EP0212106A1 - Measured value transmission method - Google Patents

Measured value transmission method Download PDF

Info

Publication number
EP0212106A1
EP0212106A1 EP86107772A EP86107772A EP0212106A1 EP 0212106 A1 EP0212106 A1 EP 0212106A1 EP 86107772 A EP86107772 A EP 86107772A EP 86107772 A EP86107772 A EP 86107772A EP 0212106 A1 EP0212106 A1 EP 0212106A1
Authority
EP
European Patent Office
Prior art keywords
signal
measuring points
measuring
line
switching element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP86107772A
Other languages
German (de)
French (fr)
Other versions
EP0212106B1 (en
Inventor
Dieter Schupp
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cerberus AG
Original Assignee
Cerberus AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cerberus AG filed Critical Cerberus AG
Priority to AT86107772T priority Critical patent/ATE51723T1/en
Publication of EP0212106A1 publication Critical patent/EP0212106A1/en
Application granted granted Critical
Publication of EP0212106B1 publication Critical patent/EP0212106B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B26/00Alarm systems in which substations are interrogated in succession by a central station
    • G08B26/005Alarm systems in which substations are interrogated in succession by a central station with substations connected in series, e.g. cascade

Definitions

  • the invention relates to a method for transmitting measured values in a monitoring system for protecting buildings, according to the preamble of patent claim 1.
  • measuring points are distributed in extensive objects and connected to a signal center via a signal line.
  • the measuring point it is becoming increasingly important to know the exact origin of the measured values in order to meet the needs of intelligent signal processing, i.e. the measuring point must be identifiable.
  • the identifiability of the measuring points can basically be achieved in three different ways.
  • the oldest known method, which is used very little today, is to pull a separate line from each measuring point to the signaling center. This solution is associated with a very high installation effort.
  • Modern systems therefore use neither the chain advancement principle, in which the measuring points are connected in series and the identification is made by counting the corresponding advancing pulses (see Fig. 1), or individually addressed measuring points, which are connected in parallel to the line (Fig. 2).
  • a method based on the indexing principle according to FIG. 1 is described in DE-AS 2'533'382.
  • the object of the invention is to provide a method for transmitting measured values in a transmission system and a device for carrying out the method which avoids the disadvantages mentioned above and in particular to create a transmission system which, with little installation effort, reliably identifies the measuring points which Maintaining their synchronization to a defined time grid and the transmission of their measured values to a signaling center enables identical measuring points which are connected in a chain to the signaling center to be used can.
  • Another object of the invention is to design the measuring points so that they can be controlled from both sides by the signal center via signal lines arranged in a loop.
  • the method according to the invention avoids a major disadvantage of the chain indexing method, namely that the measuring points further away from the signaling center receive neither supply voltage nor signal for a long time.
  • the origin of the signals arriving from the measuring points in the signal center i.e. Identification is possible using two methods: firstly by counting the commands sent and secondly by the measuring point address, provided that a cycle with special commands for setting an individual address in the address memory of a measuring point has been used. By combining both methods, i.e. By comparing the number of commands sent with the individual address reported back from the measuring points to the signaling center, a very high degree of security of the measuring point identification can be achieved.
  • the measured values can now be transmitted as described in DE-AS 2,533,382, i.e. the switching elements are actuated with each interrogation cycle. However, the transmission can also be carried out as in a parallel transmission system, the switching elements remaining closed.
  • Fig. 1 shows the structure of a conventional monitoring system according to the chain advance principle.
  • One or more signal lines L emanate from a signal center Z, to each of which a number of measuring points MS are connected.
  • the measuring points MSm essentially contain a signal receiver, a sequence control, a signal generator and a switching element Sm. After the line voltage has been applied to the signal line L, a timing element starts to run in the measuring point MS1. After a certain delay, the switching element S1 closes and applies the line voltage to the second measuring point MS2, where a timer also starts to run again. In this way, all switches of the measuring points MSm of a signal line L close one after the other.
  • This process can be repeated periodically, so that all measuring points MS of a line are queried cyclically. After the line voltage has been applied to a measuring point Msm or when the relevant switching element Sm has been closed, the measured value of the measuring sensor M can be transmitted to the signal center Z.
  • Storage capacitors located in the measuring points provide the energy supply to the measuring point while it may occur the system-related voltage interruptions safely.
  • each signal line L consists of a two-wire line to which all measuring points MS of a signal line L are connected in parallel.
  • Each measuring point MS is characterized by a fixed address Am. By sending this characteristic address Am, the signal center Z can call up any measuring point MSm and, for example, have it output its measured value.
  • the address signals can consist, for example, of a digital pulse sequence, a specific voltage, frequency or tone sequence, or of any combination of these elements.
  • the measuring point MS can be a fire detector, e.g. B. an ionization detector, an optical smoke detector, a temperature detector or a flame detector, or a monitoring device in an intrusion protection system, for example a passive infrared detector, an ultrasonic detector or a noise detector, or any measuring point in a transmission system.
  • a fire detector e.g. B. an ionization detector, an optical smoke detector, a temperature detector or a flame detector, or a monitoring device in an intrusion protection system, for example a passive infrared detector, an ultrasonic detector or a noise detector, or any measuring point in a transmission system.
  • each measuring point MS there is a directionally symmetrical (bilateral) switching element S which connects the two input / output terminals 1 and 2 to one another.
  • a measuring sensor M In the module B, a measuring sensor M, a measured value converter W, a control unit KE, an address memory AR and a command memory BS are provided.
  • the state of the switching element S is controlled by the control unit KE, which also contains means for signal detection.
  • the measuring points are connected to one another and to the signal center Z via terminals 1 and 3A on the one hand and terminals 2 and 3B on the other hand, as shown in FIG. 4.
  • the measuring points MS can be supplied with power from both sides, i.e. the signal lines can be connected to terminals 1 and 3A as well as to terminals 2 and 3B of the MS measuring point, which simplifies and increases safety during installation.
  • the KE control unit also contains a line short-circuit detector for the left and right connection terminal. If a short circuit is detected, opening the switching element S prevents the voltage at the terminal which is not short-circuited from dropping below the required operating voltage. This makes it possible to maintain the operation of all measuring points MS up to the line short circuit.
  • the measuring points MS are symmetrical with regard to the connection terminals, ie they are interchangeable.
  • a preferred embodiment of the method according to the invention provides that the signal line L is returned from the last measuring point MS back to the signal center.
  • the monitoring of the measuring point MS can now take place from two sides.
  • This in conjunction with the short-circuit detector mentioned, makes it possible to fully maintain the data traffic to and from the measuring points MS in the event of a line short-circuit or interruption, with simultaneous notification of Line disturbance.
  • it is of great importance that the location of the line disturbance can easily be determined by the method according to the invention. This is a particular advantage, because it is generally known that finding line faults is very time-consuming and time-consuming.
  • FIG. 4 shows an embodiment of a transmission system according to the invention with measuring points MS which are controlled from the signal center Z.
  • all measuring points MSm are distributed over one or more signal lines L.
  • the measuring points MS are constructed according to Fig. 3, i.e. they contain a directionally symmetrical (bilateral) switching element S, which can switch through the line signal arriving at one input / output terminal K1 to the other input / output terminal K2 and insert changes into the switched line signal and in the modules B each have a measuring sensor M, a measured value converter W, a control unit KE, an address memory AR for storing the individual measuring point address and a command memory BS for storing the commands.
  • the changes inserted into the line signal by the switching element S are referred to as "markings".
  • the marking becomes noticeable in the line going out from the measuring point MS as a current voltage interruption, which indicates to subsequent measuring points MS that the information coming from the signaling center Z may not be evaluated and may only be used for synchronization purposes.
  • all switching elements S are conductive, so that all measuring points MS can synchronize with the synchronization information contained in the line signal.
  • a reset command before the start of a cycle for querying measured values brings all m measuring points MS into a neutral state, which leads to all switching elements S, controlled by the associated control unit KE, at a defined point in time within the time frame given by the synchronization information, by means of a short time Open insert a momentary voltage interruption as a marking in the outgoing line signal, whereby all m - 1 measuring points following the first measuring point MS1 are inserted Receive signal with a label, which you use exclusively for synchronization. Since the measuring points run synchronously, the voltage interruption is always impressed at the same point in time within the defined time grid, which allows the information to be transmitted without interference at the other times.
  • the first measuring point MS1 is the only one to receive a line signal without marking, which means that it is the only one to evaluate the signal, execute the corresponding command, respond, then no commands except the reset command and no longer inserting a mark by switching the switching element S on continuously leaves.
  • the permanent switching on of the switching element S has the consequence that from now on the line signal coming from the signal center Z reaches the subsequent measuring point MS2 without marking, which means after evaluation it executes the corresponding command, responds, then also only accepts the reset command and the associated one Switching element S switches on continuously. This means that the next but one measuring point MS2 becomes active because it receives a line signal without marking.
  • the cycle continues until the described process has been carried out in succession at all measuring points MS present in the signal line L. After completion of the cycle, a reset command is sent to all measuring points MS to go into the neutral state and to reinsert their marking by briefly opening the switching element S. A new cycle can then be started.
  • each measuring point MS receives an identification that distinguishes it from the other measuring points.
  • This type of addressing avoids any manipulation at the measuring points themselves and allows both the advantages of the parallel system and those of the Derailleur system, but without their disadvantages.
  • the addresses can be re-entered in the register at any time.

