EP0225815B1 - Werkzeug zum Absperren eines Produktionssteigrohres - Google Patents
Werkzeug zum Absperren eines Produktionssteigrohres Download PDFInfo
- Publication number
- EP0225815B1 EP0225815B1 EP86402298A EP86402298A EP0225815B1 EP 0225815 B1 EP0225815 B1 EP 0225815B1 EP 86402298 A EP86402298 A EP 86402298A EP 86402298 A EP86402298 A EP 86402298A EP 0225815 B1 EP0225815 B1 EP 0225815B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- valve
- piston
- assembly
- tool
- tool according
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000004519 manufacturing process Methods 0.000 title description 19
- 239000012530 fluid Substances 0.000 claims description 21
- 230000000694 effects Effects 0.000 claims description 13
- 238000005192 partition Methods 0.000 claims description 9
- 230000002093 peripheral effect Effects 0.000 claims description 5
- 238000006073 displacement reaction Methods 0.000 claims description 4
- 239000007788 liquid Substances 0.000 claims description 4
- 238000011144 upstream manufacturing Methods 0.000 claims description 3
- 230000000712 assembly Effects 0.000 claims description 2
- 238000000429 assembly Methods 0.000 claims description 2
- 230000000295 complement effect Effects 0.000 claims 1
- 210000002445 nipple Anatomy 0.000 claims 1
- 238000007789 sealing Methods 0.000 description 4
- 210000000078 claw Anatomy 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 2
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 230000004323 axial length Effects 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000005226 mechanical processes and functions Effects 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B23/00—Apparatus for displacing, setting, locking, releasing or removing tools, packers or the like in boreholes or wells
- E21B23/004—Indexing systems for guiding relative movement between telescoping parts of downhole tools
- E21B23/006—"J-slot" systems, i.e. lug and slot indexing mechanisms
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B34/00—Valve arrangements for boreholes or wells
- E21B34/06—Valve arrangements for boreholes or wells in wells
- E21B34/14—Valve arrangements for boreholes or wells in wells operated by movement of tools, e.g. sleeve valves operated by pistons or wire line tools
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B11/00—Servomotor systems without provision for follow-up action; Circuits therefor
- F15B11/02—Systems essentially incorporating special features for controlling the speed or actuating force of an output member
- F15B11/028—Systems essentially incorporating special features for controlling the speed or actuating force of an output member for controlling the actuating force
- F15B11/032—Systems essentially incorporating special features for controlling the speed or actuating force of an output member for controlling the actuating force by means of fluid-pressure converters
- F15B11/0325—Systems essentially incorporating special features for controlling the speed or actuating force of an output member for controlling the actuating force by means of fluid-pressure converters the fluid-pressure converter increasing the working force after an approach stroke
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B2211/00—Circuits for servomotor systems
- F15B2211/50—Pressure control
- F15B2211/505—Pressure control characterised by the type of pressure control means
- F15B2211/50509—Pressure control characterised by the type of pressure control means the pressure control means controlling a pressure upstream of the pressure control means
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B2211/00—Circuits for servomotor systems
- F15B2211/50—Pressure control
- F15B2211/55—Pressure control for limiting a pressure up to a maximum pressure, e.g. by using a pressure relief valve
Definitions
- the present invention relates to a tool for closing the production column of a well containing a pressurized fluid, this tool, designed to be temporarily fixed inside the production column or to be an integral part of it.
- -ci comprising a valve which can be actuated to close or open the production column in the passage of the fluid from the well.
- one of the main tests for determining the production capacity of a hydrocarbon well consists in stopping production using a valve and recording the pressure variations resulting from the closing of the well.
- US-A-4 252 188 corresponds to the preamble of claim 1 and describes an actuating device for controlling the operation of an intake valve installed in a well. It comprises a first annular piston which is moved upwards under the action of the pressure established between the annular space of the well and the production column. During this movement, the first piston, by compressing a spring, lowers by means of a double-chamber hydraulic transmission a second piston which controls the opening of the valve.
