.
  • the relief duct leads away from the pump cylinder in the effective area of the pump piston and is distributed by one of several filling grooves, which are distributed around the circumference of the pump piston, which is driven back and forth and rotates at the same time, and also serve to supply the pump work space with fuel. steered on.
  • the control takes place in the known fuel injection pump shortly after the pressure stroke or delivery stroke of the pump piston has begun.
  • the solenoid valve that controls the relief channel is opened during idling and in the low speed range, in each case over the entire pump piston delivery stroke.
  • This fuel injection pump has the disadvantage that a fixed throttle is provided to reduce the fuel injection delivery rate, which is either always open or always closed, depending on the operating range of the internal combustion engine. In transitions, there is a sudden change in the fuel injection rate or the fuel injection duration, which is to be extended by the outflow via the throttle in idle mode and in part-load mode.
  • the advantageous effect in this area consists in a lower combustion noise of the internal combustion engine, although the effect cannot be optimally adapted to the various load conditions of the internal combustion engine.
  • a fuel injection pump of this type known from DE-OS 35 07 853
  • an electric valve is used which is in the de-energized state State that the bypass is fully open and which closes the bypass with increasing electrical excitation.
  • the valve for fixing the injection phase In a first operating state, the valve for fixing the injection phase is completely closed and in a second operating state, in idle mode, is only partially closed over the entire duration of the injection with the result that the fuel injection rate is reduced.
  • the duration of the partially closed state compared to an injection with a high injection rate must be extended accordingly in order to bring the same amount of fuel to the injection.
  • the start and end of delivery are determined solely by the closing or opening movement of the valve, which requires precise coordination between the delivery movement of the pump piston and the electrical control of the valve. Even slight irregularities in the mutual coordination of these movements can lead to major changes in the fuel quantities reaching the injection valves and thus to irregularities in the fuel metering of the internal combustion engine.
  • the device according to the invention with the characterizing features of the independent claim has the advantage that precise coordination between the delivery movement of the pump piston and the electrical control of the valve for determining the start of delivery can be eliminated and thus a possible source of error can be eliminated.
  • an initial signal is generated, which forms the basis for the further control of the electric valve.
  • the course of the injection can be designed in such a way that the one reaching the injection valves Fuel quantity towards the end of delivery is injected with a high injection rate, but at the beginning of injection with a reduced injection rate that takes into account the still low combustion rate. This increases the combustion efficiency and reduces the combustion noise, these advantages also being achieved above the idling speed and idling quantity.
  • FIG. 1 shows a fuel injection pump in a simplified representation with a ring slide valve for controlling the fuel quantity
  • FIG. 2 shows a diagram that shows the course of the pump piston stroke over time
  • FIG. 3 shows a diagram that shows the course of the stroke of the valve closing member over time
  • FIG 4 shows a further diagram which shows the course of the element pressure in the pump working chamber over time.
  • Figure 5 shows a fuel injection pump with an additional solenoid valve instead of the ring slide to control the total duration of injection per pump piston stroke.
  • a socket 2 is arranged in a housing 1, in which a pump piston 3 executes a reciprocating and simultaneously rotating movement.
  • the pump piston 3 is driven in a manner known per se by a cam drive via a shaft which rotates synchronously with the speed of the internal combustion engine supplied with fuel by the injection pump.
  • the pump piston 3 is mounted in a pump cylinder 4 within the bushing 2.
  • the pump piston 3 encloses the pump cylinder 4 with a pump working space 5 which Via a filling groove 6 in the outer surface of the pump piston 3 during the suction stroke thereof, it is connected to a fuel supply line 8 which opens laterally on the pump piston 3 into the pump cylinder 4. This branches off from a suction chamber 9 which is filled with fuel-controlled pressure levels by means not shown.
  • a relief channel 10 runs axially in the pump piston 3, from which a radial bore 11 leads and opens into a distributor groove 12. This is connected in the course of the pump piston working movement during each pressure stroke of the pump piston 3 to one of a plurality of fuel delivery lines 14 which, in an axial plane corresponding to the number and distribution of the cylinders of the associated internal combustion engine to be supplied by the fuel injection pump, around the pump piston 3 from the pump cylinder 4 branch.
  • Each of the fuel delivery lines 14 leads to a pressure-actuated injection nozzle known per se.
  • the relief channel 10 merges in a part of the pump piston 3 projecting into the suction chamber 9 into a transverse bore 15, the mouth of which is controlled on the outer surface of the pump piston 3 by a ring slide 16 which can be moved tightly on the pump piston 3.
  • a controller of which only one eccentric 18 is shown in the drawing, the ring slide 16 is adjusted in a known manner in its axial position in order to change that lifting point of the pump piston 3 at which the delivery of fuel to the injection nozzles by opening the Relief channel 10 is ended.
  • a mechanical or hydraulic as well as an electrical signal box can be used to adjust the ring slide 16.
  • a removal duct 20 branches off from the pump work chamber 5, which is followed by a constriction designed as a throttle 22.
  • the extraction channel 20 merges into a valve seat 23, which cooperates with an axially movable valve closing member 25 of an electrically controllable valve 26, so that when the valve closing member 25 rests on the valve seat 23, the removal channel 20 is blocked off.
  • the valve closing member 25 is lifted from the valve seat 23, part of the pressurized fuel passes from the pump working chamber 5 via the extraction channel 20 into a collecting chamber 27 partially surrounding the valve closing member 25, which is connected via a relief channel 29 either to the suction chamber 9 or to a fuel storage container .
  • the valve 26 thus controls a bypass for the fuel.
  • the valve closing member 25 is guided axially by a soft magnetic core 31 arranged inside a valve housing 30.
  • the core 31 forms the inner part of a soft magnetic pole housing 35 which almost completely surrounds a magnetic coil 34 and which is embedded in the valve housing 30.
  • the valve closing member 25 is fixedly connected to an armature 37 at its end facing away from the valve seat 23, with a first magnetic gap between the armature 37 and an end face of the core 31 and a second magnetic gap between the armature 37 and an outer end face of the pole housing 35.
  • a spring 38 acts on pressure, which on the other hand is supported on the bottom of a pot-shaped adjusting sleeve 40.
  • the adjusting sleeve 40 can slide axially in a shoulder 41 of reduced diameter of the valve housing 30.
  • the adjusting sleeve 40 is supported on an adjusting screw 43, which means its thread within the valve housing 30 is axially adjustable.
  • the sensors can be designed, for example, as position, speed or acceleration sensors or as switches 50a and arranged in the valve 26 in such a way that the latter generates a signal at the same time that the valve closing member 25 lifts off the valve seat 23.
  • This signal is assigned to an electronic control unit 52.
  • An indirectly working method for generating an opening signal to be assigned to the electronic control unit 52 consists in attaching a pressure sensor 50b, which detects the pressure in the pump workspace 5 and which generates a measurement signal as soon as the pressure in the pump workspace 5 at which the valve 26 opens is reached.
  • Another method for generating an opening signal consists in detecting the axial movement of the pump piston 3 by means of a displacement sensor 50c. This is also an indirect method for detecting the opening time of the valve 26.
  • the electronic control unit 52 is also assigned further electrical signals which, above all, describe the position of an accelerator pedal 58, determined, for example, via a further travel sensor 59 and the speed 62 of the internal combustion engine.
  • the pump piston 3 is moved axially in the direction of the pump working chamber 5 by the cam drive, as is described in FIG. 2.
  • the element pressure p EL in the pump work chamber 5 increases, as shown in FIG. 4.
  • the element pressure p EL in the pump work chamber 5 is equal to the pressure in the extraction channel 20 immediately before the valve seat 23. If this element pressure increases with increasing compression, the counter pressure of the spring 38 rises, the valve closing member 25 lifts off the valve seat 23, fuel can thus be throttled by the Throttle 22 via the collecting space 27 in the relief channel 29 and flow from there into the suction space 9 or in the fuel tank.
  • the valve 26 After opening the valve 26, only part of the fuel delivered by the pump piston 3 reaches the injection valves, while the other part can flow out at least temporarily via the opened valve 26.
  • the reference time at which the valve closing member is detected by one of the transmitters 50a, b, c and assigned to the electronic control unit 52 is 25 lifts off the valve seat 23, designated t0.
  • the valve 26, which is still completely currentless, opens like a check valve only due to the force of the element pressure p EL .
  • the valve 26 At the time t 1, the valve 26 is fully open, fuel can reach the respective injection valve via the relief duct 10 and the fuel delivery line 14 as well as flow out via the throttle 22 and the relief duct 29.
  • a time difference .DELTA.t (see FIG. 4) is determined within the electronic control unit 52, after the end of which the magnetic coil 34 is acted upon by the electronic control unit 52 with electrical current.
  • the element pressure in the pump work space is only subject to the back pressure of the injection nozzles, a pressure reduction via the extraction channel 20, the throttle 22 and the relief channel 29 is no longer possible, as a result of which the element pressure p EL and thus the fuel injection rate suddenly increases. This increase after the time t s is shown in FIG. 4 by the dash-dotted line. If the axial movement of the pump piston 3 leads into the area of the opening de: transverse bore 15 through the ring slide 16, the element pressure p EL drops sharply, the fuel delivery to the injection valves has ended.
  • the opening time of the valve 26 is designated, that is the time difference t1 - t0, which the valve closing member 25 needs to open completely due to the element pressure.
  • ⁇ t s is the pull-in delay time of the armature 37 and thus denotes the closing time of the valve 26, that is to say that period of time between the electrical closing signal of the electronic control unit 52 and the actual contact of the valve closing member 25 on the valve seat 23.
  • the simply dashed line in FIGS. 3 and 4 represents the axial movement of the valve closing member 25 (h V ) or the element pressure (p EL ) for a higher load state of the internal combustion engine.
  • the time difference .DELTA.t 'when it expires electronic control unit 52 causes valve 26 to close. Due to the early closing of the bypass, a higher element pressure is built up earlier in the pump work chamber 5 than in the previous example, as a result of which the fuel quantity emitted by the injection valve increases.
  • the smaller the time difference formed within the electronic control unit 52 ⁇ t t s - t0 is, the smaller the amount of fuel flowing out through the throttle 22 and the greater the amount of fuel sprayed off by the injection valves.
  • the other limit case is formed by the lowest idling mode of the internal combustion engine. In Figures 3 and 4, this load case is shown with a solid line. If the internal combustion engine is idling, which is transmitted to the electronic control unit 52 via the speed sensor 62 and the further travel sensor 59, the energization of the solenoid 34 can be completely omitted.
  • the valve 26 therefore opens due to the increasing element pressure p EL at the start of delivery of the pump piston 3, remains in this open position and closes due to pressure when the pump working chamber 5 is relieved by opening the relief channel 10 by means of the ring slide 16. In certain cases, For example, when the engine is cold, in order to achieve a larger injection quantity, it may also be necessary to prematurely close the valve 26 by energizing the solenoid 34 even when idling.
  • the necessary extension of the delivery duration and injection duration due to the temporary opening of the bypass results in a particularly soft combustion.
  • the combustion noise of a diesel engine operated with the aid of this method is less than would be the case with only a short injection duration. This advantage is particularly noticeable in idle operation, but the combustion noise can also be reduced in partial load operation by controlled gradation of the injection rate combined with a lengthening of delivery and injection duration. It is particularly advantageous in the method described that the greatest fuel delivery rate is only reached after the time interval ⁇ t has elapsed and thus towards the end of the injection. This is beneficial for a quiet engine.
  • the relief duct 10 is located in the housing 1. It opens into the pump working chamber 5 on the one hand, and into the suction chamber 9 on the other hand and can be closed by means of a further solenoid valve 72.
  • the solenoid valve 72 which, in contrast to the valve 26, has no upstream throttle, replaces the ring slide 16 of the first exemplary embodiment and, like this, determines the start and end of delivery. The start of delivery is determined by the closing and the end of delivery by opening the solenoid valve 72. After opening the solenoid valve 72, the fuel delivered by the pump piston 3 no longer reaches the injection valves, but flows out via the relief channel 10 into the suction chamber 9 or into the fuel storage container.
  • the solenoid valve 72 can also be used instead of the transmitters 50a, b, c to determine the reference point in time, in that the point in time at which the solenoid valve 72 closes (for example by electromagnetic actuation) and thus the fuel delivery to the injection valves begins in the electronic control unit 52 is stored as the initial time t0, from which the time difference ⁇ t for closing the valve 26 is then calculated.
  • Valve 26 and solenoid valve 72 are therefore components of a common control concept, which is defined within the electronic control unit 52. The start and end of delivery is determined by solenoid valve 72, and the delivery rate by valve 26.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fuel-Injection Apparatus (AREA)
  • High-Pressure Fuel Injection Pump Control (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

