EP0227001B1 - Verfahren zum Herstellen von Werkzeugen - Google Patents

Verfahren zum Herstellen von Werkzeugen Download PDF

Info

Publication number
EP0227001B1
EP0227001B1 EP86117455A EP86117455A EP0227001B1 EP 0227001 B1 EP0227001 B1 EP 0227001B1 EP 86117455 A EP86117455 A EP 86117455A EP 86117455 A EP86117455 A EP 86117455A EP 0227001 B1 EP0227001 B1 EP 0227001B1
Authority
EP
European Patent Office
Prior art keywords
process according
phase
grain size
grain
deformation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP86117455A
Other languages
English (en)
French (fr)
Other versions
EP0227001A2 (de
EP0227001A3 (en
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Frommeyer Georg Dr
Robert Zapp Werkstofftechnik & Co KG GmbH
Original Assignee
Frommeyer Georg Dr
Robert Zapp Werkstofftechnik & Co KG GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Frommeyer Georg Dr, Robert Zapp Werkstofftechnik & Co KG GmbH filed Critical Frommeyer Georg Dr
Priority to AT86117455T priority Critical patent/ATE90899T1/de
Publication of EP0227001A2 publication Critical patent/EP0227001A2/de
Publication of EP0227001A3 publication Critical patent/EP0227001A3/de
Application granted granted Critical
Publication of EP0227001B1 publication Critical patent/EP0227001B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/005Modifying the physical properties by deformation combined with, or followed by, heat treatment of ferrous alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/16Both compacting and sintering in successive or repeated steps
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/10Alloys containing non-metals