- the subject of the invention is a sealing tool which can be installed in the production column of a well for the duration of the tests carried out on the well, the valve of this tool being easy to maneuver despite the considerable pressure which can reign in the well and which opposes the opening of the valve after it has been closed.
- the tool according to the invention comprises respective chambers of variable volume, of different section, communicating with one another and filled with a hydraulic liquid which is preferably confined therein;
- the piston of the first assembly acts on the valve in the direction of its opening under the effect of the pressure of the hydraulic fluid to which it is subjected, this piston offering an inner face, in contact with the hydraulic fluid, the surface of which is greater on the surface of the inner face of the piston of the second set.
- the piston of the second set slides in the corresponding cylinder in the direction of the longitudinal axis of the tool and its arrangement is such that, when it is stressed upwards by a cable which is attached to it, it causes a reduction in the volume of the chamber of said assembly. Consequently, by applying a tensile force to the cable which goes up to the surface inside the production column, a multiplier effect is obtained on this force which makes it possible to control the opening of the valve despite the pressure of the well fluids that oppose this opening.
- the piston of the second set should offer an external surface which is subjected to the pressure of the well upstream of the valve and which is greater than the surface of the internal face of said piston. Thanks to this arrangement, the valve in closed position receives from the piston of the first assembly, subjected to the pressure of the hydraulic fluid which is higher than the ambient pressure prevailing in the well where the tool is located, a force in the direction of its opening, which is deducted from the force that the valve receives directly from the pressurized fluid from the well, which tends to keep it closed.
- valve is relieved and its opening is obtained by applying a reduced control force compared to the force which would be necessary in the absence of said hydraulic mechanism, any measure of pressure equalization on the part and other of the valve prior to its opening becoming superfluous.
- This effect is combined with the aforementioned force multiplier effect and leads to a further reduction in the force to be applied to obtain the opening of the valve.
- valve will normally consist of a valve and a conjugate seat, this valve being integral with the piston of the first assembly.
- the structure of the hydraulic mechanism is given a coaxial configuration. More specifically, it can be provided that the valve flap is integral with a cylindrical sleeve whose axis is parallel to the direction of movement of the valve and which externally carries the piston of the first assembly in the form of a sliding annular piston in a fixed cylindrical sleeve, forming the side wall of the cylinder of the first set and closed by a transverse partition which is situated between the valve and the piston and through which the sleeve integral with the valve can slide in leaktight manner, the latter sleeve forming the side wall of the chamber of the second assembly, which communicates with the chamber of the first assembly by at least one orifice drilled in said wall, and in which the piston of the second assembly slides, this piston being integral with an actuating rod which can slide tightly through the valve and to which is attached a cable such as the aforementioned cable, capable of controlling, lo rs a tensile force is applied to it, the opening of the valve by
- the sleeve forming the side wall of the cylinder of the first set extends to the beyond the partition which limits the chamber of this assembly by a part of generally tubular shape, comprising at least one pawl and at least one locking bolt which can be retracted in said tubular part or radially protrude therefrom to engage in a peripheral groove that includes a fitting with internal reach placed in the production column at the place where the tool is to be stationed, the radial movements of said pawl and of said bolt being controlled by a movable tubular part in the direction of the longitudinal axis of the tool, arranged coaxially inside said tubular part and comprising zones of different radii on which said pawl and said bolt bear, the position of the latter being dependent on the respective zone of the tubular part which is opposite.
- said tubular part can take three determined positions with respect to said tubular part, namely a first position where the pawl can emerge projecting, under the action of a spring, and the bolt is retracted in retracted position, a second position where the pawl is retracted and the bolt emerges and a third position where the pawl and the bolt are retracted, the passages of the tubular part from its first to its second, then to its third position being controlled by longitudinal displacements of the rod of the piston of the second set under the effect of successive pulls applied to the cable attached to this rod.