A process and a device for quantity control of fuel injection by means of a fuel injection pump are proposed. With the process or with the device, the noise of a diesel engine during idling and partial loading can be reduced. The fuel injection pump includes at least one pump piston (3) which produces the pressure for the injection and delimits a pump working chamber (5), as well as a valve (26) which is opened by the element pressure in the pump working chamber (5) and closed by an electromagnetic device (34, 37). When the valve (26) is open, some of the fuel supply in the pump working chamber (5) is conveyed away through a discharge channel (29) without being injected. As this reduces the quantity of fuel injected in unit time, the overall delivery time must be prolonged. By prolonging the duration of injection, the noise of the combustion is reduced. During partial loading of the internal combustion machine, the valve (26) is closed by means of the electromagnetic device (34, 37) after a time-interval (DELTA) has elapsed since the valve was opened. The fuel which is conveyed thereafter is is injected. The magnitude of the time-interval (DELTAt) between opening and closing of the valve is determined in an electronic control unit (52) in function of load parameters (59, 62) of the internal combustion engine. During full-load operation of the internal combustion engine, the valve (26) remains closed.

Description

Die Erfindung geht von einer Kraftstoffeinspritzpumpe nach der Gattung des Patentanspruchs 1 aus. Durch die FR-A-2 299 523 ist eine Kraftstoffeinspritzpumpe in dieser Art bekannt. Dort führt der Entlastungskanal vom Pumpenzylinder im Wirkbereich des Pumpenkolbens ab und wird durch eine von mehreren Füllnuten, die am Umfang des Pumpenkolbens, der hin- und hergehend und zugleich rotierend angetrieben wird, verteilt angeordnet sind und im übrigen zur Versorgung des Pumpenarbeitsraums mit Kraftstoff dienen, aufgesteuert. Die Aufsteuerung erfolgt bei der bekannten Kraftstoffeinspritzpumpe kurz, nachdem der Druckhub bzw. Förderhub des Pumpenkolbens begonnen hat. Das Magnetventil, das den Entlastungskanal steuert, wird bei der bekannten Kraftstoffeinspritzpumpe beim Leerlauf und im niedrigen Drehzahlbereich aufgesteuert, und zwar jeweils über den gesamten Pumpenkolbenförderhub. Diese Kraftstoffeinspritzpumpe hat den Nachteil, daß zur Reduzierung der Kraftstoffeinspritzförderrate eine feste Drossel vorgesehen ist, die je nach Betriebsbereich der Brennkraftmaschine entweder immer offen oder immer geschlossen ist. In Übergängen kommt es somit zu einer schlagartigen Änderung der Kraftstoffeinspritzrate bzw. der Kraftstoffeinspritzdauer, die durch die Abströmung über die Drossel im Leerlaufbetrieb und im Teillastbetrieb verlängert werden soll. Die in diesem Bereich vorteilhafte Wirkung besteht in einem geringeren Verbrennungsgeräusch der Brennkraftmaschine, wobei die Wirkung jedoch nicht optimal den verschiedenen Lastbedingungen der Brennkraftmaschine angepaßt werden kann.The invention is based on a fuel injection pump according to the preamble of claim 1. A fuel injection pump of this type is known from FR-A-2 299 523. There, the relief duct leads away from the pump cylinder in the effective area of the pump piston and is distributed by one of several filling grooves, which are distributed around the circumference of the pump piston, which is driven back and forth and rotates at the same time, and also serve to supply the pump work space with fuel. steered on. The control takes place in the known fuel injection pump shortly after the pressure stroke or delivery stroke of the pump piston has begun. In the known fuel injection pump, the solenoid valve that controls the relief channel is opened during idling and in the low speed range, in each case over the entire pump piston delivery stroke. This fuel injection pump has the disadvantage that a fixed throttle is provided to reduce the fuel injection delivery rate, which is either always open or always closed, depending on the operating range of the internal combustion engine. In transitions, there is a sudden change in the fuel injection rate or the fuel injection duration, which is to be extended by the outflow via the throttle in idle mode and in part-load mode. The advantageous effect in this area consists in a lower combustion noise of the internal combustion engine, although the effect cannot be optimally adapted to the various load conditions of the internal combustion engine.