Definitions

  • the invention relates to a method for producing tools from alloyed steels or stellites by thermoforming.
  • Tool steels and stellites or hard metals are generally characterized by high levels of carbon, chromium, cobalt, molybdenum, vanadium and tungsten. Together with the corresponding carbides, these elements give the material the necessary strength, in particular wear resistance and hardness. However, this is usually at the expense of toughness and is associated with a corresponding increase in the resistance to deformation.
  • a method is known from US Pat. No. 3,951,697 is known in which steels with a very high carbon content are set after a heat treatment at at least 500 ° C by deformation on an equiaxed basic structure with a finely dispersed spherulitic cementite.
  • This process is also suitable for the use of powders as the starting material. This is done in such a way that a starting powder with a carbon content of more than 1%, the carbon of which is predominantly in the form of spherulitic cementite, is mixed with an iron powder with a grain size of less than 10 ⁇ m, then compacted and then sintered at 600 to 700 ° C.
  • the structure of the sintered compact mainly consists of a coaxial grain with an average grain size of less than 10 ⁇ m and an evenly distributed, mainly spherulitic cementite in the temperature range from 723 to 900 ° C. Apart from powder compaction, no deformation takes place in the known method. In addition, the process only affects iron-carbon materials with a carbon content of over 1.0% and otherwise only impurities such as 0.4 to 0.5% manganese and 0.1 to 0.2% silicon.
  • the invention has for its object to provide a method which avoids the aforementioned disadvantages and allows the production of finished parts from alloys, which due to their high deformation resistance normally cannot be deformed or at most can be deformed into a blank which requires machining.
  • a stellitic preform with an equiaxial structure and over 30 vol.% Carbidic and / or boridic precipitation phase is thermoformed at 700 to 1000.degree. C., thereby forming a matrix with a grain size of 1 to 3 ⁇ m and one Elimination phase set with a grain size of 0.2 to 1.0 ⁇ m and finally superplastically shaped.
  • the small grain size set in the process according to the invention ensures a low yield stress due to grain boundary sliding and thus reduces the required forming force and tool wear.
  • the method according to the invention therefore runs in two stages;
  • the first stage of the process is to use the powder-metallurgically produced, due to the high cooling rate of, for example, 104 to 105 SchmelzK / s during melt atomization, already fine crystalline, preferably already equiaxial, multi-phase structure of the alloy powder both with regard to the matrix and also with regard to the carbidic and / or boridic precipitation phase to further refine the consolidated state and thereby a thermally stable microstructure during the subsequent thermomechanical processing as a result of hot forming in the second process stage, with a grain size of 1 to 3 ⁇ m or 0.2 to 1.0, which is preferably fine both for the matrix and for the precipitation phase ⁇ m.
  • the material structure in the first process stage can be conditioned by thermomechanical processing, which is the case with steel alloys in austenitic Condition, for example, begins at about 900 o C and the ⁇ / ⁇ phase conversion in the range from 750 to 820 o C to a final rolling temperature of 650 o C goes through.
  • thermomechanical processing which is the case with steel alloys in austenitic Condition, for example, begins at about 900 o C and the ⁇ / ⁇ phase conversion in the range from 750 to 820 o C to a final rolling temperature of 650 o C goes through.
  • the material to be deformed cools down continuously and, in addition to the phase change, the carbides and / or borides are eliminated.
  • the carbides and / or borides are eliminated in the hot forming of stellites in the temperature range from 1000 to 700 ° C. during the shaping and the associated continuous cooling.
  • thermomechanical conditioning there is a refinement of the matrix grain, which is then equiaxial at the latest, as well as a finer dispersion of the carbide and boride particles as a result of the favorable conditions for nucleation during the phase change. Both have an impact in the direction of higher material strength.
  • the conditioning of the starting material produced by powder metallurgy can also be carried out by isothermal shaping with the aim of recrystallizing the structure and setting a fine-grained structure as a prerequisite for the superplastic state.
  • the isothermal deformation takes place at temperatures below the transformation temperature, for example at 450 ° C., preferably with a low degree of deformation, for example with a cross-sectional decrease of about 10%, and should include a cyclic ⁇ / ⁇ phase transformation which, owing to the different volumes of the ⁇ and ⁇ phase to internal tensions and thus to internal internal tensions induced deformation of the matrix grain.
  • This can be followed by a short primary recrystallization annealing, for example 20 to 60 seconds, to refine the matrix grain size of the hot isostatically pressed blank, which leads to a further grain refinement.
  • the aim of the conditioning of the starting material is to establish a structure which is equiaxial for superplastic shaping in the second process stage and which is characterized by a fine structure grain which favors the forming behavior.
  • the resistance to deformation is reduced and, at the same time, the rate of deformation can be increased.
  • the formed material which is adjusted to a specific multiphase structure, is shaped at a temperature in the order of 50 to 70% of the melting temperature of, for example, 650 to 780 o C, which allows high degrees of deformation at low flow stresses and therefore also manufacture Complicated finished parts made of alloys, the composition of which does not allow shaping by forming without the special pretreatment of the first stage of the method according to the invention.
  • the forming speed is preferably 10 ⁇ 3 to 5.10 ⁇ 1 s ⁇ 1.
  • the forming temperature is below the temperature of the beginning secondary crystallization or grain coarsening, since each grain growth increases the resistance to deformation and therefore requires higher deformation forces.
  • the method according to the invention is particularly suitable for high-carbon cold work steels such as X 178 Cr V 5 2 9 X 155 Cr VW Co 4 5 12 5 X 135 Cr VW Mo 4 4 6 4 X 220 Cr V 17 6 X 245 Cr V 5 10 These have carbon contents from 1.0 to 2.5% and high alloy contents of chromium, vanadium, tungsten, molybdenum and cobalt from 4 to 17%.
  • the following alloys are also suitable: X 375 Cr Mo Fe 25 10 60 X 220 Cr W Co 30 12 56 X 120 Cr Mo Co 27 4 60 X 100 Cr W Co NB 15 15 52 3.
  • the Stellite are iron and cobalt-based stellite with high boron and carbon contents of 1 to 4%, and contents of the alloying elements chromium, molybdenum, tungsten, 15 to 30%, which can be transformed at a relatively low temperature of 650-720 o C.
  • the superplastic shape can be followed by coarse grain annealing in order to increase the creep resistance or heat resistance.
  • the round blank 1 shown in FIG. 1 consists of the high-strength cold work steel X 245 Cr V 5 10, which was produced by powder metallurgy by hot isostatic pressing and was set to a structure with a matrix grain size of 1 to 3 ⁇ m. It serves to manufacture the disk-shaped rotary knife shown in FIG. 2 with a cone angle ⁇ of 150 to 160 ° , a thickness of 1.0 to 1.5 mm and an inner diameter of 50 mm and an outer diameter of 100 mm.
  • the circular blank 1 was produced by punching from a powder metallurgy and then rolled out at a temperature of 1150 to 1250 ° C. to a thickness of 2.5 mm and measuring 100 ⁇ 200 ⁇ 8 mm. In order to create a sufficient material reserve for the formation of the cutting edges 2 of the rotary knife, the thickness of the board exceeded the finished thickness of the rotary knife by 1 mm.
  • the low forming temperature saves energy, ensures minimal scaling and prevents harmful grain growth.
  • superplastic forming results in a higher density because pores and cracks weld, as well as higher strength and toughness. Because there is no machining, there are no fatigue cracks in the machining grooves, which increases the tool life by 25 to 30%.
  • the method according to the invention is suitable for producing cut bells and tools, shape cutting tools, knives, for example disc, filter and tobacco knives with a thickness of less than 3 mm, embossing dies, jam and pressure rings for extruders, sintering compression tools, extrusion tools and dies, molding tools for the wobble extrusion and multi-hole plates each made of cold work steels, for the production of profile milling cutters, form turning steels and profile countersunk heads from high speed steels as well as for the production of glass blow molding tools, profile rods, nozzles, impellers, turbine disks and valve seats made of stellites. It is characterized by low forming temperatures and a low power requirement.
  • the finely dispersed, equiaxial and texture-free microstructure guarantees constant and reproducible mechanical properties, in particular high strength with excellent ductility and good fatigue behavior.
  • the dimensional accuracy and surface quality are so good that reworking is not necessary.
  • the surface roughness is usually less than 1 ⁇ m.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Forging (AREA)
  • Powder Metallurgy (AREA)
  • Treatment Of Steel In Its Molten State (AREA)
  • Turning (AREA)

