EP0214031A1 - Ion diode incorporating a magnetic mirror - Google Patents

Ion diode incorporating a magnetic mirror Download PDF

Info

Publication number
EP0214031A1
EP0214031A1 EP86401784A EP86401784A EP0214031A1 EP 0214031 A1 EP0214031 A1 EP 0214031A1 EP 86401784 A EP86401784 A EP 86401784A EP 86401784 A EP86401784 A EP 86401784A EP 0214031 A1 EP0214031 A1 EP 0214031A1
Authority
EP
European Patent Office
Prior art keywords
anode
cathode
ion
diode according
winding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
EP86401784A
Other languages
German (de)
French (fr)
Inventor
Christian Bourgeois
Michel Roche
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Original Assignee
Commissariat a lEnergie Atomique CEA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat a lEnergie Atomique CEA filed Critical Commissariat a lEnergie Atomique CEA
Publication of EP0214031A1 publication Critical patent/EP0214031A1/en
Ceased legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J27/00Ion beam tubes
    • H01J27/02Ion sources; Ion guns

Definitions

  • the present invention relates to an ion diode with a magnetic mirror. It finds many applications in particular as a source of ions and as a means of depositing high density energy on a substrate to create dense and hot plasmas as we research in physics and in particular in studies on thermonuclear fusion.
  • Two ways are known to suppress the electron beam in an ion diode: 1) by applying a magnetic field perpendicular to the accelerating electric field in the diode, which curves the electronic trajectories to the point of preventing electrons from crossing the accelerating interval, 2) by making a diode which includes a very thin anode with an electric mirror placed at the rear, which creates a "reflex" structure in which the electrons oscillate a very large number of times on either side of the anode before being stopped therein.
  • FIG. 1 An ion diode according to this known principle is shown in FIG. 1. It comprises an anode 10 in the form of a grid, a first cathode 11 disposed in front of the anode and a second cathode 12 disposed behind the anode. Its operation is as follows. The electrons e extracted from the cathode 11 are accelerated by the electric field present between the anode and the cathode and go towards the anode 10 which they pass through. They are then decelerated by the electric field which reigns behind the anode (and which is symmetrical with the accelerating field).
  • the second cathode thus behaves like an electric "mirror".
  • the electrons turn back and head again towards the anode which they cross in the opposite direction. They are decelerated again and the process continues until completely absorbed by the anode.
  • a plasma 14 is formed around it which generates ions I, which are accelerated, cross the cathode 11 and are then directed towards a target.
  • Such a device has many drawbacks: - the current of ions is emitted in fact by the two faces of the anode and as it can be used only on one side, the output of the diode is divided by 2, - the planar structure of the diode does not allow focusing of the ion beam, - The electrical "mirror" formed by the second cathode is subject to breakdowns which, in practice, make the system difficult to use.
  • the device according to the invention avoids these drawbacks thanks to the use of a magnetic "mirror" which: - is not subject to breakdowns, - makes it possible to have no electric field behind the anode and therefore to accelerate the ions only on one side, - authorizes a quasi-spherical configuration which makes it possible to focus the ion beam.
  • this magnetic mirror is obtained by a winding traversed by a current, this winding being coaxial with the anode and the cathode. It is placed behind the anode, in place of the second negative electrode of the prior devices.
  • FIG. 1 already described, represents a diode according to the prior art
  • - Figure 2 shows, in section, a diode according to the invention.
  • the device shown in FIG. 2 comprises an anode 20 brought to a positive high voltage + V delivered by a source 21, a cathode 22 connected to ground, and, behind the anode, a winding 24 coaxial with the anode and at the cathode.
  • This winding is supplied with current by a generator 26.
  • the magnetic field lines are referenced 28. They are strongly divergent in the direction of the anode (or convergent if we consider the opposite direction). In other words, the field is highly non-homogeneous.
  • the anode and the cathode have the shape of spherical caps whose concavity is directed towards a target 30. In this way, the ion beam 32 has a certain focusing.
  • the operation of this device is as follows.
  • the part located between the anode and the cathode operates as in the prior art.
  • the electrons are extracted from the cathode, are accelerated in the interelectrode space, fall on the anode and pass through it. These electrons are then subjected to the magnetic field of the winding 24. Their trajectories wind around the field lines and lie towards the axis of the diode.
  • the electrons end up turning back to fall on the anode and cross it again.
  • the interelectrode electric field decelerates them first, makes them turn back again then accelerates them again towards the anode which they cross again.
  • the magnetic field bends again their trajectories to finally direct them again towards the anode, etc ...
  • the electrons thus oscillate a large number of times around the anode. Each time they pass energy to the anode, which helps create a plasma around it. The ions are extracted from this plasma and accelerated forward by the interelectrode electric field. As there is no electric field behind the anode, only an ion beam 32 is emitted towards the front, towards the target 30.
  • the electric field between anode and cathode can be of the order of 200 kV / cm to 2 MV / cm. It is continuous or impulse.
  • the cathode 22 is a grid and a heated filament 33 is used in connection with a current source 34.
  • the electrons coming from the filament 33 diffuse up to the grid 22, then penetrate into the interelectrode space where they are accelerated. The process is then the same as that described above.
  • anode and the cathode can be gas-tight and thus delimit watertight chambers where reduced gas pressures prevail (a few torrs). But they can also be produced in the form of metal grids.
  • the anode may comprise in its mass or in the form of a surface layer, the atomic species having to constitute the ion beam.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Electron Sources, Ion Sources (AREA)

