EP0227005A2 - Sendeeinrichtung für mindestens zwei auf unterschiedlichen Sendefrequenzen und mit unterschiedlichen Strahlungsdiagrammen abstrahlende Hochfrequenzsender - Google Patents

Sendeeinrichtung für mindestens zwei auf unterschiedlichen Sendefrequenzen und mit unterschiedlichen Strahlungsdiagrammen abstrahlende Hochfrequenzsender Download PDF

Info

Publication number
EP0227005A2
EP0227005A2 EP86117473A EP86117473A EP0227005A2 EP 0227005 A2 EP0227005 A2 EP 0227005A2 EP 86117473 A EP86117473 A EP 86117473A EP 86117473 A EP86117473 A EP 86117473A EP 0227005 A2 EP0227005 A2 EP 0227005A2
Authority
EP
European Patent Office
Prior art keywords
power
transmitter
antenna
transmitters
antenna groups
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP86117473A
Other languages
English (en)
French (fr)
Other versions
EP0227005A3 (en
EP0227005B1 (de
Inventor
Helmut Bauer
Georg Linckelmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rohde and Schwarz GmbH and Co KG
Original Assignee
Rohde and Schwarz GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=25839236&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0227005(A2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority claimed from DE3545639A external-priority patent/DE3545639C1/de
Priority claimed from DE19863624176 external-priority patent/DE3624176A1/de
Application filed by Rohde and Schwarz GmbH and Co KG filed Critical Rohde and Schwarz GmbH and Co KG
Priority to AT86117473T priority Critical patent/ATE65643T1/de
Publication of EP0227005A2 publication Critical patent/EP0227005A2/de
Publication of EP0227005A3 publication Critical patent/EP0227005A3/de
Application granted granted Critical
Publication of EP0227005B1 publication Critical patent/EP0227005B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/30Combinations of separate antenna units operating in different wavebands and connected to a common feeder system
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q25/00Antennas or antenna systems providing at least two radiating patterns
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/40Imbricated or interleaved structures; Combined or electromagnetically coupled arrangements, e.g. comprising two or more non-connected fed radiating elements