Description

  • Die Erfindung bezieht sich auf ein Verfahren zum Herstellen von Werkzeugen aus legierten Stählen oder Stelliten durch Warmformen.
  • Werkzeugstähle und Stellite bzw. Hartmetalle zeichnen sich im allgemeinen durch hohe Gehalte an Kohlenstoff, Chrom, Kobalt, Molybdän, Vanadium und Wolfram aus. Diese Elemente verleihen dem Werkstoff zusammen mit den entsprechenden Karbiden die notwendige Festigkeit, insbesondere Verschleißfestigkeit und Härte. Das geht jedoch zumeist auf Kosten der Zähigkeit und ist mit einer entsprechenden Erhöhung des Verformungswiderstandes verbunden.
  • Bei hohem Verformungswiderstand scheidet das Kalt-, aber auch das konventionelle Warmumformen zum Erzeugen der Fertigkontur aus und kommt demzufolge nur ein Urformen durch Block- oder Stranggießen und ein anschließendes Walzen oder Schmieden, oder ein Formgießen und Pulverpressen in Frage. Diese Verfahren erfordern jedoch in aller Regel eine spanende Bearbeitung des urgeformten Teils bis zur Fertigkontur und zum Fertigmaß. Das aber stößt gerade bei verschleißfesten Teilen insofern auf Schwierigkeiten, als die spanende Bearbeitung Werkzeuge mit einer Verschleißfestigkeit erfordert, die die verschleißfestigkeit des zu bearbeitenden Teils erheblich übersteigt. Außerdem ist spanende Bearbeitung mit einem erheblichen Materialverlust verbunden. Die Bearbeitungskosten sind daher erheblich, ohne daß sich immer eine gute oberflachenbeschaffenheit ergibt.
  • Hinzu kommen verfahrensspezifische Nachteile wie die hohen Energiekosten des Warmwalzens und -schmiedens oder die Beeinträchtigung der Oberflächenqualität durch intensive Oxydationsvorgänge der Legierungen. Ein weiterer Nachteil ist das gerade im Hinblick auf verwickelte Fertigformen zumeist nicht ausreichende Fließvermögen beim Urformen wie auch beim Formgießen. Das führt zu Rohlingen, die sich erheblich vom Fertigteil unterscheiden und daher eine zu einem erheblichen Materialverlust führende spanende Bearbeitung erfordern. Die damit verbundenen Kosten sind wegen der hohen Gehalte der betreffenden Werkstoffe an teuren Legierungsmitteln ganz erheblich. Hinzu kommt die aus dem hohen Verformungswiderstand resultierende Notwendigkeit hoher Verformungskräfte, die entsprechend teure Umformaggregate und hohe Energiekosten mit sich bringen.
  • Aus der US-Patentschrift 3 951 697 ist ein Verfahren bekannt, bei dem Stähle mit sehr hohem Kohlenstoffgehalt im Anschluß an eine Wärmebehandlung bei mindestens 500°C im Wege einer Verformung auf ein gleichachsiges Grundgefüge mit einem feindispers verteilten sphärolithischen Zementit eingestellt werden. Dieses Verfahren eignet sich auch für die Verwendung von Pulvern als Ausgangsmaterial. Dies geschieht in der Weise, daß ein Ausgangspulver mit einem Kohlenstoffgehalt über 1%, dessen Kohlenstoff überwiegend als sphärolithischer Zementit vorliegt, mit einem Eisenpulver einer Korngröße unter 10 µm gemischt, anschließend verdichtet und sodann bei 600 bis 700°C gesintert wird. Das Gefüge des gesinterten Preßlings besteht überwiegend aus einem gleichachsigen Korn mit einer mittleren Korngröße unter 10 µm und einem gleichmäßig verteilten, im Temperaturbereich von 723 bis 900°C vornehmlich sphärolithischen Zementit. Außer dem Pulververdichten findet bei dem bekannten Verfahren keine Verformung statt. Darüber hinaus betrifft das Verfahren ausschließlich Eisen-Kohlenstoff-Werkstoffe mit einem Kohlenstoffgehalt über 1,0% und ansonsten lediglich Verunreinigungen wie 0,4 bis 0,5% Mangan und 0,1 bis 0,2% Silizium.
  • Der Erfindung liegt nun die Aufgabe zugrunde, ein Verfahren zu schaffen, das die vorerwähnten Nachteile vermeidet und das Herstellen von Fertigteilen aus Legierungen erlaubt, die sich wegen ihres hohen Verformugswiderstandes normalerweise nicht umformen oder allenfalls zu einem Rohling verformen lassen, der eine spanende Bearbeitung erfordert.
  • Die Lösung dieser Aufgabe besteht darin, daß bei einem Verfahren der eingangs erwähnten Art erfindungsgemäß ein Vorkörper aus einem hochlegierten Stahl mit äquiaxialem Gefüge und über 30 Vol.-% karbidischer und/oder boridischer Ausscheidungsphase unterhalb A₁ mit einer zyklischen Alpha/Gamma Phasenumwandlung oder im austenitischen Zustand warmverformt und dabei auf eine Matrix mit einer Korngröße von 1 bis 3 µm und einer Ausscheidungsphase mit einer Korngröße von 0,2 bis 1,0 µm eingestellt sowie abschließend superplastisch fertiggeformt wird.
