EP0214031A1 - Diode à ions à miroir magnétique - Google Patents
Diode à ions à miroir magnétique Download PDFInfo
- Publication number
- EP0214031A1 EP0214031A1 EP86401784A EP86401784A EP0214031A1 EP 0214031 A1 EP0214031 A1 EP 0214031A1 EP 86401784 A EP86401784 A EP 86401784A EP 86401784 A EP86401784 A EP 86401784A EP 0214031 A1 EP0214031 A1 EP 0214031A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- anode
- cathode
- ion
- diode according
- winding
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J27/00—Ion beam tubes
- H01J27/02—Ion sources; Ion guns
Definitions
- the present invention relates to an ion diode with a magnetic mirror. It finds many applications in particular as a source of ions and as a means of depositing high density energy on a substrate to create dense and hot plasmas as we research in physics and in particular in studies on thermonuclear fusion.
- Two ways are known to suppress the electron beam in an ion diode: 1) by applying a magnetic field perpendicular to the accelerating electric field in the diode, which curves the electronic trajectories to the point of preventing electrons from crossing the accelerating interval, 2) by making a diode which includes a very thin anode with an electric mirror placed at the rear, which creates a "reflex" structure in which the electrons oscillate a very large number of times on either side of the anode before being stopped therein.
- FIG. 1 An ion diode according to this known principle is shown in FIG. 1. It comprises an anode 10 in the form of a grid, a first cathode 11 disposed in front of the anode and a second cathode 12 disposed behind the anode. Its operation is as follows. The electrons e extracted from the cathode 11 are accelerated by the electric field present between the anode and the cathode and go towards the anode 10 which they pass through. They are then decelerated by the electric field which reigns behind the anode (and which is symmetrical with the accelerating field).
- the second cathode thus behaves like an electric "mirror".
- the electrons turn back and head again towards the anode which they cross in the opposite direction. They are decelerated again and the process continues until completely absorbed by the anode.
- a plasma 14 is formed around it which generates ions I, which are accelerated, cross the cathode 11 and are then directed towards a target.
- Such a device has many drawbacks: - the current of ions is emitted in fact by the two faces of the anode and as it can be used only on one side, the output of the diode is divided by 2, - the planar structure of the diode does not allow focusing of the ion beam, - The electrical "mirror" formed by the second cathode is subject to breakdowns which, in practice, make the system difficult to use.
- the device according to the invention avoids these drawbacks thanks to the use of a magnetic "mirror" which: - is not subject to breakdowns, - makes it possible to have no electric field behind the anode and therefore to accelerate the ions only on one side, - authorizes a quasi-spherical configuration which makes it possible to focus the ion beam.
- this magnetic mirror is obtained by a winding traversed by a current, this winding being coaxial with the anode and the cathode. It is placed behind the anode, in place of the second negative electrode of the prior devices.
- FIG. 1 already described, represents a diode according to the prior art
- - Figure 2 shows, in section, a diode according to the invention.
- the device shown in FIG. 2 comprises an anode 20 brought to a positive high voltage + V delivered by a source 21, a cathode 22 connected to ground, and, behind the anode, a winding 24 coaxial with the anode and at the cathode.
- This winding is supplied with current by a generator 26.
- the magnetic field lines are referenced 28. They are strongly divergent in the direction of the anode (or convergent if we consider the opposite direction). In other words, the field is highly non-homogeneous.
- the anode and the cathode have the shape of spherical caps whose concavity is directed towards a target 30. In this way, the ion beam 32 has a certain focusing.
- the operation of this device is as follows.
- the part located between the anode and the cathode operates as in the prior art.
- the electrons are extracted from the cathode, are accelerated in the interelectrode space, fall on the anode and pass through it. These electrons are then subjected to the magnetic field of the winding 24. Their trajectories wind around the field lines and lie towards the axis of the diode.
- the electrons end up turning back to fall on the anode and cross it again.
- the interelectrode electric field decelerates them first, makes them turn back again then accelerates them again towards the anode which they cross again.
- the magnetic field bends again their trajectories to finally direct them again towards the anode, etc ...
- the electrons thus oscillate a large number of times around the anode. Each time they pass energy to the anode, which helps create a plasma around it. The ions are extracted from this plasma and accelerated forward by the interelectrode electric field. As there is no electric field behind the anode, only an ion beam 32 is emitted towards the front, towards the target 30.
- the electric field between anode and cathode can be of the order of 200 kV / cm to 2 MV / cm. It is continuous or impulse.
- the cathode 22 is a grid and a heated filament 33 is used in connection with a current source 34.