Abstract

1. A method of transmitting measured values in a surveillance system for the protection of buildings and having monitoring points (MS) which contain a measuring sensor (M), a measured value transducer (W) and a switch element (S) controlled by a monitoring unit (KE), and which, for the purpose of transmitting signals, are connected in a chain-like manner by way of signal lines (L) to first pairs of terminals (K1) of a signal exchange (Z) in which the signals are then combined to obtain differentiated fault or alarm signals, characterised in that the switching elements (S) provided in the monitoring points (MS) are conductive when put into operation, whereby the line signal on the signal line (L) arrives at all the monitoring points (MS) and permits the latter to synchronize to the synchronizing information contained in the line signal, that all the monitoring points (MS) are brought into a neutral state by a reset command from the signal exchange (Z), that the associated switching element (S) is momentarily opened by a control command of the monitoring unit (KE) at predetermined instant within the time raster defined by the synchronizing information, and that, as a result of this voltage interruption, all the monitoring points (MS), with the exception of the first monitoring point, receive a mark which indicates that the line signal received only serves for synchronization purposes and not for evaluation, and that the first monitoring point (MS1) is the only one to evaluate the signal, perform the corresponding command, give the reply and then switch on the switching element (S1) permanently, whereby the following monitoring point (MS2) receives a line signal without a mark and therefore in turn evaluates the signal, performs the corresponding command, gives a reply and then also switches on the associated switching element (S2) permanently, so that the operation can be repeated at the further monitoring points (MS) until the cycle is terminated at the last monitoring point (MSm) and a fresh cycle is started by a reset command by bringing all the monitoring points (MS) into the neutral state again.

Description

Die Erfindung betrifft ein Verfahren zur Uebertragung von Mess­werten in einem Ueberwachungssystem zum Schutz von Gebäuden gemäss Oberbegriff des Patentanspruchs 1.The invention relates to a method for transmitting measured values in a monitoring system for protecting buildings, according to the preamble of patent claim 1.

Zur Lösung vielfältiger Ueberwachungsaufgaben werden Messstel­len in ausgedehnten Objekten verteilt und über eine Signallinie an eine Signalzentrale angeschlossen. In diesem Zusammenhang wird es immer wichtiger, die genaue Herkunft der Messwerte zu kennen, um die Bedürfnisse einer intelligenten Signalverarbeitung zu be­friedigen, d.h. die Messstelle muss identifizierbar sein.To solve a variety of monitoring tasks, measuring points are distributed in extensive objects and connected to a signal center via a signal line. In this context, it is becoming increasingly important to know the exact origin of the measured values in order to meet the needs of intelligent signal processing, i.e. the measuring point must be identifiable.