Abstract

The diode comprises an anode (20), a cathode (22) and a winding (24) creating a divergent magnetic field behind the anode. Electrons which cross the anode are repelled towards it. Application as ion source. <IMAGE>

Description

La présente invention a pour objet une diode à ions à miroir magnétique. Elle trouve de nombreuses applications notamment comme source d'ions et comme moyen de déposer de l'énergie de grande densité sur un substrat pour créer des plasmas denses et chauds comme on en recherche en physique et en particulier dans les études sur la fusion thermonucléaire.The present invention relates to an ion diode with a magnetic mirror. It finds many applications in particular as a source of ions and as a means of depositing high density energy on a substrate to create dense and hot plasmas as we research in physics and in particular in studies on thermonuclear fusion.

Pour engendrer les faisceaux d'ions de grande intensité requis pour la fusion inertielle, de nombreux laboratoires dans le monde ont imaginé et développé des diodes à ions. La conception de ces dispositifs est toujours guidée par le probléme fondamental de l'élimi­nation du courant d'électrons, lequel est inévitable­ment présent avec une intensité toujours beaucoup plus grande (de 10 à 100 fois) que le courant d'ions. Ce probléme est très important puisqu'il conditionne le rendement énergétique du dispositif.To generate the high intensity ion beams required for inertial fusion, many laboratories around the world have designed and developed ion diodes. The design of these devices is always guided by the fundamental problem of eliminating the electron current, which is inevitably present with an intensity always much greater (from 10 to 100 times) than the ion current. This problem is very important since it conditions the energy efficiency of the device.

On connaît deux façons de supprimer le fais­ceau d'électrons dans une diode à ions :
1°) en appliquant dans la diode un champ ma­gnétique perpendiculaire au champ électrique accéléra­teur, ce qui courbe les trajectoires électroniques au point d'interdire aux électrons la traversée de l'in­tervalle accélérateur,
2°) en réalisant une diode qui comporte une anode très mince avec un miroir électrique placé à l'arrière, ce qui crée une structure "reflex" dans la­quelle les électrons oscillent un très grand nombre de fois de part et d'autre de l'anode avant d'être arrêtés dans celle-ci.
Two ways are known to suppress the electron beam in an ion diode:
1) by applying a magnetic field perpendicular to the accelerating electric field in the diode, which curves the electronic trajectories to the point of preventing electrons from crossing the accelerating interval,
2) by making a diode which includes a very thin anode with an electric mirror placed at the rear, which creates a "reflex" structure in which the electrons oscillate a very large number of times on either side of the anode before being stopped therein.