Definitions

  • the invention relates to a transmission device according to the preamble of the main claim.
  • the same or very close frequencies in the new band range from 100 to 108 M H z were assigned to transmitters that are directly in neighboring countries work.
  • an antenna with omnidirectional radiation pattern can no longer be used, as was previously the case in the 87.5 to 100 MHz range, but an antenna with a specified directional radiation pattern must be used for this, so that only its own coverage area is covered and the transmitter operating on the same frequency in the neighboring country is not disturbed.
  • one and the same antenna is used not only for radiating the transmissions from several high-frequency transmitters at different transmission frequencies, but also with a different radiation pattern, for which purpose only the individual fields of the common antenna are divided into two or more separate groups and each combined in a separate feed cable will.
  • these groups can then be interconnected with the transmitters in such a way that, for example, one transmitter in the FM radio range transmits 87.5 to 100 MHz on any frequency as before with an omnidirectional diagram, while a second transmitter emits, for example, in the range from 100 to 108 MHz with a predetermined directional beam diagram.
  • the antenna system can be constructed very simply and in a space-saving manner, since only a single antenna is used for different radiation patterns. It is even possible to retrofit a known transmitter antenna, which consists of several antenna fields arranged around a mast and in several levels one above the other and which is operated as an omnidirectional antenna for the previous U KW radio range from 87.5 to 100 MHz Modify additional cables and divide them into groups so that an additional transmitter with a corresponding directional diagram can be operated in the new range from 100 to 108 MHz.
  • the solution according to the invention is much simpler and cheaper than the obvious measure to use two separate transmit antennas.
  • the measure according to the invention is not only for the FM radio range from Advantage but can just as well be applied to television antennas or the like. However, because of the relatively large space requirement of FM radio antennas, the invention is particularly suitable for this.
  • the crossover and power distribution arrangement for mutually decoupled interconnection of the transmitters with the feed lines for the antenna groups can be made from known crossovers (for example according to pages 30 to 33 of the Rohde & Schwarz publication mentioned above) and also power distributors known per se, which divide the distribution as desired Output power of the transmitter on two or more outputs in a predetermined power sharing ratio allow to be put together.
  • Known star-point switches page 31 of the above-mentioned Rohde & Schwarz publication
  • directional couplers page 32 of the Rohde & Schwarz publication
  • star point or directional coupler crossovers other known non-reactive parallel circuits can also be used for frequency division, as described, for example, in Meinke-Grundlach, 3rd edition 1968, pages 1441-1451.
  • the costs of directional couplers are essentially determined by the band filters arranged between the directional couplers of the narrowband input, by means of which the power of the is reflected by the second transmitter and, after addition in the second directional coupler, is fed to the antenna group provided for this purpose.
  • a crossover and power distribution arrangement is therefore proposed which is particularly simple in construction and, above all, can also be produced at low cost, since the number of bandpass filters used is kept to a minimum is limited.
  • Fig. 1 shows a transmission device according to the invention using a known directional coupler transmitter switch W, which consists of two directional couplers R, two band filters F tuned to the same frequency and a terminating resistor K and which has a narrowband input C, a broadband input B and a common output Z. .
  • the second transmitter S2 operating at a frequency f2 for example in the frequency band 87.5 to 100 MHz
  • is via a 1: 1 power distributor V. on the one hand connected to the broadband input B of the switch W and on the other hand to the feed line L2, which is connected to the group G2 of the antenna.
  • the antenna consists of four antenna fields A1 to A4, which are arranged in a rectangle around an antenna mast and preferably still above one another in a plurality of antenna levels (see, for example, antenna to the side 34 to 35 of the R&S publication specified above).
  • the antenna fields A1 and A2 are combined to the antenna group G2, the other two antenna fields A3 and A4 to the group G1, which is connected to the output Z of the switch W via the feed line L1.
  • the group G2 would emit isolated supply with a directional diagram D2, the group G1 with a directional diagram D1 in the opposite direction.
  • the same half of the transmission power N2 of the transmitter S2 is fed to the two antenna groups G1 and G2 via the distributor V and the switch W, which results in the omnidirectional radiation pattern D3.
  • the bandpass filters F of the switch W are tuned to the frequency f1 of the transmitter S1, so that the full transmitter power N1 of the transmitter S1 is fed via the narrowband input C to the output Z and thus only to the group G1, the transmitter S1 therefore only radiates with the directional diagram D1 from.
  • a predetermined directional beam diagram D1 is thus achieved for the transmitter S1 via one and the same antenna, while an omnidirectional diagram D3 is produced for the transmitter S2.
  • the two transmitters are mutually decoupled via the switch.
  • Fig. 2 shows a solution with two directional couplers W1 and W2 using two power distributors V1 and V2.
  • the distributor V1 has a distribution ratio of 1: 4
  • the distributor V2 again has a distribution ratio of 1: 1.
  • the transmitter S2 again feeds half the power into the antenna groups G1 and G2, and this transmitter S2 therefore emits again with an omnidirectional diagram D3.
  • the transmitter S1 feeds the first group G1 with a fifth of the total power N1 via the distributor V1 and the switches W1 and W2, while the groups G2 are fed with 4/5 of the power N1.
  • the most varied radiation diagrams for the two transmitters S1 and S2 can be put together by means of corresponding power distributors and corresponding division of the antenna fields into combined groups. It is of course also possible, for example, to combine the antenna fields A1, A2 and A3 into a group and to use the antenna field A4 only as a second group. Any other division is also conceivable.
  • the invention can also be used for antennas which consist of fewer or more than four antenna fields arranged around a mast.
  • the division of the fields arranged one above the other in several levels can also be carried out in different ways in the individual antenna groups, so that not only the horizontal diagram but also the vertical diagram of the antenna can be selected differently in the individual groups.
  • the transmitter S2 feeds the broadband input B of the directional coupler, it can also operate in a known manner by means of additional switches connected in cascade (pages 33 of the R&S publication) in the specified frequency band on several different frequencies, all of which are then emitted with the omnidirectional diagram D3 .