Die Identifizierbarkeit der Messstellen ist grundsätzlich auf drei verschiedene Arten zu erreichen. Die älteste bekannte, heute aber nur noch sehr wenig angewandte Methode besteht darin, von jeder Messstelle eine separate Leitung zur Signalzentrale zu zie­hen. Diese Lösung ist mit einem sehr hohen Installationsaufwand verbunden. Moderne Systeme verwenden daher enweder das Ketten­fortschaltprinzip, bei welchem die Messstellen in Serie geschal­tet sind und die Identifizierung durch Zählen entsprechender Fortschaltimpulse erfolgt (siehe Fig. 1), oder individuell fest adressierte Messstellen, welche parallel an die Leitung ange­schaltet sind (Fig. 2). Ein auf dem Fortschaltprinzip nach Fig. 1 beruhendes Verfahren ist in DE-AS 2'533'382 beschrieben.The identifiability of the measuring points can basically be achieved in three different ways. The oldest known method, which is used very little today, is to pull a separate line from each measuring point to the signaling center. This solution is associated with a very high installation effort. Modern systems therefore use neither the chain advancement principle, in which the measuring points are connected in series and the identification is made by counting the corresponding advancing pulses (see Fig. 1), or individually addressed measuring points, which are connected in parallel to the line (Fig. 2). A method based on the indexing principle according to FIG. 1 is described in DE-AS 2'533'382.

Der wesentliche Unterschied zwischen den beiden zuletzt genann­ten Verfahren besteht darin, dass beim Forschaltprinzip alle Messstellen identisch sein können, während sich beim Parallelsy­stem die Messstellen durch ihre Adresse unterscheiden, was entwe­der durch Schalter oder sonstige Programmierhilfsmittel erreicht wird. Es leuchtet ein, dass identische Messstellen sowohl vom Standpunkt der Grosserienfertigung als auch der Wartung entschei­ dende Vorteile aufweisen und ausserdem die Gefahr der Vertau­schung und Fehladressierung aussschliessen. Die bekannten Verfah­ren zur Identifizierung von Messstellen in Uebertragungssystemen weisen folgende Nachteile auf.

  • 1) Hoher Installationsaufwand, falls pro Messstelle eine separate Ader zurückgeführt wird.
  • 2) Die beim Kettenfortschaltprinzip entstehenden langen Pausen in der Stromversorgung der abge­trennten Messstellen erfordern eine entsprechend leistungsfähige lokale Spannungsversorgung.
  • 3) Beim Kettenfortschaltprinzip ist kein Signal vorhanden, welches die dauernde Synchronisation von Systemen erlaubt, die mit einem definierten Zeitraster arbeiten.
  • 4) Das Kettenfortschaltprinzip reduziert die Ueber­tragungskapazität bei Systemen mit definiertem Zeitraster, da nach dem Zuschalten einer Messstelle erst eine bestimmte Zeit zu deren Synchronisation verstreicht.
  • 5) Unterschiedliche Messstellen.
The main difference between the last two methods is that with the research principle, all measuring points can be identical, while with the parallel system the measuring points differ by their address, which is achieved either by switches or other programming aids. It is clear that identical measuring points are decisive both from the point of view of large-scale production and maintenance advantages and also eliminate the risk of confusion and incorrect addressing. The known methods for identifying measuring points in transmission systems have the following disadvantages.
  • 1) High installation effort if a separate wire is returned for each measuring point.
  • 2) The long pauses in the power supply of the separated measuring points that arise with the chain advancement principle require a correspondingly powerful local power supply.
  • 3) With the chain advancement principle, there is no signal that allows continuous synchronization of systems that work with a defined time grid.
  • 4) The chain advance principle reduces the transmission capacity in systems with a defined time grid, since after a measuring point has been switched on, it only takes a certain time to synchronize it.
  • 5) Different measuring points.

Aufgabe der Erfindung ist es, ein Verfahren zur Uebertragung von Messwerten in einem Uebertragungssystem und eine Einrichtung zur Durchführung des Verfahrens zu schaffen, welche die vorstehend genannten Nachteile vermeidet und insbesondere, ein Uebertragungssystem zu schaffen, welches bei geringem Installa­tionsaufwand eine sichere Identifizierung der Messstellen, die Aufrechterhaltung deren Synchronisation auf ein definiertes Zeit­raster und die Uebertragung von deren Messwerten an eine Signal­zentrale ermöglicht, wobei identische Messstellen, welche ketten­förmig an die Signalzentrale angeschlossen sind, verwendet werden können.The object of the invention is to provide a method for transmitting measured values in a transmission system and a device for carrying out the method which avoids the disadvantages mentioned above and in particular to create a transmission system which, with little installation effort, reliably identifies the measuring points which Maintaining their synchronization to a defined time grid and the transmission of their measured values to a signaling center enables identical measuring points which are connected in a chain to the signaling center to be used can.

Eine weitere Aufgabe der Erfindung besteht darin, die Messstel­len so auszugestalten, dass sie über schleifenförmig angeordnete Signallinien von beiden Seiten her von der Signalzentrale angesteuert werden können.Another object of the invention is to design the measuring points so that they can be controlled from both sides by the signal center via signal lines arranged in a loop.

Diese Aufgabe wird bei einem Verfahren der eingangs genannten Art durch die kennzeichnenden Merkmale des Patentanspruchs 1 gelöst. Die Erfindung wird durch die Merkmale der Unteransprüche weitergebildet.This object is achieved in a method of the type mentioned by the characterizing features of claim 1. The invention is further developed by the features of the subclaims.

Durch das erfindungsgemässe Verfahren wird ein wesentlicher Nachteil des Kettenfortschaltverfahrens, nämlich, dass die von der Signalzentrale weiter entfernten Messstellen längere Zeit hindurch weder Speisespannung noch Signal erhalten, vermieden.The method according to the invention avoids a major disadvantage of the chain indexing method, namely that the measuring points further away from the signaling center receive neither supply voltage nor signal for a long time.