  • Bei einer alternativen Lösung der vorerwähnten Aufgabe wird hingegen ein stellitischer Vorkörper mit äquiaxialem Gefüge und über 30 Vol.-% karbidischer und/oder boridischer Ausscheidungsphase bei 700 bis 1000°C warmverformt und dabei auf eine Matrix mit einer Korngröße von 1 bis 3 µm und eine Ausscheidungsphase mit einer Korngröße von 0,2 bis 1,0 µm eingestellt sowie abschließend superplastisch fertiggeformt.
  • Die bei dem erfindungsgemäßen Verfahren eingestellte geringe Korngröße gewährleistet eine niedrige Fließspannung durch Korngrenzengleiten und verringert damit die erforderliche Umformungskraft sowie den Werkzeugverschleiß.
  • Das erfindungsgemäße Verfahren läuft mithin zweistufig ab; die erste Verfahrensstufe dient dazu, das pulvermetallurgisch hergestellte, infolge der hohen Abkühlungsgeschwindigkeit von beispielsweise 10⁴ bis 10⁵ ⁰K/s beim Schmelzzerstäuben an sich schon feinkristalline, vorzugsweise bereits äquiaxiale Mehrphasengefüge der Legierungspulver sowohl hinsichtlich der Matrix als auch hinsichtlich der karbidischen und/oder boridischen Ausscheidungsphase im konsolidierten Zustand weiter zu verfeinern und dabei ein beim sich anschließenden thermomechanischen Prozessieren infolge Warmumformens in der zweiten Verfahrensstufe thermisch stabiles Mikrogefüge mit einer vorzugsweise sowohl für die Matrix als auch für die Ausscheidungsphase feinen Korngröße von 1 bis 3 µm bzw. 0,2 bis 1,0 µm einzustellen.
  • Das Konditionieren des Werkstoffgefüges in der ersten Verfahrensstufe kann durch ein thermomechanisches Prozessieren geschehen, das bei den Stahllegierungen im austenitischen Zustand, beispielsweise bei etwa 900oC beginnt und die γ/α -Phasenumwandlung im Bereich von 750 bis 820oC bis zu einer Endwalztemperatur von 650oC durchläuft. Während des Warmverformens, beispielsweise eines Walzens oder Schmiedens kühlt das Verformungsgut kontinuierlich ab und kommt es neben der Phasenumwandlung zum Ausscheiden der Karbide und/oder Boride.
  • In ähnlicher Weise scheiden sich bei einem Warmverformen von Stelliten etwa im Temperaturbereich von 1000 bis 700oC während des Verformens und des damit verbundenen kontinuierlichen Abkühlens die Karbide und/oder Boride aus. Darüber hinaus kommt es während des thermomechanischen Konditionierens sowohl zu einer Verfeinerung des spätestens dann äquiaxialen Matrixkorns als auch infolge der günstigen Bedingungen für die Keimbildung während der Phasenumwandlung zu einer feinerdispersen Verteilung der Karbid- und Boridteilchen. Beides wirkt sich in Richtung einer höheren Werkstoffestigkeit aus.
  • Des weiteren kann das Konditionieren des pulvermetallurgisch hergestellten Ausgangsmaterials auch durch isothermes Verformen mit dem Ziel geschehen, das Gefüge umzukristallisieren und ein feinerkörniges Gefüge als Voraussetzung für den superplastischen Zustand einzustellen. Das isotherme Verformen findet bei Temperaturen unterhalb der Umwandlungstemperatur, beispielsweise bei 450oC vorzugsweise bei einem geringen Verformungsgrad, beispielsweise bei einer Querschnittsabnahme von etwa 10% statt und sollte eine zyklische γ/α Phasenumwandlung einschließen, die infolge des unterschiedlichen Volumens der γ -und der α -Phase zu inneren Spannungen und damit zu einer durch innere Eigenspannungen induzierten Verformung des Matrixkorns führt. Dem kann sich zur Verfeinerung der Matrixkorngröße des heißisostatisch gepreßten Rohlings ein kurzes, beispielsweise 20 bis 60 Sekunden dauerndes Primärrekristallisationsglühen anschließen, das zu einer weiteren Kornverfeinerung führt.
  • Insgesamt zielt das Konditionieren des Ausgangsmaterials darauf ab, ein für die superplastische Formgebung in der zweiten Verfahrensstufe äquiaxiales Gefüge einzustellen, das sich durch ein das Umformverhalten begünstigendes feines Gefügekorn auszeichnet. Mit abnehmender Korngröße verringert sich nämlich der Verformungswiderstand und läßt sich gleichzeitig die Verformungsgeschwindigkeit erhöhen.
  • In der zweiten Verfahrensstufe wird der umgeformte und auf ein bestimmtes Mehrphasen-Gefüge eingestellte Werkstoff bei einer Temperatur in der Größenordnung von 50 bis 70% der Schmelztemperatur von beispielsweise 650 bis 780oC geformt, die bei niedrigen Fließspannungen hohe Verformungsgrade erlaubt und daher auch das Herstellen komplizierter Fertigteile aus Legierungen ermöglicht, deren Zusammensetzung ohne die spezielle Vorbehandlung der ersten Stufe des erfindungsgemäßen Verfahrens eine Formgebung durch Umformen nicht erlaubt. Die Umformgeschwindigkeit liegt vorzugsweise bei 10⁻³ bis 5.10⁻¹ s⁻¹. Dabei kann der Dehngeschwindigkeitsexponent m, wie er sich aus der Gleichung