  • the transmitters For certain tasks it may also be desirable to operate multiple transmitters with more than two different radiation patterns. If, for example, three different transmitters are to emit with three different radiation patterns, it is only necessary to use the to divide existing antenna fields into three groups in such a way that these alone or in combination with one another each result in the three desired radiation patterns. These three different antenna groups then only have to be interconnected with the transmitters via appropriate switches and distributors in such a way that, despite mutual decoupling of the transmitters, these each feed those antenna fields which give the desired radiation patterns. Of course, more than three antenna groups can also be formed in this way.
  • the number of possible combinations for transmitters and different assigned radiation patterns is arbitrary and depends only on the type of division of the antenna fields into groups and the type of the switches used.
  • suitable selection of the filters F in the crossovers it is also possible, for example, to connect two transmitters operating at relatively close adjacent frequencies via the narrowband input C, as a result of which the number of crossovers can be reduced for the interconnection of several transmitters. This could be achieved, for example, by appropriately wide bandpass filters or high or low pass filters.
  • the power distributors V are of a known type, in the simplest case they are power transformers with a corresponding transformation ratio.
  • the transmission ratio can be chosen as desired and depends only on the desired power distribution among the antenna groups, i.e. on the desired radiation pattern.
  • the production costs of a directional coupler switch W used in the exemplary embodiments according to FIGS. 1 and 2 are essentially determined by the bandpass filters arranged between the directional couplers. According to a further development of the invention, crossovers and power distribution arrangements are therefore shown in the exemplary embodiments according to FIGS. 3 to 5, which are particularly simple and inexpensive in construction and in which the number of bandpass filters used is limited to a minimum.
  • FIG. 3 shows a crossover and power distribution arrangement, with which a transmitter S1 transmitting at frequency f1 feeds two antenna groups G1 and G2 with such a power distribution that a first predetermined radiation diagram (for example D1 according to FIG. 2) is again generated for S1. results, while the second transmitter S2 operating on a frequency f2 (f2 may not only be equal to f1) feeds the same antenna groups G1 and G2 with such a power distribution that a second different predetermined radiation pattern (for example D3 according to FIG. 2) results for S2 .
  • the antenna groups G1 and G2 are again combined from different antenna fields of a single transmitting antenna.
  • the transmitter S1 is connected to the input 1 of a first directional coupler R1, which acts as a power distributor and is terminated at its output 3 via a resistor K with the correct wave resistance.
  • This directional coupler R1 (3 dB coupler) divides half of the power N1 of the transmitter S1 via the outputs 2, 4 into the inputs of two bandpass filters F, each of which is tuned to the transmission frequency f1 in terms of its center frequency are.
  • the outputs of these two narrow-band band filters F are each connected to the connections 2, 4 of two further 3 dB directional couplers R2 and R3 by dual power distributors V3 and V4.
  • the power split ratio of the two distributors V3 and V4 is chosen as desired with n1: 1, so that any power distribution of the power N1 of the transmitter S1 between the two antenna groups G1 and G2 is possible.
  • the power N1 initially divided via the directional coupler R1 is thus added again in the directional couplers R2 and R3 in the respective outputs 3 of these directional couplers and thus distributed to the antenna groups G1 and G2 with the selected power division ratio n1.
  • the power N2 of the transmitter S2 is fed to the broadband inputs 1 of the two directional couplers R2 and R3 via a further dual power distributor V5 with the power division ratio n2: 1, this power N2 reaches the filters F, since these are not tuned to the frequency f2 are, the power is reflected there and added in a manner known per se in the two directional couplers R2 and R3 and fed back to the antenna groups G1 and G2 with the selected power distribution n2 via the output 3 of these directional couplers.
  • the power N1 and N2 of the two transmitters S1 and S2 on the antenna groups G1 and G2 is thus available in the selected power division ratio for the radiation of the desired radiation diagram.
  • the power distributors V used are preferably designed for the VHF range with a simple ⁇ / 4 transformers after the branch point. Because of the necessary plug connections, all transformation line sections are selected somewhat longer than X / 4 for the band center frequency. To prevent the power of the transmitter S2 with the frequency f2 across the branches of the power distributors V3 and V4 to the other antenna group, which would lead to a falsification of the power division between the two antenna groups G1 and G2, it is appropriate to use the reactance at the junction points of the power distributors V3 and V4 to make this transmission frequency f2 equal to zero or very small. For this purpose, the line length between the branch point of these distributors and the filter outputs for this frequency f2 is chosen approximately ⁇ / 4.
  • FIG. 4 shows the distribution of the powers of two transmitters S1 and S2 onto two different radiation diagrams, which in this case each result as a sum diagram of three individual diagrams which are formed by three different antenna groups G1, G2 and G3.
  • the power N1 is again divided into two filters F via a directional coupler R1, but the outputs of these filters F are connected to the inputs 2, 4 of three further directional couplers R2 via a triple power distributor V6 or V7, R3 and R4 connected.
  • the power N1 of the transmitter S1 is thus divided with a predetermined power division ratio n1 ': n1: 1 of the triple power distributors V6 and V7 between the three antenna groups G1, G2 and G3.
  • these triple distributors V6 and V7 are again like distributors V3 and V4 dimensioned.
  • the power N2 of the transmitter S2 is fed in at the broadband input via a further triple power distributor V8 and is fed to the broadband inputs 1 of the three directional couplers R2, R3 and R4 with a division ratio n2 ': n2: 1, it thus reaches the antenna groups again in a corresponding power distribution G1, G2 and G3.
  • FIG. 5 shows a crossover arrangement for dividing the transmitter powers of three transmitters S1, S2 and S3 operating at different frequencies f1, f2 and f3 onto two antenna groups G1 and G2.
  • a first directional coupler R1 with two downstream filters F1 tuned to the frequency f1 and two downstream dual power distributors V9 and V10 any power sharing ratio the power N1 of the transmitter S1 is divided between the two antenna groups G1 and G2, the power N2 of the Transmitter S2 via a directional coupler R4 and downstream band filters F2 of the center frequency f2 and distributors V11 and V12 via the directional couplers R5 and R6, which are interconnected with the directional couplers R2 and R3 of the first switch, divided between the antenna groups G1 and G2.
  • the power N3 of the third transmitter S3 is again fed via the broadband input and the series-connected directional couplers R2, R3, R5 and R6 to the antenna groups G1 and G2 in accordance with the selected power sharing ratio of a dual power distributor V13.
  • a dual power distributor V13 With this arrangement according to FIG. 5, it is difficult to make the reactances for the frequencies f2 and f3 zero at the branching points of the power distributors V9, V10. In this case, it is sufficient to make the reactance at these branch points zero for a medium frequency between the two frequencies f2 and f3.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Transmitters (AREA)