Ces deux solutions sont décrites dans un ar­ticle de synthèse dû à S. HUMPHRIES intitulé "Intense Pulsed Ion Beams for Fusion Application" publié dans la revue Nuclear Fusion, vol.20, n°12, (1980) pp 1549-­1572.These two solutions are described in a review article by S. HUMPHRIES entitled "Intense Pulsed Ion Beams for Fusion Application" published in the journal Nuclear Fusion, vol.20, n ° 12, (1980) pp 1549-1572.

De nombreuses diodes exploitent le premier principe. Mais la présente invention retient le second et utilise un dispositif "reflex". Une diode à ions selon ce principe connu est représentée sur la figure 1. Elle comprend une anode 10 en forme de grille, une première cathode 11 disposée devant l'anode et une se­conde cathode 12 disposée derrière l'anode. Son fonc­tionnement est le suivant. Les électrons e extraits de la cathode 11 sont accélérés par le champ électrique présent entre l'anode et la cathode et se dirigent vers l'anode 10 qu'ils traversent. Ils sont alors décélérés par le champ électrique qui régne derrière l'anode (et qui est symétrique du champ accélérateur). La seconde cathode se comporte ainsi comme un "miroir" électrique. Les électrons rebroussent chemin et se dirigent à nou­veau vers l'anode qu'ils traversent en sens inverse. Ils sont à nouveau décélérés et le processus se pour­suit jusqu'à absorption complète par l'anode. Il se forme autour de celle-ci un plasma 14 qui engendre des ions I, lesquels sont accélérés, franchissent la catho­de 11 et sont ensuite dirigés vers une cible.Many diodes exploit the first principle. But the present invention retains the second and uses a "reflex" device. An ion diode according to this known principle is shown in FIG. 1. It comprises an anode 10 in the form of a grid, a first cathode 11 disposed in front of the anode and a second cathode 12 disposed behind the anode. Its operation is as follows. The electrons e extracted from the cathode 11 are accelerated by the electric field present between the anode and the cathode and go towards the anode 10 which they pass through. They are then decelerated by the electric field which reigns behind the anode (and which is symmetrical with the accelerating field). The second cathode thus behaves like an electric "mirror". The electrons turn back and head again towards the anode which they cross in the opposite direction. They are decelerated again and the process continues until completely absorbed by the anode. A plasma 14 is formed around it which generates ions I, which are accelerated, cross the cathode 11 and are then directed towards a target.

Un tel dispositif présente de nombreux incon­vénients :
- le courant d'ions est émis en fait par les deux faces de l'anode et comme il ne peut être utilisé que d'un côté, le rendement de la diode est divisé par 2,
- la structure plane de la diode ne permet pas une focalisation du faisceau d'ions,
- le "miroir" électrique formé par la seconde cathode est sujet à des claquages qui, en pratique, rendent le système difficilement utilisable.
Such a device has many drawbacks:
- the current of ions is emitted in fact by the two faces of the anode and as it can be used only on one side, the output of the diode is divided by 2,
- the planar structure of the diode does not allow focusing of the ion beam,
- The electrical "mirror" formed by the second cathode is subject to breakdowns which, in practice, make the system difficult to use.

Le dispositif suivant l'invention évite ces inconvénients grâce à l'utilisation d'un "miroir" ma­gnétique qui :
- n'est pas sujet à des claquages,
- permet de ne pas avoir de champ électrique derrière l'anode et donc de n'accélérer les ions que d'un seul côté,
- autorise une configuration quasi-sphérique qui permet de focaliser le faisceau d'ions.
The device according to the invention avoids these drawbacks thanks to the use of a magnetic "mirror" which:
- is not subject to breakdowns,
- makes it possible to have no electric field behind the anode and therefore to accelerate the ions only on one side,
- authorizes a quasi-spherical configuration which makes it possible to focus the ion beam.