Bei einer aus der DE-OS 35 07 853 bekannten Kraftstoffeinspritzpumpe dieser Art wird ein elektrisches Ventil verwendet, welches in stromlosem Zustand den Bypass vollständig geöffnet hält und welches mit zunehmender elektrischer Erregung den Bypass schließt. Bei einem ersten Betriebszustand ist das Ventil zur Festlegung der Einspritzphase ganz geschlossen und in einem zweiten Betriebzustand, bei Leerlaufbetrieb, über die gesamte Dauer der Einspritzung nur zum Teil geschlossen mit dem Erfolg, daß die Kraftstoffeinspritzrate vermindert wird. Als Ausgleich muß in diesem Betriebsbereich die Dauer des zum Teil geschlossenen Zustands gegenüber einer Einspritzung mit hoher Einspritzrate entsprechend verlängert werden, um dieselbe Kraftstoffmenge zur Einspritzung zu bringen. Der Förderbeginn und das Förderende werden bei dieser Kraftstoffeinspritzpumpe alleine durch die Schließ- bzw. die Öffnungsbewegung des Ventils festgelegt, was eine genaue Koordination zwischen der Förderbewegung des Pumpenkolbens und der elektrischen Ansteuerung des Ventils erfordert. Schon bei geringfügigen Unregelmäßigkeiten in der gegenseitigen Abstimmung dieser Bewegungen kann es zu starken Veränderungen der zu den Einspritzventilen gelangenden Kraftstoffmengen und damit zu Unregelmäßigkeiten in der Kraftstoffzumessung der Brennkraftmaschine kommen.In a fuel injection pump of this type known from DE-OS 35 07 853, an electric valve is used which is in the de-energized state State that the bypass is fully open and which closes the bypass with increasing electrical excitation. In a first operating state, the valve for fixing the injection phase is completely closed and in a second operating state, in idle mode, is only partially closed over the entire duration of the injection with the result that the fuel injection rate is reduced. To compensate for this, the duration of the partially closed state compared to an injection with a high injection rate must be extended accordingly in order to bring the same amount of fuel to the injection. In this fuel injection pump, the start and end of delivery are determined solely by the closing or opening movement of the valve, which requires precise coordination between the delivery movement of the pump piston and the electrical control of the valve. Even slight irregularities in the mutual coordination of these movements can lead to major changes in the fuel quantities reaching the injection valves and thus to irregularities in the fuel metering of the internal combustion engine.

Vorteile der ErfindungAdvantages of the invention

Die erfindungsgemäße Vorrichtung mit den kennzeichnenden Merkmalen des unabhängigen Anspruches weist demgegenüber den Vorteil auf, daß eine genaue Koordination zwischen der Förderbewegung des Pumpenkolbens und der elektrischen Ansteuerung des Ventils zur Festlegung des Förderbeginns fortfallen kann und somit eine mögliche Fehlerquelle beseitigt werden kann. Mit der druckbetätigten Öffnung des Ventils wird jeweils ein Anfangssignal erzeugt, das die Basis für die weitere Steuerung des elektrischen Ventils bildet.The device according to the invention with the characterizing features of the independent claim has the advantage that precise coordination between the delivery movement of the pump piston and the electrical control of the valve for determining the start of delivery can be eliminated and thus a possible source of error can be eliminated. With the pressure-actuated opening of the valve, an initial signal is generated, which forms the basis for the further control of the electric valve.

Vorteilhaft ist es insbesondere, daß der Einspritzverlauf derart gestaltet werden kann, daß die zu den Einspritzventilen gelangende Kraftstoffmenge zum Förderende hin mit hoher Einspritzrate, am Einspritzbeginn jedoch mit verminderter, der dann noch kleinen Verbrennungsgeschwindigkeit Rechnung tragenden Einspritzrate eingespritzt wird. Dies erhöht den Verbrennungswirkungsgrad und vermindert das Verbrennungsgeräusch, wobei diese Vorteile auch oberhalb der Leerlaufdrehzahl und Leerlaufmenge erreicht werden.It is particularly advantageous that the course of the injection can be designed in such a way that the one reaching the injection valves Fuel quantity towards the end of delivery is injected with a high injection rate, but at the beginning of injection with a reduced injection rate that takes into account the still low combustion rate. This increases the combustion efficiency and reduces the combustion noise, these advantages also being achieved above the idling speed and idling quantity.

Zeichnungdrawing

Ausführungsbeispiele der Erfindung sind in der Zeichnung vereinfacht dargestellt und in der nachfolgenden Beschreibung näher erläutert. Es zeigen Figur 1 eine Kraftstoffeinspritzpumpe in vereinfachter Darstellung mit einem Ringschieber zur Steuerung der Kraftstoffmenge, Figur 2 ein Diagramm, das den Verlauf des Pumpenkolbenhubes über der Zeit zeigt, Figur 3 ein Diagramm, welches den Verlauf des Hubes des Ventilschließgliedes über der Zeit zeigt, Figur 4 ein weiteres Diagramm, welches den Verlauf des Elementdruckes in der Pumpenarbeitskammer über der Zeit zeigt. Figur 5 zeigt eine Kraftstoffeinspritzpumpe mit einem zusätzlichen Magnetventil anstelle des Ringschiebers zur Steuerung der Gesamtdauer der Einspritzung pro Pumpenkolbenhub.Embodiments of the invention are shown in simplified form in the drawing and explained in more detail in the following description. FIG. 1 shows a fuel injection pump in a simplified representation with a ring slide valve for controlling the fuel quantity, FIG. 2 shows a diagram that shows the course of the pump piston stroke over time, FIG. 3 shows a diagram that shows the course of the stroke of the valve closing member over time, FIG 4 shows a further diagram which shows the course of the element pressure in the pump working chamber over time. Figure 5 shows a fuel injection pump with an additional solenoid valve instead of the ring slide to control the total duration of injection per pump piston stroke.

Beschreibung der AusführungsbeispieleDescription of the embodiments

Bei der in Figur 1 beispielsweise dargestellten Kraftstoffeinspritzpumpe ist in einem Gehäuse 1 eine Buchse 2 angeordnet, in der ein Pumpenkolben 3 eine hin- und hergehende und gleichzeitig rotierende Bewegung ausführt. Der Pumpenkolben 3 ist in an sich bekannter Weise durch einen Nockentrieb über eine Welle angetrieben, welche synchron zu der Drehzahl der von der Einspritzpumpe mit Kraftstoff versorgten Brennkraftmaschine rotiert. Innerhalb der Buchse 2 ist der Pumpenkolben 3 in einem Pumpenzylinder 4 gelagert. Der Pumpenkolben 3 schließt dem Pumpenzylinder 4 einen Pumpenarbeitsraum 5 ein, der über eine Füllnut 6 in der Mantelfläche des Pumpenkolbens 3 während des Saughubes desselben mit einer seitlich am Pumpenkolben 3 in den Pumpenzylinder 4 einmündenden Kraftstoffversorgungsleitung 8 verbunden ist. Diese zweigt von einem Saugraum 9 ab, der durch nicht weiter dargestellte Mittel mit Kraftstoff gesteuerten Druckniveaus gefüllt ist.In the fuel injection pump shown in FIG. 1, for example, a socket 2 is arranged in a housing 1, in which a pump piston 3 executes a reciprocating and simultaneously rotating movement. The pump piston 3 is driven in a manner known per se by a cam drive via a shaft which rotates synchronously with the speed of the internal combustion engine supplied with fuel by the injection pump. The pump piston 3 is mounted in a pump cylinder 4 within the bushing 2. The pump piston 3 encloses the pump cylinder 4 with a pump working space 5 which Via a filling groove 6 in the outer surface of the pump piston 3 during the suction stroke thereof, it is connected to a fuel supply line 8 which opens laterally on the pump piston 3 into the pump cylinder 4. This branches off from a suction chamber 9 which is filled with fuel-controlled pressure levels by means not shown.