Abstract

Zum Abstrahlen der Ausgangsleistung von zwei oder mehreren auf unterschiedlichen Sendefrequenzen arbeitenden Hochfrequenzsendern mit unterschiedlichen Strahlungsdiagrammen über eine aus mehreren Antennenfeldern zusammengesetzte einzige Antenne werden die Antennenfelder zu zwei oder mehreren Antennengruppen zusammengefaßt und jeweils mit gesonderten Speiseleitungen verbunden; diese Speiseleitungen werden über eine Frequenzweichen- und Leistungsaufteilungs-Einrichtung so mit den Sendern verbunden, daß der eine Sender die Antennengruppen mit einer Leistungsaufteilung speist, die ein erstes vorbestimmtes Strahlungsdiagramm ergibt, während der andere Sender die Antennengruppen mit einer anderen Leistungsaufteilung speist, die ein sich mindestens teilweise mit dem ersten Strahlungsdiagramm deckendes zweites anderes vorbestimmtes Strahlungsdiagramm ergibt.

Description

  • Die Erfindung betrifft eine Sendeeinrichtung laut Oberbegriff des Hauptanspruches.
  • Es ist bekannt, zwei oder mehrere HF-Sender, die auf unterschiedlichen Sendefrequenzen arbeiten, über Frequenzweichen mit einer gemeinsamen Antenne so zusammenzuschalten, daß die einzelnen Sender über die Weichen gegeneinander entkoppelt sind und sich gegeneinander nicht beeinflussen (VHF- FM/AM-Sendesysteme für den Hörfunk, Info Nr. 3-012 D1 der Firma Rohde & Schwarz, Seiten 30 bis 33). Damit können beispielsweise zwei oder mehr Rundfunksender, die auf Frequenzen im UKW-Rundfunkbereich von 87,5 bis 100 MHz arbeiten, eine gemeinsame Antenne benutzen und ihr Programm jeweils mit dem gleichen Strahlungsdiagramm im gleichen Versorgungsgebiet ausstrahlen. In neuerer Zeit ist vor allem durch die Erweiterung des UKW-Rundfunkbereiches um das Band zwischen 100 und 108 MHz die Notwendigkeit entstanden, die Sender auf unterschiedliche Versorgungsgebiete abzugrenzen. So wurden beispielsweise gleiche oder sehr nah beieinanderliegende Frequenzen im neuen Bandbereich von 100 bis 108 MHz an Sender vergeben, die unmittelbar in benachbarten Ländern arbeiten. Für einen in diesem Bereich arbeitenden Sender im Grenzbereich kann daher nicht mehr wie bisher im Bereich 87,5 bis 100 MHz üblich eine Antenne mit Rundstrahldiagramm benutzt werden, sondern es muß hierfür eine Antenne mit einem vorgegebenen Richtstrahldiagramm benutzt werden, damit nur der eigene Versorgungsbereich abgedeckt ist und der auf gleicher Frequenz im Nachbarland arbeitende Sender nicht gestört wird.
  • Es ist naheliegend, für diesen Zweck zwei getrennte Antennensysteme zu benutzen, die, falls sie auf dem gleichen Mast angebracht sind oder möglicherweise sogar ineinander verschachtelt sind (beispielsweise nach Meinke-Grundlach, Taschenbuch der Hochfrequenztechnik, Springer Verlag Berlin, 1968, S. 597) gegeneinander entkoppelt sein müssen. Dies wäre jedoch sehr aufwendig und teuer, zumal sich hierfür nur Antennensysteme eignen, die zwecks der geforderten gegenseitigen Entkopplung voneinander verschieden sind, also beispielsweise unterschiedliche Polarisation besitzen.
  • Es ist daher Aufgabe der Erfindung, eine Sendeeinrichtung zu schaffen, die es mit einer einfachen Antennenanlage ermöglicht, die Sendungen von zwei oder mehreren Hochfrequenzsendern, insbesondere UKW-Rundfunksendern, nicht nur mit unterschiedlicher Sendefrequenz sondern auch mit unterschiedlichem Strahlungsdiagramm abzustrahlen.
  • Diese Aufgabe wird ausgehend von einer Sendeeinrichtung laut Oberbegriff des Hauptanspruches durch dessen kennzeichnende Merkmale gelöst. Vorteilhafte Weiterbildungen ergeben sich aus den Unteransprüchen.
  • Bei der erfindungsgemäßen Sendeeinrichtung wird ein und dieselbe Antenne nicht nur zum Abstrahlen der Sendungen von mehreren Hochfrequenzsendern auf unterschiedlichen Sendefrequenzen sondern auch mit unterschiedlichem Strahlungsdiagramm benutzt, wozu lediglich die einzelnen Felder der gemeinsamen Antenne in zwei oder mehrere getrennte Gruppen aufgeteilt und jeweils in einem getrennten Speisekabel zusammengefaßt werden. Unter Benutzung an sich bekannter Frequenzweichen und Leistungsverteiler können dann diese Gruppen jeweils mit den Sendern so zusammengeschaltet werden, daß beispielsweise der eine Sender im UKW-Rundfunkbereich 87,5 bis 100 MHz auf einer beliebigen Frequenz wie bisher mit einem Rundstrahldiagramm abstrahlt, während ein zweiter Sender beispielsweise im Bereich von 100 bis 108 MHz mit einem vorbestimmten Richtstrahldiagramm abstrahlt. Damit kann die Antennenanlage sehr einfach und raumsparend aufgebaut werden, da ja nur eine einzige Antenne für unterschiedliche Strahlungsdiagramme ausgenutzt wird. Es ist sogar möglich, eine bekannte Sendeantenne, die aus mehreren um einen Mast herum und in mehreren Ebenen übereinander angeordneten Antennenfeldern besteht und die für den bisherigen UKW-Rundfunkbereich von 87,5 bis 100 MHz als Rundstrahlantenne betrieben wird, nachträglich durch entsprechendes Einziehen von zusätzlichen Kabeln so abzuändern und in Gruppen aufzuteilen, daß in dem neuen Bereich von 100 bis 108 MHz ein zusätzlicher Sender mit entsprechendem Richtdiagramm betrieben werden kann, wozu es lediglich nötig ist, zwischen den Sendern zusätzliche Hochfrequenzweichen aufzustellen. Die erfindungsgemäße Lösung ist wesentlich einfacher und billiger als die naheliegende Maßnahme, zwei getrennte Sendeantennen zu benutzen. Die erfindungsgemäße Maßnahme ist nicht nur für den UKW-Rundfunkbereich von Vorteil sondern kann genauso gut bei Fernsehantennen oder dergleichen angewendet werden. Wegen des relativ großen Platzbedarfes von UKW-Rundfunkantennen ist die Erfindung jedoch hierfür besonders geeignet.
  • Die Frequenzweichen- und Leistungsaufteilungs-Anordnung zur gegenseitigen entkoppelten Zusammenschaltung der Sender mit den Speiseleitungen für die Antennengruppen kann aus bekannten Frequenzweichen (beispielsweise gemäß Seiten 30 bis 33 der obengenannten Rohde & Schwarz-Druckschrift) und ebenfalls an sich bekannten Leistungsverteilern, die eine beliebige Aufteilung der Ausgangsleistung der Sender auf zwei oder mehr Ausgänge in einem vorbestimmten Leistungsteilungsverhältnis ermöglichen, zusammengestellt werden. Hierzu können beispielsweise bekannte Sternpunktweichen (Seite 31 der obengenannten Rohde & Schwarz-Druckschrift) benutzt werden, die allerdings voraussetzen, daß alle Sender jeweils nur auf einer festen vorbestimmten Sendefrequenz arbeiten. Wenn eine Breitbandlösung gewünscht wird, werden vorzugsweise Richtkopplerweichen (Seite 32 der Rohde & Schwarz-Druckschrift) benutzt, was vor allem für UKW-Rundfunksendeanlagen von Vorteil ist. Anstelle von Sternpunkt- oder Richtkoppler-Weichen können auch andere bekannte rückwirkungsfreie Parallelschaltungen für die Frequenzaufteilung benutzt werden, wie sie beispielsweise in Meinke-Grundlach, 3. Auflage 1968, Seiten 1441-1451 beschrieben sind.