Die Herkunft der von den Messstellen in der Signalzentrale ein­treffenden Signale, d.h. die Identifizierung, ist nach zwei Me­thoden möglich: Erstens durch Zählen der ausgesandten Befehle und zweitens durch die Messstellen-Adresse, sofern ein Zyklus mit speziellen Befehlen zum Setzen einer individuellen Adresse im Adressspeicher einer Messstelle verwendet worden ist. Durch die Kombination beider Methoden, d.h. durch Vergleich der Anzahl ausgesandter Befehle mit der von den Messstellen zur Signalzen­trale rückgemeldeten individuellen Adresse, lässt sich ein sehr hoher Sicherheitsgrad der Messstellenidentifizierung erreichen.The origin of the signals arriving from the measuring points in the signal center, i.e. Identification is possible using two methods: firstly by counting the commands sent and secondly by the measuring point address, provided that a cycle with special commands for setting an individual address in the address memory of a measuring point has been used. By combining both methods, i.e. By comparing the number of commands sent with the individual address reported back from the measuring points to the signaling center, a very high degree of security of the measuring point identification can be achieved.

Die Uebertragung der Messwerte kann nun so erfolgen, wie es in der DE-AS 2'533'382 beschrieben wurde, d.h. es werden bei jedem Abfragezyklus die Schaltelemente betätigt. Die Uebertragung kann aber auch wie bei einem Parallel-Uebertragungssystem erfolgen, wobei die Schaltelemente geschlossen bleiben.The measured values can now be transmitted as described in DE-AS 2,533,382, i.e. the switching elements are actuated with each interrogation cycle. However, the transmission can also be carried out as in a parallel transmission system, the switching elements remaining closed.

Eine Vorrichtung zur Durchführung des erfindungsgemässen Ver­fahrens besteht aus Messstellen, welche einen Messgrössensensor, einen Messwertwandler, eine Kontrolleinheit einen Adressenspeicher und ein Schaltelement aufweisen. Im folgenden wird anhand der Figuren eine bevorzugte Ausfuehrungsform der Erfindung näher erläutert. Es zeigen

  • Fig. 1 ein serielles, kettengeschaltetes Ueber­wachungssystem nach dem Stand der Technik,
  • Fig. 2 ein parallel adressiertes Ueberwachungssystem des Standes der Technik,
  • Fig. 3 das Blockschaltbild einer Messstelle MS zur Durch­führung des erfindungsgemässen Verfahrens und
  • Fig. 4 eine Ausführungsform eines erfindungsgemässen Ueberwachungssystems.
A device for carrying out the method according to the invention consists of measuring points, which have a measurement sensor, a transducer, and a control unit Have address memory and a switching element. A preferred embodiment of the invention is explained in more detail below with reference to the figures. Show it
  • 1 shows a serial, chain-connected monitoring system according to the prior art,
  • 2 shows a parallel addressed monitoring system of the prior art,
  • 3 shows the block diagram of a measuring point MS for carrying out the method according to the invention and
  • 4 shows an embodiment of a monitoring system according to the invention.

Fig. 1 zeigt den Aufbau eines herkömmlichen Ueberwachungssy­stems nach dem Kettenfortschaltprinzip. Von einer Signalzentrale Z gehen eine oder mehrere Signallinien L aus, an welche jeweils mehrere Messstellen MS angeschlossen sind. Die Messstellen MSm enthalten im wesentlichen ausser den Messsensoren und Messwertwandlern einen Signalempfänger, eine Ablaufsteuerung, einen Signalgenerator und ein Schaltelement Sm. Nach Anlegen der Linienspannung an die Signallinie L beginnt in der Messstelle MS1 ein Zeitglied zu laufen. Nach einer bestimmten Verzögerung schliesst das Schaltelement S1 und legt die Linienspannung an die zweite Messstelle MS2, wo ebenfalls wieder ein Zeitglied zu lau­fen beginnt. Auf diese Art schliessen nacheinander alle Schalter der Messstellen MSm einer Signallinie L. Dieser Vorgang lässt sich periodisch wiederholen, so dass alle Messstellen MS einer Linie zyklisch abgefragt werden. Nach Anlegen der Linienspannung an eine Messstelle Msm bzw. beim Schliessen des betreffenden Schaltelementes Sm kann eine Uebertragung des Messwertes des Messensors M an die Signalzentrale Z erfolgen.Fig. 1 shows the structure of a conventional monitoring system according to the chain advance principle. One or more signal lines L emanate from a signal center Z, to each of which a number of measuring points MS are connected. In addition to the measuring sensors and transducers, the measuring points MSm essentially contain a signal receiver, a sequence control, a signal generator and a switching element Sm. After the line voltage has been applied to the signal line L, a timing element starts to run in the measuring point MS1. After a certain delay, the switching element S1 closes and applies the line voltage to the second measuring point MS2, where a timer also starts to run again. In this way, all switches of the measuring points MSm of a signal line L close one after the other. This process can be repeated periodically, so that all measuring points MS of a line are queried cyclically. After the line voltage has been applied to a measuring point Msm or when the relevant switching element Sm has been closed, the measured value of the measuring sensor M can be transmitted to the signal center Z.

In den Messstellen befindliche Speicherkondensatoren stellen die Energieversorgung der Messstelle während eventuell auftreten­ der systembedingter Spannungsunterbrechungen sicher.Storage capacitors located in the measuring points provide the energy supply to the measuring point while it may occur the system-related voltage interruptions safely.

Fig. 2 zeigt ein herkömmliches parallel adressiertes Ueberwa­chungssystem. Die einzelnen Messtellen MS der gesamten Anlage sind wie in Fig. 1 auf verschiedene Signallinien L verteilt und über diese Signallinie L mit der Signalzentrale Z verbunden. Jede Signallinie L besteht aus einer Zweidrahtleitung, an die alle Messstellen MS einer Signallinie L parallel angeschlossen sind. Jede Messstelle MS ist durch eine fest eingestellte Adresse Am charakterisiert. Durch Aussenden dieser charakteristischen Adres­se Am kann die Signalzentrale Z jede beliebige Messstelle MSm aufrufen und zum Beispiel zur Abgabe ihres Messwertes veranlas­sen. Die Adresssignale können beispielsweise aus einer digitalen Impulsfolge, einer bestimmten Spannungs-, Frequenz- oder Tonfolge, oder aus beliebigen Kombinationen dieser Elemente be­stehen. Bei einer grösseren Anzahl von Messstellen MS pro Signal­linie L kommt praktisch nur eine digitale Impulsfolge in Frage, weil sich damit eine fast beliebige Anzahl verschiedener Adressen mit integrationsfreundlichen Elementen von bescheidener Genauig­keit realisieren lässt. Durch weitere digitale Impulsfolgen können zudem auch komplizierte Instruktionen an die jeweils adressierte Messstelle übermittelt werden.2 shows a conventional monitoring system addressed in parallel. As in FIG. 1, the individual measuring points MS of the entire system are distributed over different signal lines L and connected to the signal center Z via this signal line L. Each signal line L consists of a two-wire line to which all measuring points MS of a signal line L are connected in parallel. Each measuring point MS is characterized by a fixed address Am. By sending this characteristic address Am, the signal center Z can call up any measuring point MSm and, for example, have it output its measured value. The address signals can consist, for example, of a digital pulse sequence, a specific voltage, frequency or tone sequence, or of any combination of these elements. In the case of a larger number of measuring points MS per signal line L, practically only one digital pulse sequence can be considered, because it can be used to implement almost any number of different addresses with elements that are easy to integrate and of modest accuracy. With additional digital pulse sequences, complicated instructions can also be transmitted to the respective measuring point.