    s = K . e ̇ m ,
    Figure imgb0001


    ergibt, in der s die Fließspannung, K eine Materialkonstante und ė die Verformungs- bzw. Kriechgeschwindigkeit für Stahllegierungen von 0,4 bis 0,5 und für Stellite von 0,35 bis 0,4 ist. Daraus ergibt sich, daß die Formgebung sehr geringer Fließspannungen bzw. Umformungskräfte bedarf; da sie zudem bei verhältnismäßig niedrigen Temperaturen stattfindet, zeichnet sich das erfindungsgemäße Verfahren, insbesondere wenn das Konditionieren in der ersten Verfahrensstufe durch isothermes Verformen unterhalb der Umwandlungstemperatur stattfindet, durch geringe Kosten sowohl unter dem Aspekt des apparativen Aufwandes als auch hinsichtlich des Energieverbrauchs aus.
  • Die Umformtemperatur liegt dabei unterhalb der Temperatur der beginnenden Sekundärkristallisation bzw. Kornvergröberung, da jedes Kornwachstum den Verformungswiderstand erhöht und damit höhere Verformungskräfte erfordert.
  • Das erfindungsgemäße Verfahren eignet sich besonders für die hoch kohlenstoffhaltigen Kaltarbeitsstähle wie
    X 178 Cr V 5 2 9
    X 155 Cr V W Co 4 5 12 5
    X 135 Cr V W Mo 4 4 6 4
    X 220 Cr V 17 6
    X 245 Cr V 5 10
    Diese besitzen Kohlenstoffgehalte von 1,0 bis 2,5% und hohe Legierungsgehalte an Chrom, Vanadium, Wolfram, Molybdän und Kobalt von 4 bis 17%.
  • Weiterhin eignen sich die folgenden Legierungen:
    X 375 Cr Mo Fe 25 10 60
    X 220 Cr W Co 30 12 56
    X 120 Cr Mo Co 27 4 60
    X 100 Cr W Co N B 15 15 52 3.
  • Die Stellite sind Eisen- sowie Kobaltbasisstellite mit hohen Bor- und Kohlenstoffgehalten von 1 bis 4% sowie Gehalten der Legierungselemente Chrom, Molybdän, Wolfram von 15 bis 30%, die sich bei einer verhältnismäßig niedrigen Temperatur von 650 bis 720oC umformen lassen.
  • Der superplastischen Formgebung kann sich ein Grobkornglühen anschließen, um die Kriechfestigkeit bzw. Warmfestigkeit zu erhöhen.
  • Die Erfindung wird nachfolgend anhand eines in der Zeichnung dargestellten Ausführungsbeispiels des näheren erläutert. In der Zeichnung zeigen:
  • Fig. 1
    die Seitenansicht einer Ronde zum Herstellen eines Rotationsmessers, teilweise im Schnitt und
    Fig. 2
    das aus der Ronde der Fig. 1 durch superplastische Formgebung hergestellte Rotationsmesser teilweise im Schnitt.
  • Die in Fig. 1 dargestellte Ronde 1 besteht aus dem hochfesten Kaltarbeitsstahl X 245 Cr V 5 10, der pulvermetallurgisch durch isostatisches Heißpressen hergestellt wurde und auf ein Gefüge mit einer Matrixkorngröße von 1 bis 3 µm eingestellt wurde. Sie dient zum Herstellen des in Fig. 2 dargestellten scheibenförmigen Rotationsmessers mit einem Kegelwinkel α von 150 bis 160o, einer Dicke von 1,0 bis 1,5 mm und einem Innendurchmesser von 50 mm sowie einem Außendurchmesser von 100 mm.
  • Die Ronde 1 wurde durch Stanzen aus einer pulvermetallurgisch hergestellten und alsdann bei einer Temperatur von 1150 bis 1250oC auf eine Dicke von 2,5 mm ausgewalzten Platine der Abmessung 100 x 200 x 8 mm hergestellt. Um eine ausreichende Materialreserve für die Ausbildung der Schneiden 2 des Rotationsmessers zu schaffen, überstieg die Dicke der Platine die Fertigdicke des Rotationsmessers um 1 mm.
  • Die Ronde 1 besaß einen Durchmesser von 95 mm und eine Dicke von 2,5 mm, er wurde nach dem Stanzen auf eine Temperatur von 760oC erwärmt und mit Hilfe eines üblichen, auf 350oC Vorgewärmten Werkzeugs aus Ober- und Untergesenk mit einer Umformgeschwindigkeit von 5.10⁻³ s⁻¹ in einer Preßzeit von 25 s zu dem in Fig 2 dargestellten Rotationsmesser umgeformt, wie sich aus der Gleichung
    Figure imgb0002