- the pawl controls the stopping of the tool in the fitting with internal reach; in the second position, the bolt locks the tool there; in the third position, the tool is unlocked and can be reassembled.
- the valve pushes back, on its first closure controlled by the rod of said piston, said part to bring it into its second position.
- FIG. 1 shows a well dug in an oil-producing zone 50 and comprising, in a casing 51, a production column 100. Between the lower end of the latter and the casing 51 is placed an annular sealing device or "packer" 53. A shutter tool 70 according to the invention is lowered slightly above the level of the producing area 50 using a cable 17 to which it is suspended. This cable, passing inside the production column 100, emerges at its top through a sealing device 72 to be wound, via deflection pulleys 73, 74, on the drum of a winch 75 arranged on the surface of the ground.
- the cable 17 is an electric cable which, in addition to a mechanical function of suspension and actuation of the tool 70, provides a function of transmission of measurement signals to the surface from devices which can be associated with the tool, such as a pressure gauge 15 intended to measure the pressure at the bottom of the well, below the tool.
- the tool 70 shown in Figures 2A, 2B comprises a first tubular part 1, of great length.
- a second tubular part 2 which emerges upwards, and a third tubular part 3, below from which the part 1 contains a fourth tubular part 4.
- a fifth tubular part 5 is also provided, which crosses the whole along the longitudinal axis Z of the tool. All these parts can slide longitudinally with respect to each other.
- the head 1a of the part 1 contains stop pawls 11 and locking bolts 12 which can emerge therefrom at its periphery by corresponding orifices to engage in a groove 101 formed in a fitting with internal reach 100a which comprises column 100 at the level where the tool should be placed.
- Each stop pawl 11, provided with a spring 18 which tends to make it emerge from the head 1a of the part 1, is oriented so as to disappear when the tool descends into the column 100, the passage of possible obstacles on the internal wall thereof, but, during an upward movement of the tool, to engage in a cavity such as the groove 101 to stop the tool.
- the part 2 has, opposite each of them, a reduced radius in a zone 2a extending over a certain axial length, this radius increasing in a zone 2b situated below this zone, to which it is connected by a chamfer, to a value such that, if this zone 2b comes, by sliding of the part 2, opposite the corresponding pawl 11, it forces the latter to switch to the erased situation inside the head 1a of the part 1.
- the part 2 offers, opposite each locking bolt 12, a zone 2c, a zone 2d or a zone 2e, the zone 2d situated between zones 2c and 2e having a greater radius as the latter, as it forces the corresponding bolt 12 to emerge from the head 1a to engage in the groove 101, while when one of the zones 2c and 2e is opposite the bolt 12, the latter ci takes an erased position inside the head 1a.
- Zone 2d is connected to zones 2c and 2d by respective chamfers.
- the part 1 is extended upwards, beyond its head 1a, by a long elastic hook 1b which can come into engagement, depending on the mutual position of the parts 1 and 2, either in a peripheral groove 2f formed at the top of the piece 2, either in one of the two holes 2g, 2h drilled in the wall of piece 2, one below the other and both below the groove 2f.
- the part 1 has, below its head 1a, a first cylindrical zone 1c of diameter slightly smaller than that of the head 1a, then, below, connecting with the zone 1c by a conical chamfer, a second cylindrical zone 1d of diameter slightly smaller than that of zone 1c.
- Zone 1d is pierced with axially extending slots 1e, through which pass radial arms 3a which comprises the part 3 and which support a crown 3b surmounted by a pair of seals 13.
- the part 1 has a part 1f of larger diameter, substantially equal to that of the head 1a, then continues to its lower end by a long cylindrical sleeve 1g, with thin wall, of slightly smaller diameter.
- annular piston 4a belonging to the part 4 and projecting around a cylindrical sleeve 4b with thin wall, which can slide in the axial opening of an annular partition 1h that includes the piece 1 at the top of the socket 1 g.