Im Pumpenkolben 3 verläuft axial ein Entlastungskanal 10, von dem eine Radialbohrung 11 abführt und in eine Verteilernut 12 mündet. Diese wird im Laufe der Pumpenkolbenarbeitsbewegung während eines jeden Druckhubes des Pumpenkolbens 3 mit einer von mehreren Kraftstofförderleitungen 14 in Verbindung gebracht, die in einer axialen Ebene entsprechend Zahl und Verteilung der von der Kraftstoffeinspritzpumpe zu versorgenden Zylinder der zugehörigen Brennkraftmaschine um den Pumpenkolben 3 herum von dem Pumpenzylinder 4 abzweigen. Jede der Kraftstofförderleitungen 14 führt zu einer an sich bekannten, druckbetätigten Einspritzdüse.A relief channel 10 runs axially in the pump piston 3, from which a radial bore 11 leads and opens into a distributor groove 12. This is connected in the course of the pump piston working movement during each pressure stroke of the pump piston 3 to one of a plurality of fuel delivery lines 14 which, in an axial plane corresponding to the number and distribution of the cylinders of the associated internal combustion engine to be supplied by the fuel injection pump, around the pump piston 3 from the pump cylinder 4 branch. Each of the fuel delivery lines 14 leads to a pressure-actuated injection nozzle known per se.

Der Entlastungskanal 10 geht in einem in den Saugraum 9 ragenden Teil des Pumpenkolbens 3 in eine Querbohrung 15 über, deren Mündung an der Mantelfläche des Pumpenkolbens 3 durch einen dicht auf dem Pumpenkolben 3 verschiebbaren Ringschieber 16 gesteuert wird. Durch einen Regler, von dem in der Zeichnung nur ein Exzenter 18 gezeigt ist, wird der Ringschieber 16 in bekannter Weise in seiner axialen Stellung verstellt, um jenen Hubpunkt des Pumpenkolbens 3 zu verändern, bei dem die Förderung von Kraftstoff zu den Einspritzdüsen durch Aufsteuern des Entlastungskanals 10 beendet wird. Zur Verstellung des Ringschiebers 16 kann sowohl ein mechanisches oder hydraulisches als auch ein elektrisches Stellwerk verwendet werden.The relief channel 10 merges in a part of the pump piston 3 projecting into the suction chamber 9 into a transverse bore 15, the mouth of which is controlled on the outer surface of the pump piston 3 by a ring slide 16 which can be moved tightly on the pump piston 3. By a controller, of which only one eccentric 18 is shown in the drawing, the ring slide 16 is adjusted in a known manner in its axial position in order to change that lifting point of the pump piston 3 at which the delivery of fuel to the injection nozzles by opening the Relief channel 10 is ended. A mechanical or hydraulic as well as an electrical signal box can be used to adjust the ring slide 16.

Vom Pumpenarbeitsraum 5 zweigt ein Entnahmekanal 20 ab, an den sich eine als Drossel 22 ausgebildete Verengung anschließt. Hinter der Drossel 22 geht der Entnahmekanal 20 in einen Ventilsitz 23 über, welcher mit einem axial beweglichen Ventilschließglied 25 eines elektrisch steuerbaren Ventils 26 zusammenwirkt, so daß bei Anlage des Ventilschließglieds 25 am Ventilsitz 23 der Entnahmekanal 20 abgesperrt ist. Bei vom Ventilsitz 23 abgehobenem Ventilschließglied 25 gelangt ein Teil des unter Druck stehenden Kraftstoffes aus dem Pumpenarbeitsraum 5 über den Entnahmekanal 20 in einen das Ventilschließglied 25 teilweise umgebenden Sammelraum 27, welcher über einen Entlastungskanal 29 entweder mit dem Saugraum 9 oder mit einem Kraftstoffvorratsbehälter in Verbindung steht. Das Ventil 26 steuert also einen Bypass für den Kraftstoff.A removal duct 20 branches off from the pump work chamber 5, which is followed by a constriction designed as a throttle 22. After the throttle 22, the extraction channel 20 merges into a valve seat 23, which cooperates with an axially movable valve closing member 25 of an electrically controllable valve 26, so that when the valve closing member 25 rests on the valve seat 23, the removal channel 20 is blocked off. When the valve closing member 25 is lifted from the valve seat 23, part of the pressurized fuel passes from the pump working chamber 5 via the extraction channel 20 into a collecting chamber 27 partially surrounding the valve closing member 25, which is connected via a relief channel 29 either to the suction chamber 9 or to a fuel storage container . The valve 26 thus controls a bypass for the fuel.

Das Ventilschließglied 25 wird durch einen innerhalb eines Ventilgehäuses 30 angeordneten weichmagnetischen Kern 31 axial geführt. Der Kern 31 bildet den inneren Teil eines eine Magnetspule 34 fast vollständig umschließenden weichmagnetischen Polgehäuses 35, welches im Ventilgehäuse 30 eingelassen ist. Das Ventilschließglied 25 ist an seinem dem Ventilsitz 23 abgewandten Ende fest mit einem Anker 37 verbunden, wobei sich ein erster Magnetspalt zwischen dem Anker 37 und einer Stirnfläche des Kerns 31 und ein zweiter Magnetspalt zwischen dem Anker 37 und einer äußeren Stirnfläche des Polgehäuses 35 befindet. Wird bei vom Ventilsitz 23 abgehobenem Ventilschließglied 25 die Magnetspule 34 mit elektrischem Strom beaufschlagt, so wird der Anker 37 unter gleichzeitiger Verringerung der Dicke der Magnetspalte in Richtung auf das Polgehäuse 35 gezogen, wodurch sich das Ventilschließglied 25 in Richtung auf den Ventilsitz 23 hin bewegt; das Ventil 26 schließt.The valve closing member 25 is guided axially by a soft magnetic core 31 arranged inside a valve housing 30. The core 31 forms the inner part of a soft magnetic pole housing 35 which almost completely surrounds a magnetic coil 34 and which is embedded in the valve housing 30. The valve closing member 25 is fixedly connected to an armature 37 at its end facing away from the valve seat 23, with a first magnetic gap between the armature 37 and an end face of the core 31 and a second magnetic gap between the armature 37 and an outer end face of the pole housing 35. If electrical current is applied to the solenoid 34 when the valve closing member 25 is lifted off the valve seat 23, the armature 37 is pulled towards the pole housing 35 while simultaneously reducing the thickness of the magnetic gaps, as a result of which the valve closing member 25 moves towards the valve seat 23; the valve 26 closes.

An der dem Ventilschließglied 25 abgewandten Flachseite des Ankers 37 greift eine auf Druck arbeitende Feder 38 an, welche sich andererseits am Boden einer topfförmigen Einstellhülse 40 abstützt. Die Einstellhülse 40 kann in einem Absatz 41 verminderten Durchmessers des Ventilgehäuses 30 axial gleiten. Der Feder 38 abgewandt stützt sich die Einstellhülse 40 an einer Einstellschraube 43 ab, die mittels ihres Gewindes innerhalb des Ventilgehäuses 30 axial verstellbar ist. Durch Verdrehen der Einstellschraube 43 läßt sich die axiale Position der Einstellhülse 40 verändern, was unmittelbar die Vorspannung der auf den Anker 37 einwirkenden Feder 38 verändert. Die Einstellschraube 43 dient damit der Einstellung jenes Öffnungsdrucks im Pumpenarbeitsraum 5, bei dem das Ventilschließglied 25 vom Ventilsitz 23 abhebt, das Ventil 26 also öffnet.On the flat side of the armature 37 facing away from the valve closing member 25, a spring 38 acts on pressure, which on the other hand is supported on the bottom of a pot-shaped adjusting sleeve 40. The adjusting sleeve 40 can slide axially in a shoulder 41 of reduced diameter of the valve housing 30. Averted from the spring 38, the adjusting sleeve 40 is supported on an adjusting screw 43, which means its thread within the valve housing 30 is axially adjustable. By turning the adjusting screw 43, the axial position of the adjusting sleeve 40 can be changed, which directly changes the pretension of the spring 38 acting on the armature 37. The adjusting screw 43 thus serves to set that opening pressure in the pump work chamber 5 at which the valve closing member 25 lifts off the valve seat 23, ie the valve 26 opens.