De façon plus précise, ce miroir magnétique est obtenu par un enroulement parcouru par un courant, cet enroulement étant coaxial à l'anode et à la catho­de. Il est placé derrière l'anode, aux lieu et place de la seconde électrode négative des dispositifs anté­rieurs.More precisely, this magnetic mirror is obtained by a winding traversed by a current, this winding being coaxial with the anode and the cathode. It is placed behind the anode, in place of the second negative electrode of the prior devices.

De toute façon, l'invention sera mieux com­prise à la lecture de la description qui suit, d'un exemple de réalisation donné à titre explicatif et nul­lement limitatif. Cette description se réfère à des dessins annexés sur lesquels :
- la figure 1, déjà décrite, représente une diode selon l'art antérieur,
- la figure 2 représente, en coupe, une diode selon l'invention.
In any case, the invention will be better understood on reading the description which follows, of an exemplary embodiment given by way of explanation and in no way limiting. This description refers to attached drawings in which:
FIG. 1, already described, represents a diode according to the prior art,
- Figure 2 shows, in section, a diode according to the invention.

Le dispositif représenté sur la figure 2 com­prend une anode 20 portée à une haute tension positive +V délivrée par une source 21, une cathode 22 reliée à la masse, et, derrière l'anode, un enroulement 24 coa­xial à l'anode et à la cathode. Cet enroulement est alimenté en courant par un générateur 26. Les lignes de champ magnétique sont référencées 28. Elles sont forte­ment divergentes en direction de l'anode (ou convergen­tes si l'on considère la direction opposée). En d'au­tres termes le champ est fortement non homogène.The device shown in FIG. 2 comprises an anode 20 brought to a positive high voltage + V delivered by a source 21, a cathode 22 connected to ground, and, behind the anode, a winding 24 coaxial with the anode and at the cathode. This winding is supplied with current by a generator 26. The magnetic field lines are referenced 28. They are strongly divergent in the direction of the anode (or convergent if we consider the opposite direction). In other words, the field is highly non-homogeneous.

On observera que l'anode et la cathode pré­sentent la forme de calottes sphériques dont la conca­vité est dirigée vers une cible 30. De cette manière, le faisceau d'ions 32 présente une certaine focalisa­tion.It will be observed that the anode and the cathode have the shape of spherical caps whose concavity is directed towards a target 30. In this way, the ion beam 32 has a certain focusing.

Le fonctionnement de ce dispositif est le suivant. La partie située entre l'anode et la cathode fonctionne comme dans l'art antérieur. Les électrons sont extraits de la cathode, sont accélérés dans l'es­pace interélectrode, tombent sur l'anode et la traver­sent. Ces électrons sont ensuite soumis au champ magné­tique de l'enroulement 24. Leurs trajectoires s'enrou­lent autour des lignes de champ et se couchent vers l'axe de la diode. Les électrons finissent par rebrous­ser chemin pour retomber sur l'anode et la retraverser. Le champ électrique interélectrode les décélère d'abord, leur fait à nouveau rebrousser chemin puis les accélère à nouveau vers l'anode qu'ils retraversent. Le champ magnétique incurve à nouveau leurs trajectoires pour finalement les diriger à nouveau vers l'anode, etc...The operation of this device is as follows. The part located between the anode and the cathode operates as in the prior art. The electrons are extracted from the cathode, are accelerated in the interelectrode space, fall on the anode and pass through it. These electrons are then subjected to the magnetic field of the winding 24. Their trajectories wind around the field lines and lie towards the axis of the diode. The electrons end up turning back to fall on the anode and cross it again. The interelectrode electric field decelerates them first, makes them turn back again then accelerates them again towards the anode which they cross again. The magnetic field bends again their trajectories to finally direct them again towards the anode, etc ...