    ergibt, in der Ao die Kreisringfläche der Ronde 1,ΔA die Kegelmantelfläche A, verringert um die Fläche Ao des Schlitzprofils ε und ε̇ = 5 . 10⁻³ s⁻¹ ist.
  • Die geringe Umformtemperatur spart Energie, gewährleistet eine minimale Verzunderung und verhindert ein schädliches Kornwachstum. Außerdem ergibt sich beim superplastischen Umformen eine höhere Dichte, weil Poren und Risse verschweißen, sowie eine höhere Festigkeit und Zähigkeit. Wegen des Wegfalls einer spanenden Bearbeitung kommt es auch nicht zu Ermüdungsrisse auslösendem Bearbeitungsriefen, wodurch sich die Standzeit eines Werkzeugs um 25 bis 30% erhöht.
  • Experimentell ergab sich in guter Übereinstimmung mit dem rechnerisch ermittelten Wert eine Umformzeit von 25 s. Rechnet man dazu eine Zustellzeit für das Werkzeug von 35 s hinzu, so ergibt sich je Rotationsmesser eine Fertigungszeit von 60 s, die weit unter der Bearbeitungszeit beim spanenden Bearbeiten eines Rohlings liegt.
  • Das erfindungsgemäße Verfahren eignet sich zum Herstellen von Schnittglocken und -werkzeugen, Formschneidwerkzeugen, Messern, beispielsweise Scheiben-, Filter- und Tabakmessern mit einer Dicke unter 3 mm, Prägestempeln, Stau- und Druckringen für Extruder, Sinterformpreßwerkzeugen, Fließpreßwerkzeugen und -stempeln, Formwerkzeugen für das Taumelfließpressen und Viellochplatten jeweils aus Kaltarbeitsstählen, zum Herstellen von Profilfräsern, Formdrehstählen und Profilsenkköpfen aus Schnellarbeitsstählen sowie zum Herstellen von Glasblasformwerkzeugen, Profilstangen, Düsen, Laufrädern, Turbinenscheiben und Ventilsitzen aus Stelliten. Es zeichnet sich durch niedrige Umformtemperaturen und einen geringen Kraftbedarf aus. Das feindisperse, äquiaxiale und texturfreie Mikrogefüge gewährleistet gleichbleibende und reproduzierbare mechanische Eigenschaften, insbesondere eine hohe Festigkeit bei ausgezeichneter Duktilität und gutem Ermüdungsverhalten. Die Maßhaltigkeit und Oberflächenbeschaffenheit sind dabei so gut, daß ein Nachbearbeiten nicht erforderlich ist. So liegt die Oberflächenrauhigkeit normalerweise unter 1 µm.

Claims (16)

  1. Verfahren zum Herstellen von Werkzeugen aus Stahl, bei dem ein pulvermetallurgisch hergestellter Vorkörper warmverdichtet wird, dadurch gekennzeichnet, daß ein Vorkörper aus einem hochlegierten Stahl mit äquiaxialem Gefüge und über 30 Vol.-% karbidischer und/oder boridischer Ausscheidungsphase unterhalb A₁ mit einer zyklischen Alpha/Gamma-Phasenumwandlung oder im austenitischen Zustand warmverformt und dabei auf eine Matrix mit einer Korngröße von 1 bis 3 µm und eine Ausscheidungsphase mit einer Korngröße von 0,2 bis 1,0 µm eingestellt sowie abschließend superplastisch fertiggeformt wird.
  2. Verfahren zum Herstellen von Werkzeugen, bei dem ein pulvermetallurgisch hergestellter Vorkörper warmverdichtet wird, dadurch gekennzeichnet, daß ein stellitischer Vorkörper mit äquiaxialem Gefüge und über 30 Vol.-% karbidischer und/oder boridischer Ausscheidungsphase bei 700 bis 1000°C warmverformt und dabei auf eine Matrix mit einer Korngröße von 1 bis 3 µm und einer Ausscheidungsphase mit einer Korngröße von 0,2 bis 1,0 µm eingestellt sowie abschließend superplastisch fertiggeformt wird.
  3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß ein Ausgangsmaterial mit einem äquiaxialen Gefüge superplastisch bis zur Endabmessung geformt wird.
  4. Verfahren nach einem oder mehreren der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß pulvermetallurgische Werkzeugstähle und Stellite bei Temperaturen von etwa 0,5 bis 0,7
    Figure imgb0003
    m superplastisch umgeformt und dann kontinuierlich abgekühlt werden.
  5. Verfahren nach Anspruch 4, gekennzeichnet durch eine Verformungstemperatur von 900 bis 650oC.
  6. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß ein stellitisches Ausgangsmaterial während eines kontinuierlichen Abkühlens von 1000oC auf 760oC warmverformt wird.
  7. Verfahren nach einem der Ansprüche 4 bis 6, dadurch gekennzeichnet, daß der Verformungsgrad über 30% liegt und die Dehnung einige hundert Prozent beträgt.
  8. Verfahren nach einem der Ansprüche 1 bis 3 dadurch gekennzeichnet, daß pulvermetallurgisch hergestellte Werkzeugstähle unterhalb ihrer Umwandlungstemperatur isotherm und superplastisch geformt werden.
  9. Verfahren nach Anspruch 8, dadurch gekennzeichnet, daß der Verformungsgrad bis 800% beträgt.
  10. Verfahren nach Anspruch 8 oder 9, gekennzeichnet durch ein Korngrenzengleiten und eine dynamische Rekristallisation bei 600 bis 700oC.
  11. Verfahren nach einem der Ansprüche 1 bis 10, gekennzeichnet durch eine superplastische Formgebung bei einer Temperatur unterhalb der Temperatur der Sekundärrekristallisation und des Kornwachstums.
  12. Verfahren nach einem der Ansprüche 8 bis 11, gekennzeichnet durch eine superplastische Formgebung von Stahllegierungen bei 650 bis 780oC.
  13. Verfahren nach Anspruch 11 oder 12, dadurch gekennzeichnet, daß die Umformgeschwindigkeit ε̇ = 10⁻³ bis 10⁻¹s⁻¹ beträgt.
  14. Verfahren nach einem oder mehreren der Ansprüche 11 bis 13, dadurch gekennzeichnet, daß der Dehngeschwindigkeitsexponent m=0,4 bis 0,5 beträgt.
  15. Verfahren nach einem oder mehreren der Ansprüche 11 bis 13, dadurch gekennzeichnet, daß der Dehngeschwindigkeitsexponent m für Stellite 0,35 bis 0,4 beträgt.
  16. Verfahren nach einem oder mehreren der Ansprüche 11 bis 15, dadurch gekennzeichnet, daß die geformten Gegenstände einem Grobkornglühen unterworfen werden.
EP86117455A 1985-12-18 1986-12-16 Verfahren zum Herstellen von Werkzeugen Expired - Lifetime EP0227001B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT86117455T ATE90899T1 (de) 1985-12-18 1986-12-16 Verfahren zum herstellen von werkzeugen.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19853544759 DE3544759A1 (de) 1985-12-18 1985-12-18 Verfahren zum herstellen von werkzeugen
DE3544759 1985-12-18