Für die Erfindung ist es wesentlich, daß jener Zeitpunkt erfaßt wird, an dem bei zunehmendem Druck im Pumpenarbeitsraum 5 das Ventilschließglied 25 vom Ventilsitz 23 abhebt. Hierzu dienen Geber, von denen drei verschiedene in der Zeichnung eingetragen sind und im folgenden kurz erläutert werden:
Die Geber können beispielsweise als Weg-, Geschwindigkeits- oder Beschleunigungsaufnehmer oder als Schalter 50a ausgebildet und in der Weise im Ventil 26 angeordnet werden, daß dieser ein Signal im gleichen Augenblick erzeugt, in dem das Ventilschließglied 25 vom Ventilsitz 23 abhebt. Dieses Signal wird einer elektronischen Steuereinheit 52 zugewiesen.
It is essential for the invention that the point in time is recorded at which the valve closing member 25 lifts off the valve seat 23 with increasing pressure in the pump work chamber 5. This is done by sensors, three of which are shown in the drawing and are briefly explained below:
The sensors can be designed, for example, as position, speed or acceleration sensors or as switches 50a and arranged in the valve 26 in such a way that the latter generates a signal at the same time that the valve closing member 25 lifts off the valve seat 23. This signal is assigned to an electronic control unit 52.

Eine indirekt arbeitende Methode zur Erzeugung eines der elektronischen Steuereinheit 52 zuzuweisenden Öffnungssignals besteht in der Anbringung eines Druckaufnehmers 50b, welcher den Druck im Pumpenarbeitsraum 5 erfaßt und welcher ein Meßsignal erzeugt, sobald jener Druck im Pumpenarbeitsraum 5 erreicht ist, bei dem das Ventil 26 öffnet.An indirectly working method for generating an opening signal to be assigned to the electronic control unit 52 consists in attaching a pressure sensor 50b, which detects the pressure in the pump workspace 5 and which generates a measurement signal as soon as the pressure in the pump workspace 5 at which the valve 26 opens is reached.

Eine weitere Methode zur Erzeugung eines Öffnungssignals besteht darin, die axiale Bewegung des Pumpenkolbens 3 mittels eines Weggebers 50c zu erfassen. Hierbei handelt es sich ebenfalls um eine indirekte Methode, um den Öffnungszeitpunkt des Ventils 26 zu erfassen.Another method for generating an opening signal consists in detecting the axial movement of the pump piston 3 by means of a displacement sensor 50c. This is also an indirect method for detecting the opening time of the valve 26.

Dies soll nur eine Auswahl von Methoden wiedergeben, den Öffnungsbeginn des Ventils 26 festzustellen und auf diese Weise einen Anfangs- und Bezugszeitpunkt festzulegen. Entscheidend ist letztendlich, ein elektrisches Signal zu erhalten, welches der elektronischen Steuereinheit 52 jenen Zeitpunkt meldet, an dem das Ventilschließglied 25 vom Ventilsitz 23 abhebt, mithin ein Teil des Kraftstoffes über den Entnahmekanal 20, die Drossel 22 und den Entlastungskanal 29 aus dem Pumpenarbeitsraum 5 abströmen kann.This is only intended to reflect a selection of methods for determining the start of opening of the valve 26 and in this way establishing a start and reference time. Ultimately, it is crucial to receive an electrical signal that reports to the electronic control unit 52 the time at which the valve closing member 25 lifts off the valve seat 23, and consequently a portion of the fuel from the pump work chamber 5 via the extraction channel 20, the throttle 22 and the relief channel 29 can flow off.

Der elektronischen Steuereinheit 52 werden außerdem noch weitere elektrische Signale zugewiesen welche vor allem die Stellung eines Fahrpedals 58, ermittelt beispielsweise über einen weiteren Weggeber 59 sowie die Drehzahl 62 der Brennkraftmaschine beschreiben.The electronic control unit 52 is also assigned further electrical signals which, above all, describe the position of an accelerator pedal 58, determined, for example, via a further travel sensor 59 and the speed 62 of the internal combustion engine.

Durch den Nockenantrieb wird der Pumpenkolben 3 axial in Richtung auf den Pumpenarbeitsraum 5 bewegt, wie dies in Figur 2 beschrieben ist. Durch die Verringerung des Volumens des Pumpenarbeitsraumes 5 bei gleichzeitigem Gegendruck der an die Kraftstofförderleitung 14 angeschlossenen, druckbetätigten Einspritzventile erhöht sich der Elementdruck pEL im Pumpenarbeitsraum 5, wie in Figur 4 dargestellt. Der Elementdruck pEL im Pumpenarbeitsraum 5 ist dabei gleich dem unmittelbar vor dem Ventilsitz 23 bestehenden Druck im Entnahmekanal 20. Übersteigt bei zunehmender Kompression dieser Elementdruck den Gegendruck der Feder 38, so hebt das Ventilschließglied 25 vom Ventilsitz 23 ab, Kraftstoff kann damit gedrosselt durch die Drossel 22 über den Sammelraum 27 in den Entlastungskanal 29 und von dort in den Saugraum 9 oder in den Kraftstoffvorratsbehälter abströmen. Nach Öffnen des Ventils 26 gelangt also nur noch ein Teil des vom Pumpenkolben 3 geförderten Kraftstoffes zu den Einspritzventilen, während der andere Teil über das geöffnete Ventil 26 zumindest zeitweise abströmen kann. In den Figuren 3 und 4 ist der durch einen der Geber 50a, b, c erfaßte und der elektronischen Steuereinheit 52 zugewiesene Bezugszeitpunkt, zu dem das Ventilschließglied 25 vom Ventilsitz 23 abhebt, mit t₀ bezeichnet. Das bis zu diesem Zeitpunkt noch vollkommen stromlose Ventil 26 öffnet also ähnlich einem Rückschlagventil nur aufgrund der Kraft des Elementdrucks pEL. Zum Zeitpunkt t₁ ist das Ventil 26 voll geöffnet, Kraftstoff kann sowohl über den Entlastungskanal 10 und die Kraftstofförderleitung 14 zum jeweiligen Einspritzventil gelangen als auch über die Drossel 22 und den Entlastungskanal 29 abströmen.The pump piston 3 is moved axially in the direction of the pump working chamber 5 by the cam drive, as is described in FIG. 2. As a result of the reduction in the volume of the pump work chamber 5 with simultaneous back pressure of the pressure-actuated injection valves connected to the fuel delivery line 14, the element pressure p EL in the pump work chamber 5 increases, as shown in FIG. 4. The element pressure p EL in the pump work chamber 5 is equal to the pressure in the extraction channel 20 immediately before the valve seat 23. If this element pressure increases with increasing compression, the counter pressure of the spring 38 rises, the valve closing member 25 lifts off the valve seat 23, fuel can thus be throttled by the Throttle 22 via the collecting space 27 in the relief channel 29 and flow from there into the suction space 9 or in the fuel tank. After opening the valve 26, only part of the fuel delivered by the pump piston 3 reaches the injection valves, while the other part can flow out at least temporarily via the opened valve 26. In FIGS. 3 and 4, the reference time at which the valve closing member is detected by one of the transmitters 50a, b, c and assigned to the electronic control unit 52 is 25 lifts off the valve seat 23, designated t₀. Up to this point in time, the valve 26, which is still completely currentless, opens like a check valve only due to the force of the element pressure p EL . At the time t 1, the valve 26 is fully open, fuel can reach the respective injection valve via the relief duct 10 and the fuel delivery line 14 as well as flow out via the throttle 22 and the relief duct 29.