Les électrons oscillent ainsi un grand nombre de fois autour de l'anode. A chaque passage, ils cèdent de l'énergie à l'anode, ce qui contribue à créer autour de celle-ci un plasma. Les ions sont extraits de ce plasma et accélérés vers l'avant par le champ électri­que interélectrode. Comme il n'y a pas de champ élec­trique à l'arrière de l'anode, seul un faisceau d'ions 32 est émis vers l'avant, en direction de la cible 30.The electrons thus oscillate a large number of times around the anode. Each time they pass energy to the anode, which helps create a plasma around it. The ions are extracted from this plasma and accelerated forward by the interelectrode electric field. As there is no electric field behind the anode, only an ion beam 32 is emitted towards the front, towards the target 30.

La présence des électrons au voisinage de l'anode crée, au voisinage de celle-ci, une charge d'espace négative qui compense la charge d'espace posi­tive du faisceau d'ions, elle-même responsable de la limitation du courant. Cet effet est donc bénéfique.The presence of electrons in the vicinity of the anode creates, in the vicinity thereof, a negative space charge which compensates for the positive space charge of the ion beam, itself responsible for limiting the current. This effect is therefore beneficial.

Le champ électrique entre anode et cathode peut être de l'ordre de 200 kV/cm à 2 MV/cm. Il est continu ou impulsionnel.The electric field between anode and cathode can be of the order of 200 kV / cm to 2 MV / cm. It is continuous or impulse.

Dans une variante de réalisation, la cathode 22 est une grille et un filament chauffé 33 est utilisé en liaison avec une source de courant 34. Les électrons issus du filament 33 diffusent jusqu'à la grille 22, puis pénétrent dans l'espace interélectrode où ils sont accélérés. Le processus est ensuite le même que celui qui est décrit plus haut.In an alternative embodiment, the cathode 22 is a grid and a heated filament 33 is used in connection with a current source 34. The electrons coming from the filament 33 diffuse up to the grid 22, then penetrate into the interelectrode space where they are accelerated. The process is then the same as that described above.

Divers modes de réalisation sont possibles pour l'anode et la cathode. Elles peuvent être étanches aux gaz et délimiter ainsi des chambres étanches où règnent des pressions réduites de gaz (quelques torrs). Mais elles peuvent être aussi réalisées sous forme de grilles métalliques.Various embodiments are possible for the anode and the cathode. They can be gas-tight and thus delimit watertight chambers where reduced gas pressures prevail (a few torrs). But they can also be produced in the form of metal grids.

Par ailleurs, l'anode peut comporter dans sa masse ou sous forme de couche superficielle, les espè­ces atomiques devant constituer le faisceau d'ions.Furthermore, the anode may comprise in its mass or in the form of a surface layer, the atomic species having to constitute the ion beam.

Claims (7)