Publications (3)

Publication Number Publication Date
EP0227001A2 EP0227001A2 (de) 1987-07-01
EP0227001A3 EP0227001A3 (en) 1988-05-04
EP0227001B1 true EP0227001B1 (de) 1993-06-23

Family

ID=6288747

Family Applications (1)

Application Number Title Priority Date Filing Date
EP86117455A Expired - Lifetime EP0227001B1 (de) 1985-12-18 1986-12-16 Verfahren zum Herstellen von Werkzeugen

Country Status (6)

Country Link
US (1) US5028386A (de)
EP (1) EP0227001B1 (de)
JP (1) JPS62156203A (de)
AT (1) ATE90899T1 (de)
DE (1) DE3544759A1 (de)
ES (1) ES2041242T3 (de)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4969099A (en) * 1986-03-11 1990-11-06 Toyota Jidosha Kabushiki Kaisha Double-detecting, trouble-judging and failsafe devices in system for integrally controlling automatic transmission and engine
US4945481A (en) * 1986-05-08 1990-07-31 Toyota Jidosha Kabushiki Kaisha System for integrally controlling automatic transmission and engine
US4838124A (en) * 1986-06-30 1989-06-13 Toyota Jidosha Kabushiki Kaisha System for integrally controlling automatic transmission and engine
JPH0712809B2 (ja) * 1986-07-07 1995-02-15 トヨタ自動車株式会社 自動変速機及びエンジンの一体制御装置
US8186561B2 (en) * 2004-03-24 2012-05-29 Megastir Technologies, LLC Solid state processing of hand-held knife blades to improve blade performance

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2127082A5 (de) * 1971-02-22 1972-10-13 Charbonnages De France
JPS5510642B2 (de) * 1973-10-31 1980-03-18
US4073648A (en) * 1974-06-10 1978-02-14 The International Nickel Company, Inc. Thermoplastic prealloyed powder
US3976482A (en) * 1975-01-31 1976-08-24 The International Nickel Company, Inc. Method of making prealloyed thermoplastic powder and consolidated article
US3951697A (en) * 1975-02-24 1976-04-20 The Board Of Trustees Of Leland Stanford Junior University Superplastic ultra high carbon steel
JPS5485106A (en) * 1977-12-20 1979-07-06 Seiko Epson Corp Magnet made from inter-rare-earth-metallic compound
JPS5887204A (ja) * 1981-11-17 1983-05-25 Kobe Steel Ltd 急冷凝固粉末を用いた超合金の恒温鍛造方法
JPS5893802A (ja) * 1981-11-30 1983-06-03 Sumitomo Electric Ind Ltd 難加工性合金線材の製造方法
US4533390A (en) * 1983-09-30 1985-08-06 Board Of Trustees Of The Leland Stanford Junior University Ultra high carbon steel alloy and processing thereof
DE3346089A1 (de) * 1983-12-21 1985-07-18 Dr. Weusthoff GmbH, 4000 Düsseldorf Verfahren zum herstellen hochfester, duktiler koerper aus kohlenstoffreichen eisenbasislegierungen
US4582536A (en) * 1984-12-07 1986-04-15 Allied Corporation Production of increased ductility in articles consolidated from rapidly solidified alloy
JPS62134130A (ja) * 1985-12-05 1987-06-17 Agency Of Ind Science & Technol 高強度・難加工材の超塑性ウオ−ムダイ・パツク鍛造法