Abhängig von der durch den weiteren Weggeber 59 ermittelten Fahrpedalstellung und der Drehzahl 62 der Brennkraftmaschine wird innerhalb der elektronischen Steuereinheit 52 eine Zeitdifferenz Δ t (siehe Figur 4) ermittelt, nach deren Ende die Magnetspule 34 durch die elektronische Steuereinheit 52 mit elektrischem Strom beaufschlagt wird. Dadurch wird der Anker 37 in Richtung auf das Polgehäuse 35 gezogen, das Ventilschließglied 25 schließt den Ventilsitz 23. Ab dem Zeitpunkt t s = t₀ + Δ t

Figure imgb0001
Figure imgb0002
kann also kein Kraftstoff mehr über den Entlastungskanal 29 entweichen, sämtlicher fortan geförderter Kraftstoff gelangt zum Einspritzventil. Der Elementdruck im Pumpenarbeitsraum unterliegt nur noch dem Gegendruck der Einspritzdüsen, ein Druckabbau über den Entnahmekanal 20, die Drossel 22 und den Entlastungskanal 29 ist nicht mehr möglich, wodurch sich der Elementdruck pEL und damit die Kraftstoffeinspritzrate schlagartig erhöht. Diese Erhöhung nach dem Zeitpunkt ts ist in Figur 4 durch die strichpunktierte Linie dargestellt. Führt die axiale Bewegung des Pumpenkolbens 3 in den Bereich der Aufsteuerung de: Querbohrung 15 durch den Ringschieber 16, so fällt der Elementdruck pEL stark ab, die Kraftstofförderung zu den Einspritzventilen ist beendet.Depending on the accelerator pedal position determined by the further travel sensor 59 and the speed 62 of the internal combustion engine, a time difference .DELTA.t (see FIG. 4) is determined within the electronic control unit 52, after the end of which the magnetic coil 34 is acted upon by the electronic control unit 52 with electrical current. As a result, the armature 37 is pulled in the direction of the pole housing 35, the valve closing member 25 closes the valve seat 23 t s = t₀ + Δ t
Figure imgb0001
Figure imgb0002
So no more fuel can escape via the relief channel 29, all fuel that is now being delivered reaches the injection valve. The element pressure in the pump work space is only subject to the back pressure of the injection nozzles, a pressure reduction via the extraction channel 20, the throttle 22 and the relief channel 29 is no longer possible, as a result of which the element pressure p EL and thus the fuel injection rate suddenly increases. This increase after the time t s is shown in FIG. 4 by the dash-dotted line. If the axial movement of the pump piston 3 leads into the area of the opening de: transverse bore 15 through the ring slide 16, the element pressure p EL drops sharply, the fuel delivery to the injection valves has ended.

Mit Δ tö ist in Figur 3 die Öffnungszeit des Ventils 26 bezeichnet, d.h. jene Zeitdifferenz t₁ - t₀, welche das Ventilschließglied 25 benötigt, um aufgrund des Elementdruckes vollständig zu öffnen. Mit Δ ts ist die Anzugsverzugszeit des Ankers 37 und damit die Schließzeit des Ventils 26 bezeichnet, d.h. jene Zeitspanne zwischen dem elektrischen Schließsignal der elektronischen Steuereinheit 52 und dem tatsächlichen Anliegen des Ventilschließglieds 25 am Ventilsitz 23.With Δ t ö in Figure 3, the opening time of the valve 26 is designated, that is the time difference t₁ - t₀, which the valve closing member 25 needs to open completely due to the element pressure. With Δ t s is the pull-in delay time of the armature 37 and thus denotes the closing time of the valve 26, that is to say that period of time between the electrical closing signal of the electronic control unit 52 and the actual contact of the valve closing member 25 on the valve seat 23.

Die einfach gestrichelte Linie in den Figuren 3 und 4 stellt die axiale Bewegung des Ventilschließglieds 25 (hV) bzw. den Elementdruck (pEL) für einen höheren Lastzustand der Brennkraftmaschine dar. In diesem Fall wird die Zeitdifferenz Δ t', bei deren Ablauf die elektronische Steuereinheit 52 das Schließen des Ventils 26 veranlaßt, verringert. Durch das frühe Schließen des Bypasses wird im Pumpenarbeitsraum 5 früher ein höherer Elementdruck aufgebaut als im vorhergehenden Beispiel, wodurch sich die vom Einspritzventil abgegebene Kraftstoffmenge vergrößert. Je geringer die innerhalb der elektronischen Steuereinheit 52 gebildete Zeitdifferenz Δ t = t s - t₀

Figure imgb0003
ist, desto geringer ist die über die Drossel 22 abströmende Kraftstoffmenge und desto größer ist die von den Einspritzventilen abgespritzte Menge Brennstoffs.The simply dashed line in FIGS. 3 and 4 represents the axial movement of the valve closing member 25 (h V ) or the element pressure (p EL ) for a higher load state of the internal combustion engine. In this case, the time difference .DELTA.t 'when it expires electronic control unit 52 causes valve 26 to close. Due to the early closing of the bypass, a higher element pressure is built up earlier in the pump work chamber 5 than in the previous example, as a result of which the fuel quantity emitted by the injection valve increases. The smaller the time difference formed within the electronic control unit 52 Δ t = t s - t₀
Figure imgb0003
is, the smaller the amount of fuel flowing out through the throttle 22 and the greater the amount of fuel sprayed off by the injection valves.

Bei Vollastbetrieb der Brennkraftmaschine wird die Magnetspule 34 dauernd bestromt, das Ventil 26 bleibt geschlossen.When the internal combustion engine is operating at full load, the solenoid 34 is continuously energized, the valve 26 remains closed.

Der andere Grenzfall wird durch den untersten Leerlaufbetrieb der Brennkraftmaschine gebildet. In den Figuren 3 und 4 ist dieser Lastfall mit durchgezogener Linie dargestellt. Befindet sich die Brennkraftmaschine im Leerlaufbetrieb, was der elektronischen Steuereinheit 52 über den Drehzahlgeber 62 und den weiteren Weggeber 59 übermittelt wird, so kann die Bestromung der Magnetspule 34 völlig unterbleiben. Das Ventil 26 öffnet sich also aufgrund des bei Förderbeginns des Pumpenkolbens 3 zunehmenden Elementdruckes pEL, verharrt in dieser geöffneten Stellung und schließt sich druckbedingt, wenn der Pumpenarbeitsraum 5 durch Öffnen des Entlastungskanals 10 mittels des Ringschiebers 16 entlastet wird. In bestimmten Fällen, z.B. bei kaltem Motor, kann zum Erreichen einer größeren Einspritzmenge jedoch auch im Leerlaufbetrieb ein vorzeitiges Schließen des Ventils 26 durch Bestromen der Magnetspule 34 erforderlich sein.The other limit case is formed by the lowest idling mode of the internal combustion engine. In Figures 3 and 4, this load case is shown with a solid line. If the internal combustion engine is idling, which is transmitted to the electronic control unit 52 via the speed sensor 62 and the further travel sensor 59, the energization of the solenoid 34 can be completely omitted. The valve 26 therefore opens due to the increasing element pressure p EL at the start of delivery of the pump piston 3, remains in this open position and closes due to pressure when the pump working chamber 5 is relieved by opening the relief channel 10 by means of the ring slide 16. In certain cases, For example, when the engine is cold, in order to achieve a larger injection quantity, it may also be necessary to prematurely close the valve 26 by energizing the solenoid 34 even when idling.