- annular partition 1h that includes the piece 1 at the top of the socket 1 g.
- the part 4 widens into a conical head 4c forming a valve which cooperates with a conjugate seat 3c formed by the lower end of the part 3.
- the sleeve 4b is extends to end with a 4d part offering peripheral notches on its outer surface.
- the part 5 consists first of all of a head 5a of generally cylindrical shape, engaged in the upper part of the part 2 and capable of sliding in a sleeve 2i terminating this last part, with an internal diameter slightly smaller than the diameter of the rest of the part 2.
- a bulge 5b of conjugate diameter of the latter diameter, so that this bulge can slide in the part 2, but cannot pass through the sleeve 2i thereof, thus limiting an upward movement of the part 5 relative to the part 2.
- the bulge 5b carries a lug 25 engaged in a guide slot 2j formed in the part 2 in the axial direction, so that the parts 2 and 5 can execute a mutual sliding movement, but are integral in rotation about their common axis Z.
- groove 2f is hollowed out on the periphery of sleeve 2i, while the orifices 2g and 2h are drilled below the latter, in the cylindrical region of the part 2 where the bulge 5b can slide.
- the part 5 is continued, below its head 5a, by a long and thin rod 5c which crosses axially, inside the part 1, the bottom of the part 2, the part 3 and the part 4. If an annular gap is formed between the rod 5c and the internal cylindrical surface of the parts 2 and 3, said rod passes through the valve 4c that comprises the part 4 by an axial orifice of diameter conjugated to its own diameter. Below the valve 4c, the socket 4b of this same part remotely surrounds the rod 5c. Then this continues, after an annular shoulder 5d (FIG. 3), by a part 5e of slightly larger diameter which emerges downwards from the notched part 4d of the part 4.
- the part 5 offers a set of claws 5f oriented upwards in the axial direction and capable of coming into engagement with the notched part 4d of the part 4, the parts 4 and 5 then being coupled ( not definitively).
- a 5g collar At the foot of the claws 5f is a 5g collar; between this and the piston 4a is placed a compression spring 14 which tends to push the piston 4a upwards relative to the part 5.
- a pressure gauge 15 intended to measure the pressure of the fluid that the well contains. Its electrical connection wires pass right through the tool via an axial channel 5k which comprises the part 5 over its entire length and are connected to the electric cable 17 moored to the head 5a of this same part 5.
- the part 5 then has an externally threaded zone 5h, followed by a zone 5i of diameter greater than the average diameter of the threaded zone 5h.
- a part 6 is engaged around this part of the part 5. It comprises a sleeve 6a offering an internal thread combined with that of the zone 5h, on which it is screwed, and lugs 6b extending downward in the axial direction around the zone 5i and each ending in a boss 6c projecting radially outwards.
- the tabs 6b have their own elasticity which urges them towards the general axis Z of the tool.
- the free ends of the tabs 6b either rest on the part 5i, so that the bosses 6c are almost pushed back in contact with the internal surface of the socket 1 g of the part 1 and are then likely to come into abutment against a shoulder 1i projecting from said internal surface, or are located opposite part 5i of smaller diameter of part 5, so that the tabs 6b retract centripetally and their bosses 6c are erased and can therefore cross the shoulder 1i of the part 1.
- the sleeve 6a of the part 6 has at its periphery triangular bosses 61, 62, ..., arranged in staggered rows in two rows.
- the diameter of the sleeve 6a and the thickness of said bosses as well as of the abovementioned shoulder 1i are chosen so that the part 6 can move freely with respect to the latter, but that its bosses 61, 62, ..