Ein offenkundiger Nachteil des beschriebenen Parallelsystems besteht in der Möglichkeit einer Messstellen-Verwechslung oder einer nur schwer auffindbaren Fehladressierung. Ausserdem setzt ein Leitungskurzschluss eine ganze Signallinie ausser Betrieb.An obvious disadvantage of the parallel system described is the possibility of confusion between measuring points or incorrect addressing that is difficult to find. In addition, a line short circuit disables an entire signal line.

Fig. 3 zeigt das Blockschaltbild einer Messstelle MS für den Einsatz im erfindungsgemässen Uebertragungsverfahren. Die Mess­stelle MS kann ein Brandmelder, z. B. ein Ionisationsmelder, ein optischer Rauchmelder, ein Temperaturmelder oder ein Flammenmel­der, oder ein Ueberwachungsgerät in einem Intrusionsschutzsystem, z.B. ein passiver Infrarotmelder, ein Ultraschallmelder oder ein Geräuschmelder, oder ein beliebige Messstelle in einem Uebertra­gungssystem sein.3 shows the block diagram of a measuring point MS for use in the transmission method according to the invention. The measuring point MS can be a fire detector, e.g. B. an ionization detector, an optical smoke detector, a temperature detector or a flame detector, or a monitoring device in an intrusion protection system, for example a passive infrared detector, an ultrasonic detector or a noise detector, or any measuring point in a transmission system.

In jeder Messstelle MS ist ein richtungssymmetrisches (bilaterales) Schaltelement S vorhanden, das die beiden Ein­gangs/Ausgangsklemmen 1 und 2 miteinander verbindet. In der Bau­gruppe B sind ein Messensor M ein Messwertwandler W, eine Kon­trolleinheit KE, ein Adressspeicher AR und ein Befehlsspeicher BS vorgesehen.In each measuring point MS there is a directionally symmetrical (bilateral) switching element S which connects the two input / output terminals 1 and 2 to one another. In the module B, a measuring sensor M, a measured value converter W, a control unit KE, an address memory AR and a command memory BS are provided.

Der Zustand des Schaltelementes S wird von der Kontrolleinheit KE gesteuert, welche auch Mittel zur Signalerkennung enthält. Ueber die Klemmen 1 und 3A einerseits und die Klemmen 2 und 3B andererseits sind die Messstellen miteinander und mit der Signal­zentrale Z verbunden, wie es in Fig. 4 dargestellt ist.The state of the switching element S is controlled by the control unit KE, which also contains means for signal detection. The measuring points are connected to one another and to the signal center Z via terminals 1 and 3A on the one hand and terminals 2 and 3B on the other hand, as shown in FIG. 4.

Da das Schaltelement S richtungssymmetrisch (bilateral) ausge­bildet ist, können die Messstellen MS von beiden Seiten her mit Strom versorgt werden, d.h. die Signalleitungen können sowohl mit den Klemmen 1 und 3A als auch mit den Klemmen 2 und 3B der Mess­stelle MS verbunden werden, was eine Vereinfachung und Erhöhung der Sicherheit bei der Montage bedeutet.Since the switching element S is directionally symmetrical (bilateral), the measuring points MS can be supplied with power from both sides, i.e. the signal lines can be connected to terminals 1 and 3A as well as to terminals 2 and 3B of the MS measuring point, which simplifies and increases safety during installation.

Weiterhin enthält die Kontrolleinheit KE je einen Leitungskurz­schlussdetektor für die linke und rechte Anschlussklemme. Wenn ein Kurzschluss erkannt ist, wird durch Oeffnen des Schaltelementes S ein Absinken der Spannung an der nicht kurzgeschlossenen Klemme unter die nötige Betriebsspannung ver­hindert. Dadurch ist es möglich, den Betrieb sämtlicher Messstel­len MS bis zum Leitungskurzschluss aufrechtzuerhalten.The KE control unit also contains a line short-circuit detector for the left and right connection terminal. If a short circuit is detected, opening the switching element S prevents the voltage at the terminal which is not short-circuited from dropping below the required operating voltage. This makes it possible to maintain the operation of all measuring points MS up to the line short circuit.

Die Messstellen MS sind bezüglich der Anschlussklemmen symme­trisch, d.h. vertauschbar. Eine bevorzugte Ausführungsform des erfindungsgemässen Verfahrens sieht vor, dass die Signallinie L von der letzten Messstelle MS wieder zur Signalzentrale zurückge­führt wird. Die Ueberwachung der Messstelle MS kann nun von zwei Seiten erfolgen. Hierdurch wird in Verbindung mit dem erwähnten Kurzschlussdetektor ermöglicht, bei einem Leitungs-Kurzschluss oder -Unterbruch den Datenverkehr von und zu den Messstellen MS voll aufrechtzuerhalten, bei gleichzeitiger Meldung der Linienstörung. Von grosser Bedeutung ist in diesem Zusammenhang, dass durch das erfindungsgemässe Verfahren der Ort der Linienstörung leicht ermittelt werden kann. Dies ist ein besonde­rer Vorteil, denn es ist allgemein bekannt, dass das Auffinden von Leitungsfehlern sehr aufwendig und zeitraubend ist.The measuring points MS are symmetrical with regard to the connection terminals, ie they are interchangeable. A preferred embodiment of the method according to the invention provides that the signal line L is returned from the last measuring point MS back to the signal center. The monitoring of the measuring point MS can now take place from two sides. This, in conjunction with the short-circuit detector mentioned, makes it possible to fully maintain the data traffic to and from the measuring points MS in the event of a line short-circuit or interruption, with simultaneous notification of Line disturbance. In this context, it is of great importance that the location of the line disturbance can easily be determined by the method according to the invention. This is a particular advantage, because it is generally known that finding line faults is very time-consuming and time-consuming.