Da während der Förderbewegung des Pumpenkolbens 3 ein Teil des Kraftstoffes über die Drossel 22 abströmt, gelangt nur eine geringe Kraftstoffmenge, und zwar genau jene Kraftstoffmenge, welche für den Leerlaufbetrieb der Brennkraftmaschine ausreicht, zu den Einspritzventilen. Durch die Öffnung des Bypasses ist die pro Zeiteinheit zu den Einspritzventilen gelangende Kraftstoffmenge geringer, als sie dies bei geschlossenem Bypass wäre. Zum Ausgleich muß die Förderdauer verlängert werden. Dies wird erreicht, indem der Ringschieber 16 die Querbohrungen 15 erst sehr spät oder gar nicht absteuert. Der Ringschieber 16 befindet sich also auch bei Leerlaufbetrieb in Nähe der Vollaststellung. Bei Lastaufnahme aus obigem Betriebszustand wird das Ventil 26 zunehmend früher vor Förderende geschlossen, das Zeitintervall Δ t also verringert.Since a part of the fuel flows out via the throttle 22 during the conveying movement of the pump piston 3, only a small amount of fuel, namely exactly the amount of fuel which is sufficient for the idle operation of the internal combustion engine, reaches the injection valves. By opening the bypass, the amount of fuel reaching the injection valves per unit of time is less than it would be if the bypass was closed. To compensate, the funding period must be extended. This is achieved by the ring slide 16 controlling the cross bores 15 very late or not at all. The ring slide 16 is thus in the vicinity of the full load position even when idling. When the load is taken from the above operating state, the valve 26 is closed increasingly earlier before the end of delivery, that is to say the time interval Δ t is reduced.

Die aufgrund der zeitweiligen Öffnung des Bypasses notwendige Verlängerung von Förderdauer und Einspritzdauer bewirkt eine besonders weiche Verbrennung das Verbrennungsgeräusch eines mit Hilfe dieses Verfahrens betriebenen Dieselmotors ist geringer als dies bei nur kurzer Einspritzdauer der Fall wäre. Dieser Vorteil macht sich insbesondere im Leerlaufbetrieb bemerkbar, aber es läßt sich auch im Teillastbetrieb durch gesteuerte Abstufung der Einspritzrate verbunden mit einem Strecken von Förder- und Einspritzdauer das Verbrennungsgeräusch vermindern. Besonders vorteilhaft am beschriebenen Verfahren ist es, daß die größte Kraftstofförderrate erst nach Ablauf des Zeitintervalls Δ t und damit gegen Ende der Einspritzung erreicht wird. Dies ist günstig für einen leisen Motorgang.The necessary extension of the delivery duration and injection duration due to the temporary opening of the bypass results in a particularly soft combustion. The combustion noise of a diesel engine operated with the aid of this method is less than would be the case with only a short injection duration. This advantage is particularly noticeable in idle operation, but the combustion noise can also be reduced in partial load operation by controlled gradation of the injection rate combined with a lengthening of delivery and injection duration. It is particularly advantageous in the method described that the greatest fuel delivery rate is only reached after the time interval Δ t has elapsed and thus towards the end of the injection. This is beneficial for a quiet engine.

Bei dem in Figur 5 dargestellten zweiten Ausführungsbeispiel einer Kraftstoffeinspritzpumpe sind gleichwirkende Teile mit den gleichen Bezugszeichen versehen. Im Gegensatz zum ersten Ausführungsbeispiel befindet sich der Entlastungskanal 10 im Gehäuse 1. Er mündet einerseits in den Pumpenarbeitsraum 5, andererseits in den Saugraum 9 und ist mittels eines weiteren Magnetventils 72 verschließbar. Das Magnetventil 72, welches im Gegensatz zum Ventil 26 über keine vorgeschaltete Drossel verfügt, ersetzt den Ringschieber 16 des ersten Ausführungsbeispieles und bestimmt ebenso wie dieser den Förderbeginn und das Förderende. Der Förderbeginn ist durch das Schließen und das Förderende durch das Öffnen des Magnetventils 72 festgelegt. Nach Öffnen des Magnetventils 72 durch den Pumpenkolben 3 geförderter Kraftstoff gelangt also nicht mehr zu den Einspritzventilen, sondern strömt über den Entlastungskanal 10 in den Saugraum 9 bzw. in den Kraftstoffvorratsbehälter ab.In the second exemplary embodiment of a fuel injection pump shown in FIG. 5, parts having the same effect are provided with the same reference symbols. In contrast to the first exemplary embodiment, the relief duct 10 is located in the housing 1. It opens into the pump working chamber 5 on the one hand, and into the suction chamber 9 on the other hand and can be closed by means of a further solenoid valve 72. The solenoid valve 72, which, in contrast to the valve 26, has no upstream throttle, replaces the ring slide 16 of the first exemplary embodiment and, like this, determines the start and end of delivery. The start of delivery is determined by the closing and the end of delivery by opening the solenoid valve 72. After opening the solenoid valve 72, the fuel delivered by the pump piston 3 no longer reaches the injection valves, but flows out via the relief channel 10 into the suction chamber 9 or into the fuel storage container.

Das Magnetventil 72 kann auch anstelle der Geber 50a, b, c zur Bestimmung des Bezugszeitpunktes herangezogen werden, indem jener Zeitpunkt, zu dem das Magnetventil 72 schließt (beispielsweise durch elektromagnetische Betätigung) und damit die Kraftstofförderung zu den Einspritzventilen beginnt, in der elektronischen Steuereinheit 52 als Anfangszeit t₀ abgespeichert wird, von der ab dann die Zeitdifferenz Δ t zum Schließen des Ventils 26 berechnet wird. Ventil 26 und Magnetventil 72 sind also Bestandteile eines gemeinsamen Steuerkonzeptes, welches innerhalb der elektronischen Steuereinheit 52 festgelegt ist. Der Förderbeginn und das Förderende wird durch das Magnetventil 72 bestimmt, die Förderrate durch das Ventil 26.The solenoid valve 72 can also be used instead of the transmitters 50a, b, c to determine the reference point in time, in that the point in time at which the solenoid valve 72 closes (for example by electromagnetic actuation) and thus the fuel delivery to the injection valves begins in the electronic control unit 52 is stored as the initial time t₀, from which the time difference Δt for closing the valve 26 is then calculated. Valve 26 and solenoid valve 72 are therefore components of a common control concept, which is defined within the electronic control unit 52. The start and end of delivery is determined by solenoid valve 72, and the delivery rate by valve 26.

Claims (6)

  1. Fuel injection pump for internal combustion engines, having a pump piston (3) driven in a reciprocating manner in a pump cylinder (4) to produce a suction stroke and a delivery stroke, which pump piston (3) encloses, in the pump cylinder (4), a pump working space (5) which is connected during the suction stroke of the pump piston to a fuel reservoir (9) via a fuel supply conduit (8) controlled by the pump piston and can be connected, during the delivery stroke, to a fuel injection valve via a fuel delivery conduit (10, 14) and simultaneously to a relief space (9) via a relief passage (29) which contains an electric valve (26), controlled as a function of load, and a drain throttle (22), and which pump working space can be relieved via a valve (15, 16; 72) controlled as a function of load in order to end the delivery stroke effective for injection, the electrically controlled valve having a valve closing element (25) actuated by a spring (38) in the closing direction, which valve closing element (25) can be actuated by an electromagnet (31, 34, 35, 37) and is subject to the pressure in the pump working space in the opening direction against the force of the spring (38), characterised in that the valve closing element (25) can be brought into the closed position by the electromagnet and the relief passage (29) is permanently connected to the pump working space (5) and the electrically controlled valve is opened, controlled by a control device (52), in the idling and part-load range of the internal combustion engine during each delivery stroke of the pump piston by the pressure in the pump working space when the electromagnet (31, 34, 35, 37) is not excited and, with increasing load, is closed earlier during the course of the delivery stroke of the pump piston by the controlled excitation of the electromagnet, the opening time (t₀) of the electrically controlled valve (26) being recorded as a control signal by a device (50a, 50b, 50c) recording the motion of the valve closing element (25), which control signal is supplied to the control device (52) to control the closing time, variable as a function of load, of the electrically controlled valve (26).
  2. Fuel injection pump according to Claim 1, characterised in that the electrically controlled valve is permanently closed by the electromagnet (31, 34, 35, 37) during full-load operation of the internal combustion engine.
  3. Fuel injection pump according to Claim 1, characterised in that the starting signal representing the time (t₀) of the opening of the valve (26) is generated by a displacement sensor, velocity sensor or acceleration sensor or switch (50a) recording the position or the motion of the valve closing element (25).
  4. Fuel injection pump according to Claim 1, characterised in that the starting signal representing the time (t₀) of the opening of the valve (26) is generated by a pressure sensor (50b) recording the element pressure in the pump working space (5).
  5. Fuel injection pump according to Claim 1, characterised in that the starting signal representing the time (t₀) of the opening of the valve (26) is generated by a displacement sensor (50c) recording the position of the pump piston (3).
  6. Fuel injection pump according to one of the preceding claims, characterised in that the preload on the spring (38) can be changed by means of an adjustment device (40, 43).
EP88902423A 1987-04-07 1988-03-26 Fuel injection pump for combustion engines Expired - Lifetime EP0309501B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3711744 1987-04-07
DE19873711744 DE3711744A1 (en) 1987-04-07 1987-04-07 METHOD AND DEVICE FOR CONTROLLING THE FUEL INJECTION AMOUNT