- FIG. 8 where it has been assumed for convenience that it was the part 6 which was fixed and the part 1 with its pins 16 which moved, if, from an initial position 16 1 , the pin 16 shown moves in the downward axial direction, it meets in 16 2 the boss 62 which causes it to deflect to the right until 16 3 , then it continues its race in the axial direction to reach a position 16 4 , from which it then rises, meets in 16 5 the boss 63 which also causes it to deflect to the right until 16 6 , and reaches its final position 16, angularly distant from its initial position 16, by a fraction of a turn.
- the pin 16 is stationary and it is the part 6 which turns, to the left, of said fraction of a turn.
- this part can serve as an indexing member making it possible to count the number of back-and-forth movements carried out by the part 5 on which it is screwed.
- O-ring seals are provided in relation to the part 4: a seal 28 (Figure 4) between the valve 4c and the rod 5c; a seal 29 ( Figure 28) between the partition 1 h and the socket 4b; a seal 30 between the piston 4a and the bush 1g; a seal 31 ( Figure 3) between the lower part 4d of the part 4 and the corresponding 5th part of the part 5; finally, a seal 32 (FIG. 2B) on the valve 4c opposite its seat 3c.
- a seal 33 is also provided in the zone 1c of the part 1, which can cooperate either with the part 2 (FIG. 3), or with the part 3 (FIG. 4).
- the arrangement described shows two cylinder-piston assemblies: a first assembly comprising a cylinder formed by the bush 1g and the piston 4a of the part 4, integral with the valve 4c, and a second assembly comprising a cylinder formed by the bush 4b and a piston formed by part 5e of part 5, of diameter greater than that of part 5c which overcomes it and forms the actuating rod.
- the chamber 41 of variable volume of the first set limited by the socket 4b, the piston 4a, the socket 1g and the partition 1h, communicates through orifices 4e drilled in the socket 4b with the chamber 45 of variable volume of the second set, limited by the rod 5c, the shoulder 5d, the sleeve 4b and the valve 4c. These two chambers are filled with hydraulic fluid.
- the valve 4c Due to the presence of the hydraulic mechanism formed by the communicating chambers 41, 45, filled with hydraulic fluid, and their respective pistons 4a, 5e, the valve 4c which, in the closed position, after lowering the tool into the well, is subjected on the part of the pressurized fluid from the well to a force which tends to apply it against its seat 3c, receives from said hydraulic fluid, via the piston 4a, a force in the opposite direction which is deduced from the preceding one, so that the total force with which the valve 4c is pressed against its seat 3c in the closed position is reduced.
- the effective area of the piston of the chamber 45 is S l -S 2 .
- This mechanism also has an amplifying effect on the force f which must be applied to the part 5 via the cable 17 to obtain the opening of the valve 4c. Indeed, such a force f creates a pressure variation in chamber 45, which is reflected in chamber 41, so that the piston 4a applies an opening force to the valve 4c
- the tool having been lowered slightly below the fitting with internal reach 100a of the column 100, it is brought up until the pawls 11 come to engage in the groove 101 of said fitting, the part 1 there thereby finding it immobilized.
- An additional traction applied to the cable 17 brings up the part 5 which drives the part 2, the hook 1 escaping from the groove 2f to come to engage in the orifice 2g.
- This upward movement of the part 2 relative to the part causes on the one hand the engagement in the groove 101 of the bolts 12 by the raised area 2d of the part 2 and on the other hand the erasure of the pawls 11 by the zone 2b located below the zone 2a and of greater radial thickness than the latter.
- the ascent of the part 5 with respect to the part 1 also has the effect of bringing the part 6 back into the part 1, so that it escapes the pins 16 each of which was engaged in the locked position in one of the aforementioned notches 20 formed in the boss 61 and the diametrically opposite boss (FIG. 8).
- Each pin 16 then meets the boss 60 located below the boss 61 and is returned by it opposite the boss 61, so that at the subsequent loosening of the cable 17 causing a lowering of the part 6 ( Figure 4), the pin 16 meets the boss 61 which drives it towards the following bosses 62, 63, ..., without the pin 16 being able to return to the notch 20.