Fig. 4 zeigt eine Ausführungsform eines erfindungsgemässen Uebertragungssystems mit Messstellen MS, die von der Signalzen­trale Z aus angesteuert sind. Es sind wie in Fig. 1 alle Mess­stellen MSm auf eine oder mehrere Signallinien L verteilt. Die Messstellen MS sind entsprechend Fig. 3 aufgebaut, d.h. sie ent­halten ein richtungssymmetrisches (bilaterales) Schaltelement S, welches das auf der einen Eingangs/Ausgangsklemme K1 ankommende Liniensignal zur anderen Eingangs/Ausgangsklemme K2 durchschalten und Veränderungen in das durchgeschaltete Liniensignal einfügen kann und in den Baugruppen B je einen Messensor M, einen Messwertwandler W, eine Kontrolleinheit KE, einen Adressspeicher AR zur Speicherung der indviduellen Messstellenadresse und einen Befehlsspeicher BS zur Speicherung der Befehle.FIG. 4 shows an embodiment of a transmission system according to the invention with measuring points MS which are controlled from the signal center Z. As in FIG. 1, all measuring points MSm are distributed over one or more signal lines L. The measuring points MS are constructed according to Fig. 3, i.e. they contain a directionally symmetrical (bilateral) switching element S, which can switch through the line signal arriving at one input / output terminal K1 to the other input / output terminal K2 and insert changes into the switched line signal and in the modules B each have a measuring sensor M, a measured value converter W, a control unit KE, an address memory AR for storing the individual measuring point address and a command memory BS for storing the commands.

Die vom Schaltelement S in das Liniensignal eingefügten Verän­derungen werden als "Markierung" bezeichnet. Die Markierung macht sich in der von der Messstelle MS abgehenden Leitung als momenta­ner Spannungsunterbruch bemerkbar, was nachfolgenden Messstellen MS anzeigt, dass die von der Signalzentrale Z kommende Informati­on nicht ausgewertet und nur zu Synchronisationszwecken benützt werden darf. Bei Inbetriebnahme sind alle Schaltelemente S lei­tend, so dass alle Messstellen MS auf die im Liniensignal enthal­tene Synchronisierinformation synchronisieren können. Ein Rückstellbefehl vor Beginn eines Zyklus zur Abfrage von Messwer­ten bringt alle m Messstellen MS in einen neutralen Zustand, was dazu führt, dass alle Schaltelemente S, von der zugehörigen Kon­trolleinheit KE gesteuert, zu einem definierten Zeitpunkt inner­halb des von der Synchronisierinformation gegebenen Zeitrasters, durch kurzzeitiges Oeffnen einen momentanen Spannungsunterbruch als Markierung in das abgehende Liniensignal einfügen, wodurch alle auf die erste Messstelle MS1 folgenden m - 1 Messstellen ein Signal mit einer Markierung erhalten, welches sie ausschliesslich zur Synchronisation verwenden. Da die Messstellen synchron lau­fen, erfolgt das Einprägen des Spannungsunterbruches immer zum gleichen Zeitpunkt innerhalb des definierten Zeitrasters, was zu den übrigen Zeiten eine störungsfreie Uebertragung der Informati­on erlaubt.The changes inserted into the line signal by the switching element S are referred to as "markings". The marking becomes noticeable in the line going out from the measuring point MS as a current voltage interruption, which indicates to subsequent measuring points MS that the information coming from the signaling center Z may not be evaluated and may only be used for synchronization purposes. When commissioning, all switching elements S are conductive, so that all measuring points MS can synchronize with the synchronization information contained in the line signal. A reset command before the start of a cycle for querying measured values brings all m measuring points MS into a neutral state, which leads to all switching elements S, controlled by the associated control unit KE, at a defined point in time within the time frame given by the synchronization information, by means of a short time Open insert a momentary voltage interruption as a marking in the outgoing line signal, whereby all m - 1 measuring points following the first measuring point MS1 are inserted Receive signal with a label, which you use exclusively for synchronization. Since the measuring points run synchronously, the voltage interruption is always impressed at the same point in time within the defined time grid, which allows the information to be transmitted without interference at the other times.

Die erste Messstelle MS1 empfängt als einzige ein Liniensignal ohne Markierung, was bewirkt, dass sie als einzige das Signal auswertet, den entsprechenden Befehl ausführt, antwortet, danach keine Befehle ausser dem Rückstellbefehl akzeptiert und keine Markierung mehr einfügt, indem sie das Schaltelement S dauernd eingeschaltet lässt. Das dauernde Einschalten des Schaltelements S hat zur Folge, dass von nun an das von der Signalzentrale Z kommende Liniensignal ohne Markierung zur nachfolgenden Messstel­le MS2 gelangt, wodurch dieselbe nach Auswertung den entsprechen­den Befehl ausführt, antwortet, danach ebenfalls nur noch den Rückstellbefehl akzeptiert und das zugehörige Schaltelement S dauernd einschaltet. Dies bewirkt, dass auch die übernächste Messstelle MS2 aktiv wird, weil sie ein Liniensignal ohne Markie­rung erhält. Der Zyklus dauert so lange, bis der beschriebene Vorgang nacheinander an allen in der Signallinie L vorhandenen Messstellen MS abgelaufen ist. Nach Abschluss des Zyklus geht ein Rückstellbefehl an alle Messstellen MS, in den neutralen Zustand zu gehen und ihre Markierung durch kurzzeitiges Oeffnen des Schaltelements S wiedereinzufügen. Es kann darauf ein neuer Zy­klus gestartet werden.The first measuring point MS1 is the only one to receive a line signal without marking, which means that it is the only one to evaluate the signal, execute the corresponding command, respond, then no commands except the reset command and no longer inserting a mark by switching the switching element S on continuously leaves. The permanent switching on of the switching element S has the consequence that from now on the line signal coming from the signal center Z reaches the subsequent measuring point MS2 without marking, which means after evaluation it executes the corresponding command, responds, then also only accepts the reset command and the associated one Switching element S switches on continuously. This means that the next but one measuring point MS2 becomes active because it receives a line signal without marking. The cycle continues until the described process has been carried out in succession at all measuring points MS present in the signal line L. After completion of the cycle, a reset command is sent to all measuring points MS to go into the neutral state and to reinsert their marking by briefly opening the switching element S. A new cycle can then be started.

Die Möglichkeit individuelle Befehle an jede einzelne Messstel­le MS zu geben, wird bei Inbetriebnahme des Uebertragungssystem dazu benützt, um jeder Messstelle MS eine indivduelle Messstel­len-Adresse zu übermitteln, die sie in ihrem Adressregister AR speichert. Auf diese Weise erhält jede Messstelle MS eine Identifikation, die sie von den übrigen Messstellen unterschei­det. Diese Art der Adressierung vermeidet jede Manipulation an den Messstellen selbst und erlaubt sowohl die Ausnützung der Vor­teile des Parallelsystems als auch jener des Kettenschaltungssystems, ohne aber deren Nachteile zu haben. Selbstverständlich kann man bei Systemausfall, Störung oder War­tung die Adressen jederzeit neu in die Register einschreiben.The possibility of giving individual commands to each individual measuring point MS is used when the transmission system is started up in order to transmit an individual measuring point address to each measuring point MS, which address stores it in its address register AR. In this way, each measuring point MS receives an identification that distinguishes it from the other measuring points. This type of addressing avoids any manipulation at the measuring points themselves and allows both the advantages of the parallel system and those of the Derailleur system, but without their disadvantages. Of course, in the event of a system failure, malfunction or maintenance, the addresses can be re-entered in the register at any time.

BezugszeichenReference numerals

  • Adresse AAddress A
  • Adressspeicher ARAddress memory AR
  • Baugruppe BAssembly B
  • Befehlsspeicher BSCommand memory BS
  • Kontrolleinheit KEKE control unit
  • Eingangs/Ausgangsklemme K1Input / output terminal K1
  • Eingangs/Ausgangsklemme K2Input / output terminal K2
  • Signallinie LSignal line L
  • Messensor MMeasuring sensor M
  • Messstelle MSMeasuring point MS
  • Schaltelement SSwitching element S
  • Messwertwandler WMeasured value converter W
  • Signalzentrale ZSignaling center Z
  • Klemmen 1Terminals 1
  • Klemmen 2Terminals 2
  • Klemmen 3ATerminals 3A
  • Klemmen 3BTerminals 3B

Claims (9)