Publications (2)

Publication Number Publication Date
EP0309501A1 EP0309501A1 (en) 1989-04-05
EP0309501B1 true EP0309501B1 (en) 1993-01-07

Family

ID=6325079

Family Applications (1)

Application Number Title Priority Date Filing Date
EP88902423A Expired - Lifetime EP0309501B1 (en) 1987-04-07 1988-03-26 Fuel injection pump for combustion engines

Country Status (6)

Country Link
US (1) US4974564A (en)
EP (1) EP0309501B1 (en)
JP (1) JP2818175B2 (en)
KR (1) KR960013108B1 (en)
DE (2) DE3711744A1 (en)
WO (1) WO1988008080A1 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0374569A (en) * 1989-08-15 1991-03-29 Fuji Heavy Ind Ltd Fuel injection control device for gasoline engine
DE3934953A1 (en) * 1989-10-20 1991-04-25 Bosch Gmbh Robert SOLENOID VALVE, ESPECIALLY FOR FUEL INJECTION PUMPS
DE3937709A1 (en) * 1989-11-13 1991-05-16 Bosch Gmbh Robert FUEL INJECTION PUMP FOR INTERNAL COMBUSTION ENGINES
DE4016309A1 (en) * 1990-05-21 1991-11-28 Bosch Gmbh Robert FUEL INJECTION PUMP FOR INTERNAL COMBUSTION ENGINES
DE69304234T3 (en) * 1992-03-26 1999-07-15 Zexel Corp Fuel injector
DE4415826C2 (en) * 1994-05-05 2000-07-13 Deutz Ag Air compressing internal combustion engine
JP3999855B2 (en) * 1997-09-25 2007-10-31 三菱電機株式会社 Fuel supply device
WO2002004805A1 (en) * 2000-07-10 2002-01-17 Mitsubishi Heavy Industries, Ltd. Fuel injection device
EP2282043B1 (en) * 2009-07-02 2013-04-17 Continental Automotive GmbH Fluid injector and method and apparatus for operating the fluid injector
KR101144504B1 (en) * 2010-10-20 2012-05-11 현대중공업 주식회사 Fuel injection pump with variable injection pressure chamber
DE102016200016B4 (en) * 2016-01-05 2017-12-21 Continental Automotive Gmbh Switching valve for a fuel injection system, high-pressure fuel pump for a fuel injection system and driving method for driving a switching valve in a high-pressure fuel pump

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2503346C2 (en) * 1975-01-28 1986-04-03 Robert Bosch Gmbh, 7000 Stuttgart Fuel distributor injection pump for internal combustion engines
FR2481752A1 (en) * 1980-04-30 1981-11-06 Renault Vehicules Ind IMPROVEMENT OF MECHANICAL FUEL INJECTION DEVICES, IN PARTICULAR FOR DIESEL ENGINES
US4434675A (en) * 1981-09-11 1984-03-06 Excelermatic Inc. Transmission ratio control arrangement for a precess cam controlled infinitely variable traction roller transmission
DE3211680A1 (en) * 1982-03-30 1983-10-06 Espenschied Helmut Dipl Ing Fuel injection system for internal combustion engines
JPS5918243A (en) * 1982-07-23 1984-01-30 Nissan Motor Co Ltd Fuel injection pump
JPS5932633A (en) * 1982-08-16 1984-02-22 Nissan Motor Co Ltd Fuel injection controlling apparatus for diesel engine
JPS59203876A (en) * 1983-05-07 1984-11-19 Toyota Motor Corp Ignition timing detecting device for diesel engine
US4562810A (en) * 1983-06-23 1986-01-07 Nippondenso Co., Ltd. Fuel injection pump
US4497298A (en) * 1984-03-08 1985-02-05 General Motors Corporation Diesel fuel injection pump with solenoid controlled low-bounce valve
JPS60162238U (en) * 1984-04-05 1985-10-28 株式会社ボッシュオートモーティブ システム fuel injector
DE3524590A1 (en) * 1984-07-13 1986-02-13 Volkswagen AG, 3180 Wolfsburg Fuel injection pump for internal combustion engines
DE3633107A1 (en) * 1986-04-10 1987-10-15 Bosch Gmbh Robert FUEL INJECTION DEVICE FOR INTERNAL COMBUSTION ENGINES

Also Published As

Publication number Publication date
DE3877302D1 (en) 1993-02-18
US4974564A (en) 1990-12-04
JP2818175B2 (en) 1998-10-30
EP0309501A1 (en) 1989-04-05
KR960013108B1 (en) 1996-09-30
DE3711744A1 (en) 1988-10-27
KR890700752A (en) 1989-04-27
WO1988008080A1 (en) 1988-10-20
JPH01502768A (en) 1989-09-21

Similar Documents

Publication Publication Date Title
DE19640826B4 (en) Storage fuel injection device and pressure control device therefor
DE3885689T2 (en) High pressure variable pump.
EP1042608B1 (en) Fuel supply system of an internal combustion engine
DE60120632T2 (en) Fuel supply device and method of control
EP0733799B1 (en) Fuel injection device for internal combustion engines
DE69105039T2 (en) Fuel injector.
DE68910658T2 (en) High pressure pump with variable drain.
EP1555433B1 (en) Dosing pump system and method of operating a dosing pump
DE3532549C2 (en)
DE3541938C2 (en) Solenoid overflow valve
EP0078983B1 (en) Fuel injection apparatus for internal-combustion engines
DE19515775C2 (en) Method for controlling an excitation coil of an electromagnetically driven reciprocating pump
DE19849030B4 (en) Fuel injection device and method for controlling the same
WO1987005662A1 (en) Process for controlling the excitation time of electromagnetic systems, in particular electromagnetic valves in internal combustion engines
DE102005059228A1 (en) Electromagnetic actuator for fuel injection nozzle, has stator housing, which is recessed by front end magnetic pole surface of SMC-stator, where surface and ring-shaped front end surface of housing are not positioned on surface area
DE10034913C2 (en) Fuel feed device for variable delivery
DE10247436A1 (en) Metering valve gear for fuel injection pump of diesel engine, includes valve whose opening amount is smaller than full open state of fluid route, when electric current applied to coil is greater than predetermined valve
EP0309501B1 (en) Fuel injection pump for combustion engines
DE19545162B4 (en) Fuel injection device with spring-biased control valve
DE3014224A1 (en) FUEL INJECTION PUMP
EP0824190A2 (en) Fuel injection valve
EP0290797A2 (en) Fuel injection pump
DE4206817A1 (en) IC engine fuel injection system - accelerates injection pump plunger between fuel pump and fuel nozzle over part stroke with pressure rise by unit leading to fuel injection across nozzle
EP2724011B1 (en) Method and apparatus for controlling a fuel supply pump of an internal combustion engine
DE2946671C2 (en)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19881110

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT

17Q First examination report despatched

Effective date: 19900201

RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ROBERT BOSCH GMBH

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

RIN1 Information on inventor provided before grant (corrected)

Inventor name: LAUFER, HELMUT

REF Corresponds to:

Ref document number: 3877302

Country of ref document: DE

Date of ref document: 19930218

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19930121

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19930312

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19930329

Year of fee payment: 6

ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN

ET Fr: translation filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19930525

Year of fee payment: 6

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19940326

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19940326

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19941130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19941201

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050326