  • Die Kosten von Richtkopplerweichen werden im wesentlichen bestimmt durch die zwischen den Richtkopplern des Schmalbandeingangs angeordneten Bandfilter, durch welche die am Breitbandeingang zugeführte Leistung des zweiten Senders reflektiert und nach Addierung im zweiten Richtkoppler der dafür vorgesehenen Antennengruppe zugeführt wird. Gemäß einer vorteilhaften Weiterbildung der Erfindung nach den Unteransprüchen 5 bis 7 wird daher eine Frequenzweichen- und Leistungsaufteilungs-Anordnung vorgeschlagen, die im Aufbau besonders einfach ist und vor allem auch mit geringen Kosten hergestellt werden kann, da hierbei die Anzahl der verwendeten Bandfilter auf ein Minimum beschränkt ist.
  • Die Erfindung wird im folgenden anhand schematischer Zeichnungen an mehreren Ausführungsbeispielen näher erläutert.
  • Fig. 1 zeigt eine erfindungsgemäße Sendeeinrichtung unter Verwendung einer bekannten Richtkoppler-Senderweiche W, die aus zwei Richtkopplern R, zwei auf die gleiche Frequenz abgestimmten Bandfiltern F sowie einem Abschlußwiderstand K besteht und die einen Schmalbandeingang C, einen Breitbandeingang B und einen gemeinsamen Ausgang Z besitzt. Der erste auf einer Frequenz f1 beispielsweise im Bereich 100 bis 108 MHz arbeitende Sender S1 ist mit dem Schmalbandeingang C verbunden, der zweite auf einer Frequenz f2 beispielsweise im Frequenzband 87,5 bis 100 MHz arbeitende Sender S2 ist über einen 1:1-Leistungsverteiler V einerseits mit dem Breitbandeingang B der Weiche W verbunden und andererseits mit der Speiseleitung L2, die mit der Gruppe G2 der Antenne verbunden ist. Die Antenne besteht in dem gezeigten Ausführungsbeispiel aus vier Antennenfeldern A1 bis A4, die im Rechteck um einen Antennenmast herum und vorzugsweise noch übereinander in mehreren Antennenebenen angeordnet sind (siehe beispielsweise Antenne nach Seiten 34 bis 35 der oben angegebenen R&S Druckschrift). Die Antennenfelder A1 und A2 sind zur Antennengruppe G2 zusammengefaßt, die beiden anderen Antennenfelder A3 und A4 zur Gruppe G1, die über die Speiseleitung L1 mit dem Ausgang Z der Weiche W verbunden ist. Die Gruppe G2 würde bei isolierter Speisung mit einem Richtdiagramm D2 abstrahlen, die Gruppe G1 mit einem Richtdiagramm D1 in entgegengesetzter Richtung. Über den Verteiler V und die Weiche W wird den beiden Antennengruppen G1 und G2 jeweils die gleiche halbe Sendeleistung N2 des Senders S2 zugeführt, wodurch das Rundstrahldiagramm D3 entsteht. Die Bandfilter F der Weiche W sind auf die Frequenz f1 des Senders S1 abgestimmt, damit wird die volle Senderleistung N1 des Senders S1 über den Schmalbandeingang C dem Ausgang Z und damit nur der Gruppe G1 zugeführt, der Sender S1 strahlt also nur mit dem Richtdiagramm D1 ab. Damit wird über ein und dieselbe Antenne einerseits für den Sender S1 ein vorbestimmtes Richtstrahldiagramm D1 erreicht während für den Sender S2 ein Rundstrahldiagramm D3 entsteht. Die beiden Sender sind über die Weiche gegenseitig entkoppelt.
  • Fig. 2 zeigt eine Lösung mit zwei Richtkopplerweichen W1 und W2 unter Verwendung von zwei Leistungsverteilern V1 und V2. Der Verteiler V1 besitzt ein Verteilungsverhältnis von 1:4, der Verteiler V2 wieder ein Verteilungsverhältnis 1:1. Bei dieser Anordnung speist der Sender S2 jeweils wieder die halbe Leistung in die Antennengruppen G1 und G2 und dieser Sender S2 strahlt also wieder mit einem Rundstrahldiagramm D3 ab. Der Sender S1 speist dagegen über den Verteiler V1 und die Weichen W1 und W2 die erste Gruppe G1 nur mit einem Fünftel der Gesamtleistung N1 während die Gruppen G2 mit 4/5 der Leistung N1 gespeist wird. Dadurch entsteht ein abgeflachtes Richtdiagramm D1, das hauptsächlich über die Gruppe G2 abstrahlt, teilweise aber noch mit 1/5 der Leistung auch über die Gruppe G1 in entgegengesetzter Richtung.
  • Auf diese Weise können durch entsprechende Leistungsverteiler und entsprechende Aufteilung der Antennenfelder in zusammengefaßte Gruppen die verschiedenartigsten Strahlungsdiagramme für die beiden Sender S1 und S2 zusammengestellt werden. Es ist selbstverständlich auch möglich, beispielsweise die Antennenfelder A1, A2 und A3 zu einer Gruppe zusammenzufassen und das Antennenfeld A4 nur allein als zweite Gruppe zu benutzen. Auch jede andere Aufteilung ist denkbar. Natürlich kann die Erfindung auch bei Antennen benutzt werden, die aus weniger oder mehr als vier um einen Mast herum angeordneten Antennenfeldern besteht. Auch die Aufteilung der in mehreren Ebenen übereinander angeordneten Felder kann in den einzelnen Antennengruppen in unterschiedlicher Weise erfolgen, so daß nicht nur das Horizontaldiagramm sondern auch das Vertikaldiagramm der Antenne in den einzelnen Gruppen entsprechend unterschiedlich gewählt werden kann.
  • Da der Sender S2 jeweils den Breitbandeingang B des Richtkopplers speist, kann dieser auch in bekannter Weise durch zusätzliche in Kaskade geschaltete Weichen (Seiten 33 der R&S Druckschrift) in dem vorgegebenen Frequenzband auf mehreren verschiedenen Frequenzen arbeiten, die dann alle mit dem Rundstrahldiagramm D3 abgestrahlt werden.
  • Für bestimmte Aufgaben kann es auch wünschenswert sein, mehrere Sender mit mehr als zwei unterschiedlichen Strahlungsdiagrammen zu betreiben. Sollen beispielsweise drei verschiedene Sender mit drei unterschiedlichen Strahlungsdiagrammen abstrahlen, so ist es lediglich nötig, die vorhandenen Antennenfelder so in drei Gruppen aufzuteilen, daß diese allein oder in Kombination miteinander jeweils die drei gewünschten Strahlungsdiagramme ergeben. Diese drei verschiedenen Antennengruppen müssen dann nur noch über entsprechende Weichen und Verteiler mit den Sendern so zusammengeschaltet werden, daß trotz gegenseitiger Entkopplung der Sender diese jeweils diejenigen Antennenfelder speisen, welche die gewünschten Strahlungsdiagramme ergeben. Auf diese Weise können natürlich auch mehr als drei Antennengruppen gebildet werden. Ebenso ist es möglich, drei oder mehr Sender über eine entsprechende Anzahl von Weichen mit zwei oder mehreren Antennengruppen zusammenzuschalten, die Anzahl der Kombinationsmöglichkeiten für Sender und unterschiedliche zugeordnete Strahlungsdiagramme ist beliebig groß und hängt nur von der Art der Aufteilung der Antennenfelder in Gruppen und der Art der verwendeten Weichen ab. Durch geeignete Wahl der Filter F in den Weichen ist es beispielsweise auch möglich, über den Schmalbandeingang C zwei auf relativ nahe benachbarten Frequenzen arbeitende Sender anzuschließen, wodurch für das Zusammenschalten von mehreren Sendern die Anzahl der Weichen herabgesetzt werden kann. Dies könnte beispielsweise durch entsprechend breite Bandpaßfilter oder Hoch- bzw. Tiefpaßfilter erreicht werden.
  • Die Leistungsverteiler V sind von bekannter Bauart, im einfachsten Fall handelt es sich um Leistungstransformatoren mit entsprechendem Übersetzungsverhältnis. Das Übersetzungsverhältnis kann beliebig gewählt werden und richtet sich nur nach der gewünschten Leistungsaufteilung auf die Antennengruppen, also nach dem gewünschten Strahlungsdiagramm.
  • Die Herstellungskosten einer in den Ausführungsbeispielen nach Fig. 1 und 2 verwendeten Richtkopplerweiche W werden im wesentlichen bestimmt durch die zwischen den Richtkopplern angeordneten Bandfilter. Gemäß einer Weiterbildung der Erfindung werden daher in den Ausführungsbeispielen nach den Fig. 3 bis 5 Frequenzweichen- und Leistungsaufteilungs-Anordnungen aufgezeigt, die im Aufbau besonders einfach und billig sind und bei denen die Anzahl der verwendeten Bandfilter auf ein Minimum beschränkt ist.