Also Published As

Publication number Publication date
US5028386A (en) 1991-07-02
EP0227001A2 (de) 1987-07-01
DE3544759C2 (de) 1989-08-03
ATE90899T1 (de) 1993-07-15
EP0227001A3 (en) 1988-05-04
ES2041242T3 (es) 1993-11-16
DE3544759A1 (de) 1987-06-19
JPS62156203A (ja) 1987-07-11

Similar Documents

Publication Publication Date Title
EP3228724B1 (de) Werkzeugstahl, insbesondere warmarbeitsstahl, und stahlgegenstand
DE2937724C2 (de) Pulvermetallurgisch hergestelltes Stahlerzeugnis mit hohem Vanadiumcarbid- Anteil
DE2621472C2 (de) Verwendung einer Hartlegierung für Schneid-,Scher-oder Verformungswerkzeuge
EP2359951A1 (de) Werkzeuge mit thermomechanisch verändertem Arbeitsbereich und Verfahren zur Formung solcher Werkzeuge
DE1533275B1 (de) Verfahren zur pulvermetallurgischen Herstellung von Hartlegierungen
DE1298293B (de) Hochverschleissfeste, bearbeitbare und haertbare Sinterstahllegierung und Verfahren zu deren Herstellung
CH664976A5 (de) Verbundkoerper und verfahren zu seiner herstellung.
EP3409801B1 (de) Pulvermetallurgisch hergestellter, hartstoffpartikel enthaltender verbundwerkstoff, verwendung eines verbundwerkstoffs und verfahren zur herstellung eines bauteils aus einem verbundwerkstoff
DE2060605C3 (de) Pulvermetallurgisch durch Sintern hergestellte, ausscheidungshärtbare, korrosions- und hochwarmfeste Nickel-Chrom-Legierung
Kasak et al. Powder-metallurgy tool steels
DE60019758T2 (de) Pulvermetallurgisch hergestellter schnellarbeitsstahl
EP0322397B1 (de) Pulvermetallurgisch hergestellter Schnellarbeitsstahl, daraus hergestellter Versschleissteil und Verfahren zu seiner Herstellung
EP1647606B1 (de) Hochharte Nickelbasislegierung für verschleissfeste Hochtemperaturwerkzeuge
WO2003000457A1 (de) Bandförmige schneidwerkzeuge
EP0227001B1 (de) Verfahren zum Herstellen von Werkzeugen
DE2362650C3 (de) Verfahren zur Verbesserung der Wannverformbarkeit von Zerstäubungspulvern
WO2021032893A1 (de) Werkzeugstahl für kaltarbeits- und schnellarbeitsanwendungen
Pinnow et al. P/M tool steels
EP1985390B1 (de) Werkzeuge mit thermomechanisch verändertem Arbeitsbereich und Verfahren zur Formung solcher Werkzeuge
EP0149210B1 (de) Verfahren zum Herstellen hochfester, duktiler Körper aus Kohlenstoffreichen Eisenbasislegierungen
DE4436670C2 (de) Gegenstände aus Superlegierungen auf Nickelbasis mit verbesserter Zerspanbarkeit sowie Verfahren zur Herstellung eines spanend bearbeiteten Werkstücks aus einer derartigen Superlegierung
DE2840935C2 (de) Verfahren zur Herstellung eines Hartmetalls
EP1129803B1 (de) Pulvermetallurgisch hergestelltes Material mit verbesserter Isotropie der mechanischen Eigenschaften
AT394325B (de) Metallische matrize zum strangpressen und verfahren zur herstellung derselben
EP0069421B1 (de) Verfahren zur Herstellung eines Halbzeugs oder eines Fertigteils aus einem metallischen Werkstoff durch Warm-Formgebung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH ES FR GB GR IT LI LU NL SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH ES FR GB GR IT LI LU NL SE

17P Request for examination filed

Effective date: 19881010

17Q First examination report despatched

Effective date: 19900323

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH ES FR GB GR IT LI LU NL SE

REF Corresponds to:

Ref document number: 90899

Country of ref document: AT

Date of ref document: 19930715

Kind code of ref document: T

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19930630

ET Fr: translation filed
ITF It: translation for a ep patent filed

Owner name: BARZANO' E ZANARDO ROMA S.P.A.

REG Reference to a national code

Ref country code: GR

Ref legal event code: FG4A

Free format text: 3008898

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2041242

Country of ref document: ES

Kind code of ref document: T3

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19931125

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 19931216

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19931217

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 19931221

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GR

Payment date: 19931222

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19931227

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19931231

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19940104

Year of fee payment: 8

EPTA Lu: last paid annual fee
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19941216

Ref country code: GB

Effective date: 19941216

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19941217

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19941231

EAL Se: european patent in force in sweden

Ref document number: 86117455.5

BERE Be: lapsed

Owner name: FROMMEYER GEORG

Effective date: 19941231

Owner name: ROBERT ZAPP WERKSTOFFTECHNIK G.M.B.H. & CO K.G.

Effective date: 19941231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19950630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19950701

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19941216

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19950831

REG Reference to a national code

Ref country code: GR

Ref legal event code: MM2A

Free format text: 3008898

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19950701

EUG Se: european patent has lapsed

Ref document number: 86117455.5

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19951217

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 19960113

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20041227

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20041229

Year of fee payment: 19

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20051216

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051216

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051231

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051231

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL