EP0215655B1 - Procédé d'inhibition de la corrosion de chaudières et compositions à cet effet - Google Patents

Procédé d'inhibition de la corrosion de chaudières et compositions à cet effet Download PDF

Info

Publication number
EP0215655B1
EP0215655B1 EP86307064A EP86307064A EP0215655B1 EP 0215655 B1 EP0215655 B1 EP 0215655B1 EP 86307064 A EP86307064 A EP 86307064A EP 86307064 A EP86307064 A EP 86307064A EP 0215655 B1 EP0215655 B1 EP 0215655B1
Authority
EP
European Patent Office
Prior art keywords
oxygen
corrosion
trihydroxybenzene
compositions
boiler feedwater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP86307064A
Other languages
German (de)
English (en)
Other versions
EP0215655A1 (fr
Inventor
John D. Zupanovich
Dennis J. Sepelak
Lois J. Neil
Rabindra K. Sinha
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ecc Specialty Chemicals Inc english China Clays
Calgon Corp
Original Assignee
Calgon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Calgon Corp filed Critical Calgon Corp
Priority to AT86307064T priority Critical patent/ATE49424T1/de
Publication of EP0215655A1 publication Critical patent/EP0215655A1/fr
Application granted granted Critical
Publication of EP0215655B1 publication Critical patent/EP0215655B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F11/00Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent
    • C23F11/08Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids
    • C23F11/10Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids using organic inhibitors
    • C23F11/12Oxygen-containing compounds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F11/00Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent
    • C23F11/08Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids
    • C23F11/10Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids using organic inhibitors
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F11/00Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent
    • C23F11/08Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids
    • C23F11/10Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids using organic inhibitors
    • C23F11/14Nitrogen-containing compounds
    • C23F11/144Aminocarboxylic acids

Definitions

  • This invention relates to the inhibition of corrosion in boiler feedwater systems and boilers due to the presence of dissolved oxygen. It is also concerned with compositions for such use.
  • the first product of corrosion may be ferric oxide, which is only loosely adherent and blocks off areas to oxygen access. These areas become anionic and iron oxide couples are set up. The iron under the oxide deposit then dissolves, and pitting develops, which thus aggravates corrosion.
  • the severity of attack by oxygen will depend on the concentration of dissolved oxygen in the water, and the pH and temperature of the water. As the water temperature increases, corrosion in feed lines, heaters, boilers, steam and return lines made of iorn and steel increases.
  • a major approach to reducing oxygen in boiler feedwater is mechanical deaeration. Efficient mechanical deaeration can reduce dissolved oxygen to as low as 5-10 ppb (parts per thousand million) in industrial plants and 2-3 ppb in utility operations. However, even with this trace amount of oxygen, some corrosion may occur in boilers. Removal of the last traces of oxygen from boiler feedwater is generally accomplished by the addition of chemicals that react with oxygen and that are hereinafter referred to as oxygen scavangers.
  • oxygen scavengers e.g. sodium sulphite, hyrazine, diethylhydroxylamine, carbohydrazide and hydroquinone, as disclosed in numerous U.S. Patent Specifications.
  • US-A-3 551 349 discloses the use of quinones, particularly hydroquinone, as catalysts for the hydrazine-oxygen reaction;
  • US-A-4 096 090 discloses the use of hydrazine compounds, a catalytic organometallic complex, and preferably a quinone compound for deoxygenating feedwater;
  • US-A-3 808 138 discloses the use of cobalt maleic acid hydrazide with hydrazine for oxygen removal;
  • US-A-3 962 113 discloses the use of organic-substituted hydrazines such as monoalkyl hydrazines, dialkyl hydrazines and trialkyl hydrazines as oxygen scavengers.
  • hydrazine and related compounds include toxicity and suspected carcinogenicity.
  • Hydrazine is toxic if inhaled and is also an irritant to the eyes and skin.
  • Carbohydrazide which is a derivative of hydrazine, decomposes to form hydrazine and carbon dioxide at temperatures above 360°F (180°C).
  • US-A-4 269 717 discloses the use of carbohydrazide as an oxygen scavenger and metal passivator.
  • US-A-4 278 635 and US-A-4 282 111 disclose the use of hydroquinone, as well as other dihydroxy, diamino and amino hydroxy benzenes, as oxygen scavengers; US-A-4 279 767 and US-A-4 487 708 disclose the use of hydroquinone and "mu-amines", which are defined as amines compatible with hydroquinone, e.g. methoxypropylamine; US-A-4 363 734 discloses the use of catalysed 1,3-dihydroxyacetone as an oxygen scavenger; US-A-4 419 327 discloses the use of amine or ammonia neutralized erythorbates as oxygen scavengers.
  • DEHA diethylhydroxylamine
  • US-A-4 192 844 discloses the use of methoxypropylamine and hydrazine as a corrosion inhibiting composition.
  • European Patent Specification EP-A-0 054 345 discloses the use of amino-phenol compounds or acid addition salts thereof as oxygen scavangers.
  • UK Patent Specification GB-A-2 138796 discloses the use of trivalent phenols, preferably pyrogallol, to improve the activity of hydrazine/trivalent-cobalt compositions.
  • the present invention provides a method for controlling corrosion in boilers and boiler feedwater systems comprising adding to boiler feedwater containing dissolved oxygen an additive comprising at least one trihydroxybenzene compound and hydroquinone in a weight ratio in the range 1:99 to 99:1.
  • the present invention also provides a corrosion-inhibiting composition comprising at least one trihydroxybenzene compound and hydroquinone in a weight ratio in the range 1:99 to 99:1.
  • the additive can be used in conjunction with hydrazine, but this is not preferred because of the toxicity of hydrazine.
  • the preferred dosage in order to inhibit corrosion is from 0.1 to 1,000 parts per million in the feedwater being treated, particularly from 1 to 100 parts per million.
  • the preferred mol ratio of the compound to dissolved O2 ranges from 0.01:1.0 to 100.1, particularly 0.1:1 to 20:1.
  • trihydroxybenzene compound can be used, viz. (and in order of preference) 1,2,3-trihydroxybenzene (pyrogallol), 1,2,4-trihydroxybenzene (hydroxyhydroquinone), or 1,3,5-trihydroxybenzene (phloroglucinol).
  • the trihydroxybenzene compounds can if desired be used in combination with each other or with other known corrosion inhibitors, e.g. filming amines and neutralizing amines.
  • compositions of the present invention can be used in the compositions of the present invention if desired.
  • Such compounds include catalysts such as cobalt, scale/deposit inhibitors such as chelants, dispersants, sequestrants, polyelectrolytes and organic or inorganic phosphates.
  • compositions may be fed to the boiler feedwater by any known means. Thus, they may be pumped into boiler feedwater tanks or lines, or added by some other suitable means. Though for convenience it is recommended that the trihydroxybenzene and hydroquinone be added as a composition, they may be added separately.
  • Examples 1-11 show the oxygen scavenging capability of pyrogallol. Pyrogallol, at the concentration indicated in Table I below, was added to a simulated boiler feedwater at a pH of 9.0 and at the temperature shown. Percent oxygen removal vlaues after 2, 4, 6, 8 and 10 minutes are shown in Table I.
  • Examples 12-14 show the oxygen scavenging capability of 1,2,4-trihydroxybenzene (phloroglucinol), which was added to simulated boiler feedwater at pH 9 and at the temperatures and dosages shown. Percent oxygen removal values after 2, 4, 6, 8 and 10 minutes are shown in Table II, below.
  • oxygen scavengers as boiler water corrosion inhibitors
  • results can be misleading. This is true because, in operating systems, oxygen is an intermediary in the corrosion reaction and the first product of corrosion is ferric oxide. Oxygen alone would not necessarily be detrimental were it not for this corrosion reaction.
  • the primary function of an oxygen scavenger may therefore be to reduce ferric ions to their original state. Under such conditions, it is the iron itself that is the primary "oxygen scavenger"; the dosing agent functions primarily as a reducing agent for ferric ions.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Preventing Corrosion Or Incrustation Of Metals (AREA)

Claims (6)

1. Procédé d'inhibition de la corrosion dans les chaudières et les systèmes d'alimentation en eau des chaudières comprenant d'ajouter à l'eau d'alimentation de chaudière contenant de l'oxygène dissout un additif comprenant au moins un composé trihydroxybenzène et l'hydroquinone dans un rapport pondéral compris dans l'intervalle de 1:99 à 99:1.
2. Procédé selon la revendication 1, dans lequel la quantité d'additif est comprise entre 0,1 ppm et 1 000 ppm par rapport à l'eau.
3. Procédé selon la revendication 2, dans lequel ladite quantité est comprise entre 1 et 100 ppm.
4. Procédé selon l'une quelconque des revendications 1 à 3, dans lequel le composé trihydroxybenzène est le pyrogallol ou le 1,2,4-triohydroxybenzène.
5. Composition inhibant la corrosion comprenant au moins un composé trihydroxybenzène et l'hydroquinone dans un rapport pondéral compris dans l'intervalle de 2:99 à 99:1.
6. Composition selon la revendication 5, dans laquelle le composé trihydroxybenzène est le pyrogallol ou le 1,2,4-trihydroxybenzène.
EP86307064A 1985-09-17 1986-09-12 Procédé d'inhibition de la corrosion de chaudières et compositions à cet effet Expired - Lifetime EP0215655B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT86307064T ATE49424T1 (de) 1985-09-17 1986-09-12 Verfahren zur korrosionsinhibierung in dampfkesseln und zusammensetzungen hierfuer.

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US77693585A 1985-09-17 1985-09-17
US776935 1985-09-17
US79500985A 1985-11-04 1985-11-04
US795009 1985-11-04
US80134985A 1985-11-25 1985-11-25
US801349 1985-11-25

Publications (2)

Publication Number Publication Date
EP0215655A1 EP0215655A1 (fr) 1987-03-25
EP0215655B1 true EP0215655B1 (fr) 1990-01-10

Family

ID=27419727

Family Applications (1)

Application Number Title Priority Date Filing Date
EP86307064A Expired - Lifetime EP0215655B1 (fr) 1985-09-17 1986-09-12 Procédé d'inhibition de la corrosion de chaudières et compositions à cet effet

Country Status (5)

Country Link
EP (1) EP0215655B1 (fr)
JP (1) JP2617453B2 (fr)
AU (1) AU592367B2 (fr)
CA (1) CA1294420C (fr)
DE (1) DE3668190D1 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2500835C1 (ru) * 2012-03-30 2013-12-10 Общество с ограниченной ответственностью "Научно-производственная фирма "ТРАВЕРС" (ООО "НПФ ТРАВЕРС") Ингибитор углекислотной коррозии для паро-конденсатных установок аминат пк-3
RU2516176C2 (ru) * 2012-03-30 2014-05-20 Общество с ограниченной ответственностью "Научно-производственная фирма "ТРАВЕРС" (ООО "НПФ ТРАВЕРС") Ингибитор углекислотной коррозии для паровых котлов среднего и высокого давления аминат пк-2
RU2557036C1 (ru) * 2014-04-11 2015-07-20 Фонд поддержки научной, научно-технической и инновационной деятельности "Энергия без границ" Комплексный реагент для обработки пароводяного тракта энергоблоков тэс

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01225785A (ja) * 1988-03-07 1989-09-08 Kurita Water Ind Ltd 洗浄水用鋼板変色防止剤
NZ229120A (en) * 1988-05-23 1991-09-25 Calgon Corp Inhibiting corrosion in caustic evaporators by using hydroquinone and pyrogallol
US5064469A (en) * 1989-10-03 1991-11-12 Akzo N.V. Preparation of oxidation resistant metal powder
JP2689059B2 (ja) * 1992-11-16 1997-12-10 小糸工業株式会社 身体障害者用座席
KR100315496B1 (ko) * 1997-08-13 2002-01-15 조민호 부식방지조성물을이용한보일러응축시스템의부식억제방법
KR100315497B1 (ko) * 1997-08-13 2002-01-17 조민호 보일러응축시스템의초기응축지역의부식억제방법
RU2447198C1 (ru) * 2010-09-27 2012-04-10 Государственное учреждение "Научно-исследовательский технологический институт гербицидов и регуляторов роста растений с опытно-экспериментальным производством Академии наук Республики Башкортостан" Способ ингибирования коррозии металлов
RU2543591C2 (ru) * 2013-07-19 2015-03-10 Открытое акционерное общество "Всероссийский дважды ордена Трудового Красного Знамени теплотехнический научно-исследовательский институт" Способ организации водно-химического режима на основе комплексного аминосодержащего реагента для пароводяного тракта энергоблока с парогазовыми установками
RU2702534C1 (ru) * 2017-11-16 2019-10-08 Публичное акционерное общество "Федеральная гидрогенерирующая компания - РусГидро" Система защиты от коррозии контура геотермальной электростанции с дополнительным смешиванием
CN111018028B (zh) * 2019-12-06 2022-01-28 南通联膦化工有限公司 一种环保型锅炉除氧剂
CN111233178A (zh) * 2020-02-27 2020-06-05 威海翔泽新材料科技有限公司 一种低压锅炉无磷复合清缸剂及制备方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU537619B2 (en) * 1980-04-28 1984-07-05 Betz International, Inc. Dioxo-aromatic compounds as oxygen scavengers in an aqueous medium
JPS57135086A (en) * 1981-02-13 1982-08-20 Nalco Chemical Co Method of removing dissolved oxygen from boiler water
US4419327A (en) * 1981-12-22 1983-12-06 Nalco Chemical Company Method of scavenging dissolved oxygen in steam generating equipment using ammonia or amine neutralized erythorbic acid
FR2522522A1 (fr) * 1982-01-27 1983-09-09 Leuna Werke Veb Procede pour ameliorer l'activite initiale de l'hydrazine activee
JPS58133382A (ja) * 1982-02-03 1983-08-09 Katayama Chem Works Co Ltd 塩化カルシウムブライン用防食剤
AU2804584A (en) * 1983-05-16 1984-11-22 Amchem Products Inc. Amine inhibitor to protect ferrous based cans

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Kirk-Othmer: Encyclopedia of Chemical Technology, 3rd. ed., vol. 18 (1982), p.681; vol. 24(1984, p.379 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2500835C1 (ru) * 2012-03-30 2013-12-10 Общество с ограниченной ответственностью "Научно-производственная фирма "ТРАВЕРС" (ООО "НПФ ТРАВЕРС") Ингибитор углекислотной коррозии для паро-конденсатных установок аминат пк-3
RU2516176C2 (ru) * 2012-03-30 2014-05-20 Общество с ограниченной ответственностью "Научно-производственная фирма "ТРАВЕРС" (ООО "НПФ ТРАВЕРС") Ингибитор углекислотной коррозии для паровых котлов среднего и высокого давления аминат пк-2
RU2557036C1 (ru) * 2014-04-11 2015-07-20 Фонд поддержки научной, научно-технической и инновационной деятельности "Энергия без границ" Комплексный реагент для обработки пароводяного тракта энергоблоков тэс

Also Published As

Publication number Publication date
JPS62116788A (ja) 1987-05-28
DE3668190D1 (de) 1990-02-15
EP0215655A1 (fr) 1987-03-25
JP2617453B2 (ja) 1997-06-04
AU6273486A (en) 1987-03-19
AU592367B2 (en) 1990-01-11
CA1294420C (fr) 1992-01-21

Similar Documents

Publication Publication Date Title
US4895703A (en) Trihydroxybenzene boiler corrosion inhibitor compositions and method
EP0215655B1 (fr) Procédé d'inhibition de la corrosion de chaudières et compositions à cet effet
EP0216586B1 (fr) Erythorbate de sodium stabilisé et son utilisation comme inhibiteur de corrosion
US4626411A (en) Composition and method for deoxygenation
US4350606A (en) Composition and method for inhibiting corrosion
US2496354A (en) Method of inhibiting hydrogen sulfide corrosion of metals
US5167835A (en) Method of scavenging oxygen from boiler waters with substituted quinolines
US4744950A (en) Method of inhibiting the corrosion of copper in aqueous mediums
US5091108A (en) Method of retarding corrosion of metal surfaces in contact with boiler water systems which corrosion is caused by dissolved oxygen
US5094814A (en) All-volatile multi-functional oxygen and carbon dioxide corrosion control treatment for steam systems
EP0152661B1 (fr) Acide polyalcényle-phosphonique et son application
US5368775A (en) Corrosion control composition and method for boiler/condensate steam system
CA2015718A1 (fr) Prevention de la corrosion au sein de solutions aqueuses
EP0297916B1 (fr) Contrôle de la corrosion dans des systèmes aqueux
JPS58113383A (ja) 蒸気発生装置の脱酸素方法
US6540923B2 (en) Oxygen scavenger
CA2074335A1 (fr) Acides naphtylaminepolycarboxyliques
EP0002634B1 (fr) Composition et procédé pour inhiber la corrosion dans les systèmes à condensat de vapeur
CA1052086A (fr) Traitement de l'eau de chaudiere
US5512183A (en) Alkyl-allylphosphonate copolymer used for boiler water treatment
US5660736A (en) Sodium sulfoxylate formaldehyde as a boiler additive for oxygen scavenging
US4105406A (en) Method of inhibiting corrosion using a hexametaphosphate and a phosphate buffer
US6815208B2 (en) Chemical treatment for hydrostatic test
EP0343712A1 (fr) Procédé pour inhiber la corrosion dans les évaporateurs de solutions caustiques, utilisant de l'hydroquinone catalysée
CA1191677A (fr) Agents anticorrosifs a base d'acide sulfite-erythorbique

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

ITCL It: translation for ep claims filed

Representative=s name: SOCIETA' ITALIANA BREVETTI S.P.A.

17P Request for examination filed

Effective date: 19870808

17Q First examination report despatched

Effective date: 19880621

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

REF Corresponds to:

Ref document number: 49424

Country of ref document: AT

Date of ref document: 19900115

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3668190

Country of ref document: DE

Date of ref document: 19900215

ITF It: translation for a ep patent filed

Owner name: SOCIETA' ITALIANA BREVETTI S.P.A.

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 19920721

Year of fee payment: 7

EPTA Lu: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19930628

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19930712

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19930716

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19930912

ITTA It: last paid annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Effective date: 19940912

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19940913

REG Reference to a national code

Ref country code: CH

Ref legal event code: PUE

Owner name: ECC SPECIALTY CHEMICALS, INC.

Ref country code: CH

Ref legal event code: PFA

Free format text: CALGON CORPORATION

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19940930

Ref country code: CH

Effective date: 19940930

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

EAL Se: european patent in force in sweden

Ref document number: 86307064.5

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

EUG Se: european patent has lapsed

Ref document number: 86307064.5

ITPR It: changes in ownership of a european patent

Owner name: CAMBIO RAGIONE SOCIALE;CALGON CORPORATION

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

NLS Nl: assignments of ep-patents

Owner name: ECC SPECIALTY CHEMICALS, INC.;ENGLISH CHINA CLAYS

NLT1 Nl: modifications of names registered in virtue of documents presented to the patent office pursuant to art. 16 a, paragraph 1

Owner name: CALGON CORPORATION

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20020819

Year of fee payment: 17

Ref country code: FR

Payment date: 20020819

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20020913

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20020930

Year of fee payment: 17

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030930

BERE Be: lapsed

Owner name: *CALGON CORP. (ANC ECC SPECIALTY CHEMICALS INC)

Effective date: 20030930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040401

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040528

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20040401

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20040908

Year of fee payment: 19

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050912

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050912

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20050912