- the part 6 is definitively released and, when the cable is released above.
- the valve thus opening connects regions 1 and II of the production column via the annular gap between the latter and the sleeve 1g of the part 1, orifices 1j drilled in the wall of said part between the sleeve 1g and the part 1f which surmounts it, the annular gap which follows the seat 3c between the part 5c of the part 5 on the one hand and the internal surface of the parts 3 and 2 on the other hand, and orifices 2k drilled in the wall of the part 2.
- the part 5 has also raised the part 6, the sleeve 6a thereof crossing the level of the pins 16, so that the peripheral bosses of said sleeve have cooperated with said fixed pins which rotated the part 6 by a fraction of a turn on the threaded part 5h of the part 5, immobilized in rotation by the screw 25 engaged in the slot 2j of the part 2, this rotation of the part 6 causing it to rise slightly compared to room 5.
- valve 4c closes under the action of the spring 14 aided by the pressure P 1 of the fluid in the well, the part 6 rotating a new fraction of a turn.
- the number of opening / closing cycles of the tool valve is adjustable and depends on the initial position given to the indexing member 6 on the threaded part 5h of the part 5.
Landscapes
- Engineering & Computer Science (AREA)
- Mining & Mineral Resources (AREA)
- Life Sciences & Earth Sciences (AREA)
- Geology (AREA)
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- Environmental & Geological Engineering (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Percussive Tools And Related Accessories (AREA)
- Earth Drilling (AREA)
- Actuator (AREA)
Claims (10)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR8515490 | 1985-10-18 | ||
FR8515490A FR2588915B1 (fr) | 1985-10-18 | 1985-10-18 | Outil d'obturation de la colonne de production d'un puits |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0225815A1 EP0225815A1 (de) | 1987-06-16 |
EP0225815B1 true EP0225815B1 (de) | 1990-06-06 |
Family
ID=9323967
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP86402298A Expired - Lifetime EP0225815B1 (de) | 1985-10-18 | 1986-10-15 | Werkzeug zum Absperren eines Produktionssteigrohres |
Country Status (5)
Country | Link |
---|---|
US (2) | US4756372A (de) |
EP (1) | EP0225815B1 (de) |
CA (1) | CA1271954A (de) |
DE (1) | DE3671778D1 (de) |
FR (1) | FR2588915B1 (de) |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2588915B1 (fr) * | 1985-10-18 | 1988-03-18 | Flopetrol | Outil d'obturation de la colonne de production d'un puits |
GB2231069B (en) * | 1989-04-28 | 1993-03-03 | Exploration & Prod Serv | Valves |
FR2647500B1 (fr) * | 1989-05-24 | 1996-08-09 | Schlumberger Prospection | Appareil d'essai d'un puits de forage petrolier et procede correspondant |
US6158714A (en) * | 1998-09-14 | 2000-12-12 | Baker Hughes Incorporated | Adjustable orifice valve |
US8881833B2 (en) | 2009-09-30 | 2014-11-11 | Baker Hughes Incorporated | Remotely controlled apparatus for downhole applications and methods of operation |
US8443894B2 (en) * | 2009-11-18 | 2013-05-21 | Baker Hughes Incorporated | Anchor/shifting tool with sequential shift then release functionality |
SA111320712B1 (ar) * | 2010-08-26 | 2014-10-22 | Baker Hughes Inc | اداة تعمل عن بعد وطريقة للتشغيل اسفل البئر |
US9284816B2 (en) | 2013-03-04 | 2016-03-15 | Baker Hughes Incorporated | Actuation assemblies, hydraulically actuated tools for use in subterranean boreholes including actuation assemblies and related methods |