- the electrons coming from the filament 33 diffuse up to the grid 22, then penetrate into the interelectrode space where they are accelerated. The process is then the same as that described above.
- anode and the cathode can be gas-tight and thus delimit watertight chambers where reduced gas pressures prevail (a few torrs). But they can also be produced in the form of metal grids.
- the anode may comprise in its mass or in the form of a surface layer, the atomic species having to constitute the ion beam.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Combustion & Propulsion (AREA)
- Electron Sources, Ion Sources (AREA)
Abstract
Description
- La présente invention a pour objet une diode à ions à miroir magnétique. Elle trouve de nombreuses applications notamment comme source d'ions et comme moyen de déposer de l'énergie de grande densité sur un substrat pour créer des plasmas denses et chauds comme on en recherche en physique et en particulier dans les études sur la fusion thermonucléaire.
- Pour engendrer les faisceaux d'ions de grande intensité requis pour la fusion inertielle, de nombreux laboratoires dans le monde ont imaginé et développé des diodes à ions. La conception de ces dispositifs est toujours guidée par le probléme fondamental de l'élimination du courant d'électrons, lequel est inévitablement présent avec une intensité toujours beaucoup plus grande (de 10 à 100 fois) que le courant d'ions. Ce probléme est très important puisqu'il conditionne le rendement énergétique du dispositif.
- On connaît deux façons de supprimer le faisceau d'électrons dans une diode à ions :
1°) en appliquant dans la diode un champ magnétique perpendiculaire au champ électrique accélérateur, ce qui courbe les trajectoires électroniques au point d'interdire aux électrons la traversée de l'intervalle accélérateur,
2°) en réalisant une diode qui comporte une anode très mince avec un miroir électrique placé à l'arrière, ce qui crée une structure "reflex" dans laquelle les électrons oscillent un très grand nombre de fois de part et d'autre de l'anode avant d'être arrêtés dans celle-ci. - Ces deux solutions sont décrites dans un article de synthèse dû à S. HUMPHRIES intitulé "Intense Pulsed Ion Beams for Fusion Application" publié dans la revue Nuclear Fusion, vol.20, n°12, (1980) pp 1549-1572.
- De nombreuses diodes exploitent le premier principe. Mais la présente invention retient le second et utilise un dispositif "reflex". Une diode à ions selon ce principe connu est représentée sur la figure 1. Elle comprend une anode 10 en forme de grille, une première cathode 11 disposée devant l'anode et une seconde cathode 12 disposée derrière l'anode. Son fonctionnement est le suivant. Les électrons e extraits de la cathode 11 sont accélérés par le champ électrique présent entre l'anode et la cathode et se dirigent vers l'anode 10 qu'ils traversent. Ils sont alors décélérés par le champ électrique qui régne derrière l'anode (et qui est symétrique du champ accélérateur). La seconde cathode se comporte ainsi comme un "miroir" électrique. Les électrons rebroussent chemin et se dirigent à nouveau vers l'anode qu'ils traversent en sens inverse. Ils sont à nouveau décélérés et le processus se poursuit jusqu'à absorption complète par l'anode. Il se forme autour de celle-ci un plasma 14 qui engendre des ions I, lesquels sont accélérés, franchissent la cathode 11 et sont ensuite dirigés vers une cible.
- Un tel dispositif présente de nombreux inconvénients :
- le courant d'ions est émis en fait par les deux faces de l'anode et comme il ne peut être utilisé que d'un côté, le rendement de la diode est divisé par 2,
- la structure plane de la diode ne permet pas une focalisation du faisceau d'ions,
- le "miroir" électrique formé par la seconde cathode est sujet à des claquages qui, en pratique, rendent le système difficilement utilisable. - Le dispositif suivant l'invention évite ces inconvénients grâce à l'utilisation d'un "miroir" magnétique qui :
- n'est pas sujet à des claquages,
- permet de ne pas avoir de champ électrique derrière l'anode et donc de n'accélérer les ions que d'un seul côté,
- autorise une configuration quasi-sphérique qui permet de focaliser le faisceau d'ions. - De façon plus précise, ce miroir magnétique est obtenu par un enroulement parcouru par un courant, cet enroulement étant coaxial à l'anode et à la cathode. Il est placé derrière l'anode, aux lieu et place de la seconde électrode négative des dispositifs antérieurs.