1. Diode à ions comprenant une anode (20) et une cathode (22) et des moyens (21) pour créer entre elles un champ électrique, la cathode (22) étant suffi­samment mince pour être traversée par les ions qui ont été accélérés par ce champ, cette diode comprenant en outre un moyen situé derrière l'anode pour repousser les électrons qui, venant de la cathode ont traversé l'anode, caractérisée par le fait que ce moyen est constitué par un enroulement (24) parcouru par un cou­rant et créant un champ magnétique (28) fortement di­vergent en direction de l'anode (22), cet enroulement (24), l'anode (20) et la cathode (22) possédant un même axe de symétrie.1. Ion diode comprising an anode (20) and a cathode (22) and means (21) for creating between them an electric field, the cathode (22) being thin enough to be traversed by the ions which have been accelerated by this field, this diode further comprising a means situated behind the anode for repelling the electrons which, coming from the cathode have passed through the anode, characterized in that this means consists of a winding (24) traversed by a current and creating a strongly divergent magnetic field (28) in the direction of the anode (22), this winding (24), the anode (20) and the cathode (22) having the same axis of symmetry. 2. Diode à ions selon la revendication 1, caractérisée par le fait que l'anode (20) et la cathode (22) sont des calottes sphériques ayant une concavité tournée à l'opposé de l'enroulement (24) vers une cible (30) où sont dirigés les ions sous forme de faisceau focalisé.2. Ion diode according to claim 1, characterized in that the anode (20) and the cathode (22) are spherical caps having a concavity turned away from the winding (24) towards a target ( 30) where the ions are directed in the form of a focused beam. 3. Diode à ions selon la revendication 1, caractérisée par le fait qu'elle comprend en outre un filament électro-émissif chauffé (33) disposé à proxi­mité de la cathode (22).3. Ion diode according to claim 1, characterized in that it further comprises a heated electro-emissive filament (33) disposed near the cathode (22). 4. Diode à ions selon la revendication 1, ca­ractérisée par le fait que l'anode (20) et la cathode (22) sont étanches au gaz et délimitent des chambres étanches où régnent des pressions réduites de gaz.4. Ion diode according to claim 1, characterized in that the anode (20) and the cathode (22) are gas tight and delimit tight chambers where reduced gas pressures prevail. 5. Diode à ions selon la revendication 1, caractérisée par le fait que l'anode (20) et la cathode (22) sont des grilles métalliques.5. Ion diode according to claim 1, characterized in that the anode (20) and the cathode (22) are metallic grids. 6. Diode à ions selon la revendication 1, ca­ractérisée par le fait que l'anode (20) comporte dans sa masse ou sous forme de couche superficielle, les espèces atomiques devant constituer le faisceau d'ions.6. Ion diode according to claim 1, characterized in that the anode (20) comprises in its mass or in the form of a surface layer, the atomic species to constitute the ion beam. 7. Diode à ions selon la revendication 5, caractérisée en ce qu'est maintenue, dans l'espace situé entre l'anode et l'enroulement, une pression con­venable d'un gaz comprenant l'espèce atomique devant constituer le faisceau d'ions.7. Ion diode according to claim 5, characterized in that is maintained in the space between the anode and the winding, a suitable pressure of a gas comprising the atomic species to constitute the beam of ions.
EP86401784A 1985-08-12 1986-08-08 Ion diode incorporating a magnetic mirror Ceased EP0214031A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8512278A FR2586139B1 (en) 1985-08-12 1985-08-12 MAGNETIC MIRROR ION DIODE
FR8512278 1985-08-12

Publications (1)

Publication Number Publication Date
EP0214031A1 true EP0214031A1 (en) 1987-03-11

Family

ID=9322165

Family Applications (1)

Application Number Title Priority Date Filing Date
EP86401784A Ceased EP0214031A1 (en) 1985-08-12 1986-08-08 Ion diode incorporating a magnetic mirror

Country Status (2)

Country Link
EP (1) EP0214031A1 (en)
FR (1) FR2586139B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7492621B2 (en) 2001-12-13 2009-02-17 Aloys Wobben Inverter, method for use thereof and wind power installation employing same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2785311A (en) * 1952-06-24 1957-03-12 Ernest O Lawrence Low voltage ion source
US2806161A (en) * 1952-07-08 1957-09-10 Jr John S Foster Coasting arc ion source
GB931076A (en) * 1957-07-10 1963-07-10 Atomic Energy Commission Thermonuclear reactor and process
US4126806A (en) * 1977-09-26 1978-11-21 The United States Of America As Represented By The Secretary Of The Navy Intense ion beam producing reflex triode

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2785311A (en) * 1952-06-24 1957-03-12 Ernest O Lawrence Low voltage ion source
US2806161A (en) * 1952-07-08 1957-09-10 Jr John S Foster Coasting arc ion source
GB931076A (en) * 1957-07-10 1963-07-10 Atomic Energy Commission Thermonuclear reactor and process
US4126806A (en) * 1977-09-26 1978-11-21 The United States Of America As Represented By The Secretary Of The Navy Intense ion beam producing reflex triode