US9341027B2 (en) | 2013-03-04 | 2016-05-17 | Baker Hughes Incorporated | Expandable reamer assemblies, bottom-hole assemblies, and related methods |
US8607872B1 (en) * | 2013-05-30 | 2013-12-17 | Adrian Bugariu | Fire prevention blow-out valve |
US10174560B2 (en) | 2015-08-14 | 2019-01-08 | Baker Hughes Incorporated | Modular earth-boring tools, modules for such tools and related methods |
CN106286440B (zh) * | 2016-09-30 | 2018-02-13 | 西南石油大学 | 一种基于液压控制的伸缩式井下牵引器的控制系统 |
CN107477306B (zh) * | 2017-08-17 | 2019-05-10 | 西南石油大学 | 一种连续油管牵引机器人的电液控制系统 |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2033563A (en) * | 1934-08-25 | 1936-03-10 | Technicraft Engineering Corp | Means for controlling well flow |
US2373648A (en) * | 1941-12-06 | 1945-04-17 | Sida S Martin | Remotely controlled flow valve operating tool |
US2962099A (en) * | 1956-01-20 | 1960-11-29 | Baker Oil Tools Inc | Blowout control valve |
GB955888A (en) * | 1961-04-10 | 1964-04-22 | Edouard Martin Torossian | Device for intensifying hydraulic pressure |
US3115188A (en) * | 1961-11-15 | 1963-12-24 | Cicero C Brown | Shifting tool for well apparatus |
US3381753A (en) * | 1965-09-20 | 1968-05-07 | Otis Eng Co | Fluid flow control system for wells |
US3448803A (en) * | 1967-02-02 | 1969-06-10 | Otis Eng Corp | Means for operating a well having a plurality of flow conductors therein |
US3703104A (en) * | 1970-12-21 | 1972-11-21 | Jack W Tamplen | Positioning apparatus employing driving and driven slots relative three body motion |
US3735813A (en) * | 1971-03-12 | 1973-05-29 | W T Mack | Storm choke |
US4059157A (en) * | 1976-01-26 | 1977-11-22 | Baker International Corporation | Well control valve apparatus |
US4252188A (en) * | 1979-07-23 | 1981-02-24 | Otis Engineering Corporation | Actuator |
FR2509366A1 (fr) * | 1981-07-08 | 1983-01-14 | Flopetrol | Dispositif de commande d'un outil de fermeture de la colonne de production d'un puits |
US4399871A (en) * | 1981-12-16 | 1983-08-23 | Otis Engineering Corporation | Chemical injection valve with openable bypass |
FR2549133B1 (fr) * | 1983-07-12 | 1989-11-03 | Flopetrol | Procede et dispositif de mesure dans un puits petrolier |
FR2588915B1 (fr) * | 1985-10-18 | 1988-03-18 | Flopetrol | Outil d'obturation de la colonne de production d'un puits |
-
1985
- 1985-10-18 FR FR8515490A patent/FR2588915B1/fr not_active Expired
-
1986
- 1986-10-15 EP EP86402298A patent/EP0225815B1/de not_active Expired - Lifetime
- 1986-10-15 DE DE8686402298T patent/DE3671778D1/de not_active Expired - Fee Related
- 1986-10-17 CA CA000520828A patent/CA1271954A/en not_active Expired - Fee Related
-
1987
- 1987-09-17 US US07/099,683 patent/US4756372A/en not_active Expired - Fee Related
-
1988
- 1988-01-20 US US07/147,077 patent/US4944350A/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
FR2588915A1 (fr) | 1987-04-24 |
EP0225815A1 (de) | 1987-06-16 |
FR2588915B1 (fr) | 1988-03-18 |
DE3671778D1 (de) | 1990-07-12 |
US4944350A (en) | 1990-07-31 |
CA1271954A (en) | 1990-07-24 |
US4756372A (en) | 1988-07-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0134734B1 (de) | Verfahren und Vorrichtung zum Messen in einer Erdölbohrung | |
EP0225815B1 (de) | Werkzeug zum Absperren eines Produktionssteigrohres | |
FR2519688A1 (fr) | Systeme d'etancheite pour puits de forage dans lequel circule un fluide chaud | |
EP0574326B1 (de) | Einrichtung, System und Verfahren zum Bohren und Ausrüsten eines seitlichen Bohrloches | |
CA1315190C (fr) | Dispositif et methode pour effectuer des operations et/ou interventions dans un puits | |