  • Fig. 3 zeigt eine Frequenzweichen- und Leistungsaufteilungs-Anordnung, mit welcher ein auf der Frequenz f1 sendender Sender S1 zwei Antennengruppen G1 und G2 mit einer solchen Leistungsaufteilung speist, daß sich für S1 wieder ein erstes vorbestimmtes Strahlungsdiagramm (beispielsweise D1 gemäß Fig. 2) ergibt, während der zweite auf einer Frequenz f2 arbeitende Sender S2 (f2 darf nur nicht gleich f1 sein) die gleichen Antennengruppen G1 undG2 mit einer solchen Leistungsaufteilung speist, daß sich für S2 ein zweites anderes vorbestimmtes Strahlungsdiagramm (beispielsweise D3 nach Fig. 2) ergibt. Die Antennengruppen G1 und G2 sind wieder aus verschiedenen Antennenfeldern einer einzigen Sendeantenne zusammengefaßt.
  • Der Sender S1 ist mit dem Eingang 1 eines ersten Richtkopplers R1 verbunden, der als Leistungsverteiler wirkt und an seinem Ausgang 3 über einen Widerstand K wellenwiderstandsrichtig abgeschlossen ist. Durch diesen Richtkoppler R1 (3-dB-Koppler) wird die Leistung N1 des Senders S1 je zur Hälfte über die Ausgänge 2, 4 auf die Eingänge von zwei Bandfiltern F aufgeteilt, die jeweils in ihrer Mittenfrequenz auf die Sendefrequenz f1 abgestimmt sind. Die Ausgänge dieser beiden schmalbandigen Bandfilter F sind jeweils durch Zweifach-Leistungsverteiler V3 und V4 mit den Anschlüssen 2, 4 von zwei weiteren 3-dB-Richtkopplern R2 und R3 verbunden. Das Leistungsteilungsverhältnis der beiden Verteiler V3 und V4 ist beliebig mit n1:1 gewählt, damit ist eine beliebige Leistungsaufteilung der Leistung N1 des Senders S1 auf die beiden Antennengruppen G1 und G2 möglich. Die zunächst über den Richtkoppler R1 geteilte Leistung N1 wird damit in den Richtkopplern R2 und R3 wieder in den jeweiligen Ausgängen 3 dieser Richtkoppler addiert und so mit dem gewählten Leistungsteilungsverhältnis n1 auf die Antennengruppen G1 und G2 verteilt. Die Leistung N2 des Senders S2 wird über einen weiteren Zweifach-Leistungsverteiler V5 mit dem Leistungsteilungsverhältnis n2:1 jeweils den Breitbandeingängen 1 der beiden Richtkoppler R2 und R3 zugeführt, diese Leistung N2 gelangt zu den Filtern F, da diese jedoch nicht auf die Frequenz f2 abgestimmt sind, wird die Leistung dort reflektiert und in an sich bekannter Weise wieder in den beiden Richtkopplern R2 und R3 addiert und über den Ausgang 3 dieser Richtkoppler jeweils wieder den Antennengruppen G1 und G2 mit der gewählten Leistungsaufteilung n2 zugeführt. Damit steht also in dem gewählten Leistungsteilungsverhältnis die Leistung N1 und N2 der beiden Sender S1 und S2 an den Antennengruppen G1 und G2 zur Abstrahlung des gewünschten Strahlungsdiagrammes zur Verfügung.
  • Die verwendeten Leistungsverteiler V werden vorzugsweise für den UKW-Bereich mit einem einfachen λ/4 Transformatoren nach dem Verzweigungspunkt ausgebildet. Wegen der notwendigen Steckverbindungen sind alle Transformationsleitungsstücke etwas länger als X/4 für die Bandmittenfrequenz gewählt. Um zu verhindern, daß die Leistung des Senders S2 mit der Frequenz f2 über die Zweige der Leistungsverteiler V3 und V4 zu der jeweils anderen Antennengruppe überspricht, was zu einer Verfälschung der Leistungsteilung auf die beiden Antennengruppen G1 und G2 führen würde, ist es zweckmäßig, den Blindwiderstand an den Verzweigungspunkten der Leistungsverteiler V3 und V4 für diese Sendefrequenz f2 jeweils gleich Null bzw. sehr klein zu machen. Dazu wird die Leitungslänge zwischen dem Verzweigungspunkt dieser Verteiler und den Filterausgängen für diese Frequenz f2 annähernd λ/4 gewählt.
  • Fig. 4 zeigt die Aufteilung der Leistungen von zwei Sendern S1 und S2 auf zwei unterschiedliche Strahlungsdiagramme, die in diesem Fall sich jeweils als Summendiagramme von drei Einzeldiagrammen ergeben, die durch drei verschiedene Antennengruppen G1, G2 und G3 gebildet sind. Durch entsprechende Wahl der Aufteilung der Leistungen N1 und N2 auf diese drei Antennengruppen G1, G2 und G3 können so beliebige für den jeweiligen Anwendungsfall optimale Strahlungsidagramme für die beiden Sender S1 und S2 eingestellt werden.
  • Bei der Frequenzweichenanordnung nach Fig. 4 wird wieder über einen Richtkoppler R1 die Leistung N1 auf zwei Filter F aufgeteilt, die Ausgänge dieser Filter F sind jedoch über einen Dreifach-Leistungsverteiler V6 bzw.V7 mit den Eingängen 2, 4 von drei weiteren Richtkopplern R2, R3 und R4 verbunden. Die Leistung N1 des Senders S1 wird also mit einem vorbestimmten Leistungsteilungsverhältnis n1':n1:1 der Dreifach-Leistungsverteiler V6 und V7 auf die drei Antennengruppen G1, G2 und G3 aufgeteilt. Zur Vermeidung eines Ubersprechens sind diese Dreifach-Verteiler V6 und V7 wieder wie die Verteiler V3 und V4 dimensioniert. Die Leistung N2 des Senders S2 wird am Breitbandeingang über einen weiteren Dreifach-Leistungsverteiler V8 zugeführt und mit einem Teilungsverhältnis n2':n2:1 den Breitbandeingängen 1 der drei Richtkoppler R2, R3 und R4 zugeführt, sie gelangt damit wieder in entsprechender Leistungsaufteilung an die Antennengruppen G1, G2 und G3.
  • Fig. 5 zeigt eine Frequenzweichenanordnung zum Aufteilen der Senderleistungen von drei auf unterschiedlichen Frequenzen f1, f2 und f3 arbeitenden Sendern S1, S2 und S3 auf zwei Antennengruppen G1 und G2. Über einen ersten Richtkoppler R1 mit zwei nachgeschalteten Filtern F1 abgestimmt auf die Frequenz f1 sowie zwei nachgeschalteten Zweifach-Leistungsverteilern V9 und V10 beliebigen Leistungsteilungsverhältnisses wird die Leistung N1 des Senders S1 auf die beiden Antennengruppen G1 und G2 aufgeteilt, in entsprechender Weise wird die Leistung N2 des Senders S2 über einen Richtkoppler R4 und nachgeschaltete Bandfilter F2 der Mittenfrequenz f2 und Verteiler V11 und V12 über die Richtkoppler R5 und R6, die mit den Richtkopplern R2 und R3 der ersten Weiche zusammengeschaltet sind, auf die Antennengruppen G1 und G2 aufgeteilt. Die Leistung N3 des dritten Senders S3 wird wieder über den Breitbandeingang und die hintereinander geschalteten Richtkoppler R2, R3, R5 und R6 entsprechend dem gewählten Leistungsteilungsverhältnisses eines Zweifach-Leistungsverteilers V13 den Antennengruppen G1 und G2 zugeführt. Bei dieser Anordnung nach Fig. 5 ist es schwierig, an den Verzweigungspunkten der Leistungsverteiler V9, V10 jeweils die Blindwiderstände für die Frequenzen f2 bzw. f3 zu Null zu machen. In diesem Fall genügt es, den Blindwiderstand an diesen Verzweigungspunkten für eine mittlere Frequenz zwischen den beiden Frequenzen f2 und f3 jeweils zu Null zu machen.
  • Durch entsprechende Kombination der Schaltungsmaßnahmen nach Fig. 4 und 5 könnten auch mehrere Sender auf mehrere unterschiedliche Antennengruppen aufgeteilt werden. Wesentlich ist, daß bei den verwendeten Weichen die nötige Anzahl von Filtern auf ein Minimum reduziert ist. Die Filter solcher Weichen sind wegen der hohen Leistung am teuersten, die verwendeten Richtkoppler und Verteiler können dagegen relativ einfach und billig realisiert werden.