- De toute façon, l'invention sera mieux comprise à la lecture de la description qui suit, d'un exemple de réalisation donné à titre explicatif et nullement limitatif. Cette description se réfère à des dessins annexés sur lesquels :
- la figure 1, déjà décrite, représente une diode selon l'art antérieur,
- la figure 2 représente, en coupe, une diode selon l'invention. - Le dispositif représenté sur la figure 2 comprend une anode 20 portée à une haute tension positive +V délivrée par une source 21, une cathode 22 reliée à la masse, et, derrière l'anode, un enroulement 24 coaxial à l'anode et à la cathode. Cet enroulement est alimenté en courant par un générateur 26. Les lignes de champ magnétique sont référencées 28. Elles sont fortement divergentes en direction de l'anode (ou convergentes si l'on considère la direction opposée). En d'autres termes le champ est fortement non homogène.
- On observera que l'anode et la cathode présentent la forme de calottes sphériques dont la concavité est dirigée vers une cible 30. De cette manière, le faisceau d'ions 32 présente une certaine focalisation.
- Le fonctionnement de ce dispositif est le suivant. La partie située entre l'anode et la cathode fonctionne comme dans l'art antérieur. Les électrons sont extraits de la cathode, sont accélérés dans l'espace interélectrode, tombent sur l'anode et la traversent. Ces électrons sont ensuite soumis au champ magnétique de l'enroulement 24. Leurs trajectoires s'enroulent autour des lignes de champ et se couchent vers l'axe de la diode. Les électrons finissent par rebrousser chemin pour retomber sur l'anode et la retraverser. Le champ électrique interélectrode les décélère d'abord, leur fait à nouveau rebrousser chemin puis les accélère à nouveau vers l'anode qu'ils retraversent. Le champ magnétique incurve à nouveau leurs trajectoires pour finalement les diriger à nouveau vers l'anode, etc...
- Les électrons oscillent ainsi un grand nombre de fois autour de l'anode. A chaque passage, ils cèdent de l'énergie à l'anode, ce qui contribue à créer autour de celle-ci un plasma. Les ions sont extraits de ce plasma et accélérés vers l'avant par le champ électrique interélectrode. Comme il n'y a pas de champ électrique à l'arrière de l'anode, seul un faisceau d'ions 32 est émis vers l'avant, en direction de la cible 30.
- La présence des électrons au voisinage de l'anode crée, au voisinage de celle-ci, une charge d'espace négative qui compense la charge d'espace positive du faisceau d'ions, elle-même responsable de la limitation du courant. Cet effet est donc bénéfique.
- Le champ électrique entre anode et cathode peut être de l'ordre de 200 kV/cm à 2 MV/cm. Il est continu ou impulsionnel.
- Dans une variante de réalisation, la cathode 22 est une grille et un filament chauffé 33 est utilisé en liaison avec une source de courant 34. Les électrons issus du filament 33 diffusent jusqu'à la grille 22, puis pénétrent dans l'espace interélectrode où ils sont accélérés. Le processus est ensuite le même que celui qui est décrit plus haut.
- Divers modes de réalisation sont possibles pour l'anode et la cathode. Elles peuvent être étanches aux gaz et délimiter ainsi des chambres étanches où règnent des pressions réduites de gaz (quelques torrs). Mais elles peuvent être aussi réalisées sous forme de grilles métalliques.
- Par ailleurs, l'anode peut comporter dans sa masse ou sous forme de couche superficielle, les espèces atomiques devant constituer le faisceau d'ions.