EP0187599B1 (de) | Druckmittelangetriebene Vorrichtung zum Messen und Ausführen von Arbeiten in einem abgelenkten Bohrloch während der Injektion oder der Förderung | |
EP0133086B1 (de) | Verankerungsvorrichtung für Bohrlochgerät, mit ausstellbaren Gelenkarmen | |
FR2495704A1 (fr) | Mecanisme hydraulique a double effet | |
CA1320125C (fr) | Procede pour manoeuvrer au moins un dispositif a l'interieur d'un tubage et ensemble permettant la mise en oeuvre du procede | |
FR2694973A1 (fr) | Vanne de sûreté pour train de tubes souterrain commandée depuis la surface. | |
FR2615897A1 (fr) | Dispositif de verrouillage pour outil dans un puits d'hydrocarbures | |
EP0321610B1 (de) | Erdölbohrungssicherheitsventil und Werkzeuge zum Setzen und Zurückziehen eines derartigen Ventils | |
FR2563272A1 (fr) | Appareillage de sectionnement de ligne de service dans un puits de petrole ou de gaz | |
FR2497538A1 (fr) | Systeme de vanne de securite comportant un dispositif d'obturation amovible d'egalisation de pression | |
FR2509366A1 (fr) | Dispositif de commande d'un outil de fermeture de la colonne de production d'un puits | |
CA1326206C (fr) | Methode et dispositif pour effectuer des mesures et/ou interventions dans un puits soumis a compression hydraulique | |
FR2688263A1 (fr) | Procede et dispositif d'accrochage et de decrochage d'un ensemble amovible suspendu a un cable, sur un ensemble de fond de puits place dans un puits de forage petrolier. | |
FR2606070A1 (fr) | Outil permettant la mesure de la pression dans un puits de petrole | |
EP0517329B1 (de) | Hohler Schneckenbohrer zur Herstellung von Ortbetonpfähler, und Bohrvorrichtung mit mindestens zwei dieser Schneckenbohrer | |
FR2785963A1 (fr) | Vanne de colonne montante de forage sous-marin | |
EP0345112B1 (de) | Verankerungsvorrichtung für ein Bohrlochgerät mit ausstellbaren Gelenkarmen | |
FR2692316A1 (fr) | Système et méthode de forage et d'équipement de forage latéral, application à l'exploitation de gisement pétrolier. | |
EP0054477A1 (de) | Antriebseinrichtung mit Zylindern zur Erzeugung der kontinuierlichen Bewegung eines länglichen Gegenstandes in Richtung seiner Achse und/oder zum Bewegen eines Elementes längs diesem Gegenstand | |
EP0242239B1 (de) | Werkzeug zum Abdichten eines Steigrohres | |
FR2651016A1 (fr) | Appareil d'essai de puits de forage petrolier |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): DE FR GB IT NL |
|
17P | Request for examination filed |
Effective date: 19871123 |
|
17Q | First examination report despatched |
Effective date: 19880909 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE FR GB IT NL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRE;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.SCRIBED TIME-LIMIT Effective date: 19900606 |
|
REF | Corresponds to: |
Ref document number: 3671778 Country of ref document: DE Date of ref document: 19900712 |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Effective date: 19910702 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 19921031 Year of fee payment: 7 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Effective date: 19940501 |
|
NLV4 | Nl: lapsed or anulled due to non-payment of the annual fee | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 19941025 Year of fee payment: 9 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Effective date: 19960628 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 19981001 Year of fee payment: 13 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19991015 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 19991015 |