Claims (7)

1. Sendeeinrichtung zum Abstrahlen der Ausgangsleistung (N1,N2) von zwei oder mehreren auf unterschiedlichen Sendefrequenzen (f1,f2) arbeitenden Hochfrequenzsendern (S1,S2) mit unterschiedlichen Strahlungsdiagrammen (D1,D2) über eine aus mehreren Antennenfeldern (A1 bis A4) zusammengesetzte Antenne, dadurch gekennzeichnet , daß für alle Sender (S1,S2) nur eine einzige Antenne benutzt wird,
die Antennenfelder (A1 bis A4) dieser einzigen Antenne zu zwei oder mehreren Antennengruppen (G1,G2) zusammengefaßt sind,
diese Antennengruppen (G1,G2) jeweils mit gesonderten Speiseleitungen (L1,L2) verbunden sind, und diese Speiseleitungen (L1,L2) über eine Frequenzweichen- und Leistungsaufteilungs-Einrichtung (W,V) so mit den Sendern (S1,S2) verbunden sind, daß der eine Sender (S1) die Antennengruppen (G1,G2) mit einer Leistungsaufteilung speist, die ein erstes vorbestimmtes Strahlungsdiagramm (D1) ergibt, während der andere Sender (S2) die Antennengruppen (G1,G2) mit einer anderen Leistungsaufteilung speist, die ein sich mindestens teilweise mit dem ersten Strahlungsdiagramm (D1) deckendes zweites anderes vorbestimmtes Strahlungsdiagramm (D3) ergibt.
2. Sendeeinrichtung nach Anspruch 1, dadurch gekennzeichnet , daß die Frequenzweichen- und Leistungsaufteilungs-Einrichtung aus mindestens einer Richtkopplerweiche (W) und mindestens einem Leistungsverteiler (V) besteht.
'3. Sendeinrichtung nach Anspruch 2 für zwei Sender und zwei Antennengruppen, dadurch gekennzeichnet , daß die Frquenzweichen- und Leistungsaufteilungs-Einrichtung aus nur einer Richtkopplerweiche (W) und nur einem Leistungsverteiler (V) besteht, wobei der eine Sender (S1) über die Richtkopplerweiche (W) nur die eine Antennengruppe (G1) mit seiner ganzen Leistung (N1) speist und der andere Sender (S2) über den Leistungsverteiler (V) und die Richtkopplerweiche (W) diese gleiche Antennengruppe (G1) mit einem Teil (1/2N2)seiner Leistung und die andere Antennengruppe (G2) nur über den Leistungsverteiler (V) mit dem anderen Teil (1/2N2) seiner Leistung speist (Fig. 1).
4. Sendeeinrichtung nach Anspruch 2 für zwei Sender und zwei Antennengruppen, dadurch gekennzeichnet , daß die Frequenzweichen- und Leistungs - aufteilungs-Einrichtung aus zwei Richtskopplerweichen (W1,W2) und zwei Zweifach-Leistungsverteilern (V1,V2) besteht, wobei der eine Sender (S1) über den ersten Leistungsverteiler (V1) und die beiden Richtkopplerweichen (W1,W2) beide Antennengruppen (G1,G2) mit einer ersten ein vorbestimmtes Strahlungsdiagramm (D1) ergebenden Leistungsaufteilung speist während der zweite Sender (S2) die gleichen Antennengruppen (G1,G2) über den zweiten Leistungsverteiler (V2) und die beiden Richtkopplerweichen (W1,W2) mit einer zweiten ein zweites vorbestimmtes Strahlungsdiagramm (D3) ergebenden Leistungsaufteilung speist (Fig. 2).
5. Sendeeinrichtung nach Anspruch 2 für zwei Sender und zwei Antennengruppen, dadurch gekennzeichnet, daß die Frequenzweichen- und Leistungsaufteilungs-Einrichtung aus drei Richtkopplern (R1,R2,R3), drei Zweifach-Leistungsverteilern (V3,V4,V5) und zwei auf die Frequenz (f1) des ersten Senders (S1) abgestimmten Bandfiltern (F) besteht, wobei der erste Richtkoppler (R1) die Leistung (N1) des ersten Senders (S1) auf die beiden Filtereingänge aufteilt, die beiden Filterausgänge über zwei der Leistungsverteiler (V3,V4) jeweils mit einem der entkoppelten Eingänge (2,4) der beiden anderen Richtkoppler (R2,R3) verbunden sind, der zweite Sender (S2) über den dritten Leistungsverteiler (V5) mit dem Breitbandeingang (1) des zweiten und dritten Richtkoppler (R2,R3) verbunden ist und am gemeinsamen Ausgang (3) des dritten und vierten Richtkopplers (R2,R3) jeweils die beiden getrennten Antennengruppen (G1 und G2) angeschlossen sind (Fig. 3).
6. Sendeeinrichtung nach Anspruch 2 für zwei Sender und drei Antennengruppen, dadurch gekennzeichnet, daß die Frequenzweichen- und Leistungsaufteilungs-Einrichtung aus vier Richtkopplern (R1 bis R4), drei Dreifach-Leistungsverteilern (V6,V7,V8) und zwei auf die Sendefrequenz (f1) des ersten Senders (S1) abgestimmten Bandiltern (F) besteht, wobei die über den ersten Richtkoppler (R1) und die Bandfilter (F) aufgeteilte Leistung (N1) des ersten Senders (S1) über die beiden ersten Dreifach-Verteiler (V6,V7) auf den zweiten, dritten und vierten Richtkoppler (R2,R3,R4) verteilt wird während die Leistung (N2) des zweiten Senders (S2) über den dritten Dreifach-Verteiler (V8) ebenfalls auf diese drei Richtkoppler (R2,R3,R4) aufgeteilt wird, und an den Ausgängen (3) dieser Richtkoppler (R2,R3,R4) jeweils die drei Antennengruppen (G1,G2,G3) angeschlossen sind (Fig. 4).
7. Sendeeinrichtung nach Anspruch 2 für drei Hochfrequenzsender und zwei Antennengruppen, dadurch gekennzeichnet , daß die Frequenzweichen- und Leistungsaufteilungs-Einrichtung sechs Richtkoppler (R1 bis R6), fünf Zweifach-Leistungsverteiler (V9 bis V13) und zwei auf die Frequenz (f1) des ersten Senders (S1) und zwei auf die Frequenz (f2) des zweiten Senders (S2) abgestimmte Bandfilter (F1,F2) umfaßt (Fig. 5).
EP86117473A 1985-12-21 1986-12-16 Sendeeinrichtung für mindestens zwei auf unterschiedlichen Sendefrequenzen und mit unterschiedlichen Strahlungsdiagrammen abstrahlende Hochfrequenzsender Expired - Lifetime EP0227005B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT86117473T ATE65643T1 (de) 1985-12-21 1986-12-16 Sendeeinrichtung fuer mindestens zwei auf unterschiedlichen sendefrequenzen und mit unterschiedlichen strahlungsdiagrammen abstrahlende hochfrequenzsender.