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NUCLEAR FUSION, vol. 20, no. 12, 1980, pages 1549-1612, Vienne, AT; S. HUMPHRIES, Jr.: "Intense pulsed ion beams for fusion applications" *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7492621B2 (en) 2001-12-13 2009-02-17 Aloys Wobben Inverter, method for use thereof and wind power installation employing same

Also Published As

Publication number Publication date
FR2586139B1 (en) 1987-10-30
FR2586139A1 (en) 1987-02-13

Similar Documents

Publication Publication Date Title
EP1496727B1 (en) Closed electron drift plasma accelerator
EP0110734B1 (en) X-ray tube generating a high power beam, particularly a collimated beam
FR2485863A1 (en) VACUUM ARC PLASMA DEVICE
FR2531570A1 (en) NEGATIVE ION SOURCE AND METHOD USING THE SOURCE TO REDUCE ELECTRONS NOT DESIRED OF AN OUTPUT FLOW
FR2515872A1 (en) CATHODE RAY TUBE AND SEMICONDUCTOR DEVICE SUITABLE FOR SUCH A CATHODE RAY TUBE
EP0248689A1 (en) Multiple-beam klystron
EP0307017B1 (en) Metallic ion implantation device
EP0480518A1 (en) Electron source providing a particle retention device
FR2516307A1 (en) SEMICONDUCTOR DEVICE FOR ELECTRICAL EMISSION AND DEVICE PROVIDED WITH SUCH A SEMICONDUCTOR DEVICE
FR2524200A1 (en) METHOD FOR IMPLANTING IONS NOT SUBJECT TO MASS ANALYSIS AND SEMICONDUCTOR DEVICE PRODUCED USING THE SAME
FR2637725A1 (en) DEVICE FOR EXTRACTING AND ACCELERATING IONS LIMITING THE REACCELERATION OF SECONDARY ELECTRONS IN A HIGH-FLOW SEALED NEUTRONIC TUBE
EP0214031A1 (en) Ion diode incorporating a magnetic mirror
EP0049198B1 (en) Electrons accelerator, and millimeter and infra-millimeter waves generator including the same
EP0038249B1 (en) Multi-stage depressed collector for a microwave tube
Chin Direct experimental evidence of multiphoton ionization of impurities as the initiation process of laser-induced gas breakdown
FR2551614A1 (en) INTENSE X-RAY SOURCE WITH A PLASMA CYLINDRICAL COMPRESSION, WHICH IS OBTAINED FROM AN EXPLOSIVE SHEET
EP0298817B1 (en) Process and device for the production of electrons using a field coupling and the photoelectric effect
BE1004879A3 (en) Electron accelerator improved coaxial cavity.
FR2480500A1 (en) GENERATOR FOR PULSE ELECTRON BEAM
FR2514946A1 (en) ION SOURCE COMPRISING A GAS IONIZATION CHAMBER WITH ELECTRON OSCILLATIONS
EP0295743B1 (en) Ion source with four electrodes
Silfvast et al. Direct conversion of CO2 laser energy to high‐voltage electrical energy using a laser‐produced plasma
EP1451846B1 (en) Electron source
EP0530099B1 (en) Electrostatic accelerator and free electron laser including such accelerator
EP0362953A1 (en) Sealed neutron tube provided with an ion source with electrostatic confinement

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE GB NL

17P Request for examination filed

Effective date: 19870820

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: COMMISSARIAT A L'ENERGIE ATOMIQUE

17Q First examination report despatched

Effective date: 19890125

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED

18R Application refused

Effective date: 19890731

RIN1 Information on inventor provided before grant (corrected)

Inventor name: ROCHE, MICHEL

Inventor name: BOURGEOIS, CHRISTIAN