Claims (7)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR8512278 | 1985-08-12 | ||
FR8512278A FR2586139B1 (fr) | 1985-08-12 | 1985-08-12 | Diode a ions a miroir magnetique |
Publications (1)
Publication Number | Publication Date |
---|---|
EP0214031A1 true EP0214031A1 (fr) | 1987-03-11 |
Family
ID=9322165
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP86401784A Ceased EP0214031A1 (fr) | 1985-08-12 | 1986-08-08 | Diode à ions à miroir magnétique |
Country Status (2)
Country | Link |
---|---|
EP (1) | EP0214031A1 (fr) |
FR (1) | FR2586139B1 (fr) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7492621B2 (en) | 2001-12-13 | 2009-02-17 | Aloys Wobben | Inverter, method for use thereof and wind power installation employing same |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2785311A (en) * | 1952-06-24 | 1957-03-12 | Ernest O Lawrence | Low voltage ion source |
US2806161A (en) * | 1952-07-08 | 1957-09-10 | Jr John S Foster | Coasting arc ion source |
GB931076A (en) * | 1957-07-10 | 1963-07-10 | Atomic Energy Commission | Thermonuclear reactor and process |
US4126806A (en) * | 1977-09-26 | 1978-11-21 | The United States Of America As Represented By The Secretary Of The Navy | Intense ion beam producing reflex triode |
-
1985
- 1985-08-12 FR FR8512278A patent/FR2586139B1/fr not_active Expired
-
1986
- 1986-08-08 EP EP86401784A patent/EP0214031A1/fr not_active Ceased
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2785311A (en) * | 1952-06-24 | 1957-03-12 | Ernest O Lawrence | Low voltage ion source |
US2806161A (en) * | 1952-07-08 | 1957-09-10 | Jr John S Foster | Coasting arc ion source |
GB931076A (en) * | 1957-07-10 | 1963-07-10 | Atomic Energy Commission | Thermonuclear reactor and process |
US4126806A (en) * | 1977-09-26 | 1978-11-21 | The United States Of America As Represented By The Secretary Of The Navy | Intense ion beam producing reflex triode |
Non-Patent Citations (1)
Title |
---|
NUCLEAR FUSION, vol. 20, no. 12, 1980, pages 1549-1612, Vienne, AT; S. HUMPHRIES, Jr.: "Intense pulsed ion beams for fusion applications" * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7492621B2 (en) | 2001-12-13 | 2009-02-17 | Aloys Wobben | Inverter, method for use thereof and wind power installation employing same |
Also Published As
Publication number | Publication date |
---|---|
FR2586139B1 (fr) | 1987-10-30 |
FR2586139A1 (fr) | 1987-02-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1496727B1 (fr) | Accélérateur à plasma à dérive fermée d'électrons | |
EP0110734B1 (fr) | Tube à rayons X produisant un faisceau à haut rendement, notamment en forme de pinceau | |
FR2485863A1 (fr) | Dispositif a plasma d'arc sous vide | |
FR2531570A1 (fr) | Source d'ions negatifs et procede utilisant cette source pour reduire des electrons non voulus d'un flux de sortie | |
FR2515872A1 (fr) | Tube a rayons cathodiques et dispositif semiconducteur convenant a un tel tube a rayons cathodiques | |
EP0248689A1 (fr) | Klystron à faisceaux multiples | |
EP0307017B1 (fr) | Implanteur d'ions métalliques | |
EP0480518A1 (fr) | Source d'électrons présentant un dispositif de rétention de matières | |
FR2516307A1 (fr) | Dispositif semiconducteur pour l'emission d'electrons et dispositif muni d'un tel dispositif semiconducteur | |
FR2524200A1 (fr) | Procede d'implantation d'ions non soumis a une analyse de masse et dispositif a semi-conducteurs realise a l'aide de ce procede | |
FR2637725A1 (fr) | Dispositif d'extraction et d'acceleration des ions limitant la reacceleration des electrons secondaires dans un tube neutronique scelle a haut flux | |
FR2551614A1 (fr) | Source intense de rayons x mous, a compression cylindrique de plasma, ce plasma etant obtenu a partir d'une feuille explosee | |
EP0214031A1 (fr) | Diode à ions à miroir magnétique | |
EP0049198B1 (fr) | Accélérateur d'électrons et générateur d'ondes millimétriques et infra-millimétriques comportant un tel accélérateur | |
EP0038249B1 (fr) | Collecteur déprimé à plusieurs étages pour tube hyperfréquence | |
Chin | Direct experimental evidence of multiphoton ionization of impurities as the initiation process of laser-induced gas breakdown | |
BE1004879A3 (fr) | Accelerateur d'electrons perfectionne a cavite coaxiale. | |
EP0298817B1 (fr) | Procédé et dispositif de production d'électrons utilisant un couplage de champ et l'effet photoélectrique | |
FR2480500A1 (fr) | Generateur pour faisceau d'electrons pulse | |
FR2514946A1 (fr) | Source d'ions comprenant une chambre d'ionisation a gaz avec oscillations d'electrons | |
FR2616587A1 (fr) | Source d'ions a quatre electrodes | |
Silfvast et al. | Direct conversion of CO2 laser energy to high‐voltage electrical energy using a laser‐produced plasma | |
EP1451846B1 (fr) | Source d'electrons | |
EP0362953A1 (fr) | Tube neutronique scellé muni d'une source d'ions à confinement électrostatique des électrons | |
WO2014095888A1 (fr) | Dispositif d'optique electronique |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): DE GB NL |
|
17P | Request for examination filed |
Effective date: 19870820 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: COMMISSARIAT A L'ENERGIE ATOMIQUE |
|
17Q | First examination report despatched |
Effective date: 19890125 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED |
|
18R | Application refused |
Effective date: 19890731 |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: ROCHE, MICHEL Inventor name: BOURGEOIS, CHRISTIAN |