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE3545639 1985-12-21
DE3545639A DE3545639C1 (en) 1985-12-21 1985-12-21 Transmitter operating at at least two frequencies - uses single VHF antenna array with different polar diagrams
DE19863624176 DE3624176A1 (de) 1986-07-17 1986-07-17 Sendeeinrichtung fuer mindestens zwei auf unterschiedlichen sendefrequenzen und mit unterschiedlichen strahlungsdiagrammen abstrahlende hochfrequenzsender
DE3624176 1986-07-17

Publications (3)

Publication Number Publication Date
EP0227005A2 true EP0227005A2 (de) 1987-07-01
EP0227005A3 EP0227005A3 (en) 1987-11-19
EP0227005B1 EP0227005B1 (de) 1991-07-24

Family

ID=25839236

Family Applications (1)

Application Number Title Priority Date Filing Date
EP86117473A Expired - Lifetime EP0227005B1 (de) 1985-12-21 1986-12-16 Sendeeinrichtung für mindestens zwei auf unterschiedlichen Sendefrequenzen und mit unterschiedlichen Strahlungsdiagrammen abstrahlende Hochfrequenzsender

Country Status (2)

Country Link
EP (1) EP0227005B1 (de)
DE (1) DE3680492D1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007150377A (ja) * 2005-11-24 2007-06-14 Nec Corp 分配器及び合成器並びにそれらを用いた電力増幅装置

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1495582A (en) * 1975-02-10 1977-12-21 Alford A Two frequency localizer system

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1495582A (en) * 1975-02-10 1977-12-21 Alford A Two frequency localizer system

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, Band VT-32, Nr. 2, Mai 1983, Seiten 201-205, IEEE, New York, US; A.L. DAVIDSON: "Omnidirectional transmitter combining antenna" *
REVIEW OF THE ELECTRICAL COMMUNICATION LABORATORY, Band 18, Nr. 3/4, März-April 1970, Seiten 179-202; K. UENISHI: "Base station antennas in the 400 MHz band mobile radio telephone system" *
Rohde & Schwarz, VHF-FM/AM-Sendesysteme für den Hörfunk, Info Nr. 3-012 D1, Seite 32, Meinke-Gundlach, Taschenbuch der Hochfrequenztechnik, Springer Verlag Berlin, 1968, Seite 597,1441-1451. *
TELECOMMUNICATIONS & RADIO ENGINEERING, Band 29/30, Nr. 9, September 1975, Seiten 46-51; E.A. ANFILOV et al.: "Modernizing the antenna systems of broadcast transmitting stations to accommodate the increasing number of TV programs" *
TELECOMMUNICATIONS AND RADIO ENGINEERING, Band 28/29, Nr. 6, Juni 1974, Seiten 45-48; S.P. BELOUSOV et al.: "Antenna-feeder devices: Simultaneous operation of two high-power short-wave transmitters into a common antenna" *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007150377A (ja) * 2005-11-24 2007-06-14 Nec Corp 分配器及び合成器並びにそれらを用いた電力増幅装置

Also Published As

Publication number Publication date
EP0227005A3 (en) 1987-11-19
DE3680492D1 (de) 1991-08-29
EP0227005B1 (de) 1991-07-24

Similar Documents

Publication Publication Date Title
DE2631026C2 (de)
DE2727883C2 (de) Hohlleiterstrahler für links- und rechtsdrehend zirkular polarisierte Mikrowellensignale
DE2844776C2 (de) Sendersystem für ein Kommunikationssystem mit beweglichen Teilnehmern
DE102007047741B4 (de) Mobilfunk-Gruppenantenne
DE60201519T2 (de) Umschaltbare antenne
DE2657888C2 (de) Antennenanordnung
DE602005000802T2 (de) Breitbandige Rundum-Antennensystem
DE102012023938A1 (de) Dualpolarisierte, omnidirektionale Antenne
EP0829922A2 (de) Phasengesteuerte Antenne
DE2214947A1 (de) Schalteinrichtuag
DE10034911A1 (de) Antenne für Mehrfrequenzbetrieb
DE4327117C2 (de) Einrichtung für eine Antennenanlage zum Verteilen eines Satellitenempfangssignales
DE3602515A1 (de) Vierstrahliges antennensystem mit raumduplizierten sende- und empfangsantennen
EP1223638B1 (de) Gruppenantennensystem
DE112010002639B4 (de) Antenneneinrichtung
EP0227005B1 (de) Sendeeinrichtung für mindestens zwei auf unterschiedlichen Sendefrequenzen und mit unterschiedlichen Strahlungsdiagrammen abstrahlende Hochfrequenzsender
DE3545639C1 (en) Transmitter operating at at least two frequencies - uses single VHF antenna array with different polar diagrams
EP3861590B1 (de) Kommunikationssystem
DE102013220254A1 (de) Hochfrequenzschaltung mit gekreuzten Leitungen
DE1766185A1 (de) Antennensysteme
DE102017112441B4 (de) Beamforming-Struktur, Antennenanordnung mit einer Beamforming-Struktur sowie Sende- und/oder Empfangsvorrichtung mit einer Beamforming-Struktur
EP0316611B1 (de) UKW-Hörfunk-Senderanlage bestehend aus mindestens zwei Sendern unterschiedlicher Frequenz
DE1289897B (de) Anordnung zum Kombinieren zweier an zwei Eingangsklemmen angelegter HF-Signale unterschiedlicher Frequenzbaender
DE10120533B4 (de) Gruppenantenne mit einer Anzahl von Resonanz-Strahlerelementen
DE3334326A1 (de) Einstellbare richtstrahl-antennenanordnung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH DE FR GB IT LI NL

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH DE FR GB IT LI NL

17P Request for examination filed

Effective date: 19871116

17Q First examination report despatched

Effective date: 19890816

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE FR GB IT LI NL

REF Corresponds to:

Ref document number: 65643

Country of ref document: AT

Date of ref document: 19910815

Kind code of ref document: T

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
REF Corresponds to:

Ref document number: 3680492

Country of ref document: DE

Date of ref document: 19910829

ET Fr: translation filed
ITF It: translation for a ep patent filed

Owner name: BARZANO' E ZANARDO ROMA S.P.A.

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

26 Opposition filed

Opponent name: TELEFUNKEN SYSTEMTECHNIK GMBH

Effective date: 19920416

NLR1 Nl: opposition has been filed with the epo

Opponent name: TELEFUNKEN SYSTEMTECHNIK GMBH.

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19921127

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19921201

Year of fee payment: 7

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19931029

Year of fee payment: 8

R26 Opposition filed (corrected)

Opponent name: DEUTSCHE AEROSPACE

Effective date: 19920416

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19931208

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19931216

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19931227

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19931231

Year of fee payment: 8

NLXE Nl: other communications concerning ep-patents (part 3 heading xe)

Free format text: PAT.BUL.16/92 CORR.:DEUTSCHE AEROSPACE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19940122

Year of fee payment: 8

RDAC Information related to revocation of patent modified

Free format text: ORIGINAL CODE: 0009299REVO

RDAG Patent revoked

Free format text: ORIGINAL CODE: 0009271

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT REVOKED

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19931216

27W Patent revoked

Effective date: 19940304

R27W Patent revoked (corrected)

Effective date: 19940304

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

NLR2 Nl: decision of opposition