1. Verfahren zur Uebertragung von Messwerten in einem dem Schutz von Gebäuden dienenden Ueberwachungssystem mit Messstellen (MS), die einen Messensor (M), einen Messwertwandler (W) und ein von einer Kontrolleinheit (KE) angesteuertes Schaltelement (S) enthalten, und die zur Signalübertragung kettenförmig über Sig­nallinien (L) an erste Klemmenpaare (K1) einer Signalzentrale (Z) angeschlossen sind, in welcher die Signale dann zur Gewinnung differenzierter Störungs- bzw. Alarmmeldungen verknüpft werden, wobei bei die in den Messstellen (MS) vorhandenen Schaltelemente (S) bei Inbetriebnahme leitend sind, wodurch das Liniensignal auf der Signallinie (L) an alle Messstellen (MS) gelangt und diesen das Synchronisieren auf die im Liniensignal enthaltene Synchroni­sierinformation erlaubt, dadurch gekennzeichnet, dass durch einen Rückstellbefehl von der Signalzentrale (Z) alle Messstellen (MS) in einen neutralen Zustand gebracht werden, dass durch einen Steuerbefehl der Kontrolleinheit (KE) das zugehörige Schaltele­ment (S) zu einem bestimmten Zeitpunkt innerhalb des durch die Synchronisierinformation definierten Zeitrasters kurzzeitig geöffnet wird und dass durch diesen Spannungsunterbruch alle Messstellen (MS) mit Ausnahme der ersten eine Markierung empfangen, welche anzeigt, dass das empfangene Liniensignal nur zu Synchronisationszwecken und nicht zur Auswertung dient, dass die erste Messstelle (MS1) als einzige das Signal auswertet, den entsprechenden Befehl ausführt, die Antwort abgibt und danach das Schaltelement (S1) dauernd einschaltet, wodurch die nachfolgende Messstelle (MS2) ein Liniensignal ohne Markierung erhält, deshalb ihrerseits das Signal auswertet, den entsprechenden Befehl ausführt, eine Antwort abgibt und danach ebenfalls das zugehörige Schaltelement (S2) dauernd einschaltet, so dass sich der Vorgang bei den weiteren Messstellen (MSm) wiederholen kann, bis der Zy­klus bei der letzten Messstelle (MSm) abgeschlossen ist und ein neuer Zyklus durch ein Rückstellbefehl gestartet wird, indem alle Messtellen (MS) wieder in den neutralen Zustand gebracht werden.1.Procedure for the transmission of measured values in a monitoring system serving to protect buildings, with measuring points (MS) which contain a measuring sensor (M), a measuring value converter (W) and a switching element (S) controlled by a control unit (KE), and the for signal transmission are connected in chain form via signal lines (L) to first pairs of terminals (K1) of a signal center (Z), in which the signals are then linked to obtain differentiated fault or alarm messages, with the switching elements (MS) in the measuring points (MS) S) are conductive during commissioning, as a result of which the line signal on the signal line (L) reaches all measuring points (MS) and allows them to synchronize with the synchronization information contained in the line signal, characterized in that all measuring points are issued by a reset command from the signal center (Z) (MS) are brought into a neutral state so that the control unit (KE) can control the z The associated switching element (S) is opened briefly at a certain point in time within the time grid defined by the synchronization information, and that all measuring points (MS) with the exception of the first one receive a mark due to this voltage interruption, which indicates that the received line signal is only for synchronization purposes and not for The purpose of the evaluation is that the first measuring point (MS1) is the only one to evaluate the signal, execute the corresponding command, issue the response and then switch on the switching element (S1) continuously, which means that the subsequent measuring point (MS2) receives a line signal without marking, which in turn means that Evaluates the signal, executes the corresponding command, issues a response and then also permanently switches on the associated switching element (S2) so that the process can be repeated at the other measuring points (MSm) until the cycle at the last measuring point (MSm) is completed and a a new cycle is started by a reset command in which all measuring points (MS) are returned to the neutral state. 2. Verfahren gemäss Patentanspruch 1, dadurch gekennzeichnet, dass in den Messstellen (MS) vorhandene Adressspeicher (AR) in vorgegebener Reihenfolge von der Signalzentrale (Z) aus durch geeignete Befehle mit den Adressen der Messstelle (MS) belegt werden.2. The method according to claim 1, characterized in that in the measuring points (MS) existing address memories (AR) are assigned in a predetermined order from the signaling center (Z) by suitable commands with the addresses of the measuring point (MS). 3. Verfahren gemäss Patentanspruch 2, dadurch gekennzeichnet, dass zuerst der Adressspeicher (AR), welcher sich in der der Si­gnalzentrale (Z) nächstgelegenen Messstelle (MS) befindet, mit der der Messstelle (MS) zugehörigen Adresse belegt wird.3. The method according to claim 2, characterized in that the address memory (AR), which is located in the measuring point (MS) closest to the signaling center (Z), is assigned the address associated with the measuring point (MS). 4. Verfahren gemäss Patentanspruch 2, dadurch gekennzeichnet, dass zuerst der Adressspeicher (AR), welcher sich in der der Si­gnalzentrale (Z) entferntestgelegenen Messstelle (MS) befindet mit der der Messstelle (MS) zugehörigen Adresse belegt wird.4. The method according to claim 2, characterized in that the address memory (AR), which is located in the measuring point (MS) which is the most distant from the signaling center (Z), is assigned the address associated with the measuring point (MS). 5. Verfahren gemäss einem der Patentansprüche 1 bis 4, dadurch gekennzeichnet, dass die Messstellen (MS) hinsichtlich des Anschlusses an die Signallinien (L) richtungssymmetrisch (bilateral) sind.5. The method according to any one of claims 1 to 4, characterized in that the measuring points (MS) are directionally symmetrical (bilateral) with respect to the connection to the signal lines (L). 6. Verfahren gemäss Patentanspruch 5, dadurch gekennzeichnet, dass die Signallinien (L) von der letzten Messstelle (MS) an zweite Klemmempaare (K2) der Signalzentrale (Z) zurückgeführt werden und dass die Messstellen (MS) von der Signalzentrale (Z) sowohl über die Klemmenpaare (K1) als auch über die Klemmenpaare (K2) angesteuert werden können.6. The method according to claim 5, characterized in that the signal lines (L) from the last measuring point (MS) to second clamping pairs (K2) of the signal center (Z) are returned and that the measuring points (MS) from the signal center (Z) both can be controlled via the terminal pairs (K1) as well as via the terminal pairs (K2). 7. Verfahren, gemäss einem der Patentansprüche 1 bis 6, dadurch gekennzeichnet, dass nach der Belegung der Adressspeicher (AR) sämtlicher Messstellen (MS) einer Signallinie (L) alle Schaltele­mente (S) geschlossen und somit alle Messstellen (MS) der Signal­linie (L) parallel an die Signalzentrale (Z) angeschlossen sind.7. The method according to any one of claims 1 to 6, characterized in that after the address memory (AR) of all measuring points (MS) of a signal line (L) has been occupied, all switching elements (S) are closed and thus all measuring points (MS) of the signal line ( L) are connected in parallel to the signaling center (Z). 8. Verfahren gemäss einem der Patentansprüche 1 bis 7, dadurch gekennzeichnet, dass die in den Messstellen (MS) vorhandenen Kontrolleinheiten (KE) einen Kurzschluss der Klemmenpaare (1, 3A) bzw. (2, 3B), über welche die Messstellen (MS) mit der Signallinie (L) verbunden sind, erkennen können.8. The method according to any one of claims 1 to 7, characterized in that the control units (KE) present in the measuring points (MS) short-circuit the terminal pairs (1, 3A) or (2, 3B) via which the measuring points (MS ) connected to the signal line (L). 9. Verfahren gemäss einem der Patentansprüche 1 bis 8, dadurch gekennzeichnet, dass die Messstellen (MS) Messensoren (M) zum Nachweis von Brandphänomenen oder Brandfolgeprodukten, zum Nachweis von schädlichen Gasen oder Dämpfen oder zum Nachweis von Eindringlingen in einen zu überwachenden Raum enthalten.9. The method according to any one of claims 1 to 8, characterized in that the measuring points (MS) contain measuring sensors (M) for the detection of fire phenomena or fire by-products, for the detection of harmful gases or vapors or for the detection of intruders in a room to be monitored.
EP86107772A 1985-07-10 1986-06-06 Measured value transmission method Expired - Lifetime EP0212106B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT86107772T ATE51723T1 (en) 1985-07-10 1986-06-06 METHOD OF TRANSMITTING MEASUREMENTS.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH2967/85 1985-07-10
CH2967/85A CH668496A5 (en) 1985-07-10 1985-07-10 METHOD FOR TRANSMITTING MEASURED VALUES IN A MONITORING SYSTEM.

Publications (2)

Publication Number Publication Date
EP0212106A1 true EP0212106A1 (en) 1987-03-04
EP0212106B1 EP0212106B1 (en) 1990-04-04

Family

ID=4245671

Family Applications (1)

Application Number Title Priority Date Filing Date
EP86107772A Expired - Lifetime EP0212106B1 (en) 1985-07-10 1986-06-06 Measured value transmission method

Country Status (6)

Country Link
EP (1) EP0212106B1 (en)
AT (1) ATE51723T1 (en)
BR (1) BR8603217A (en)
CH (1) CH668496A5 (en)
DE (1) DE3670164D1 (en)
NO (1) NO862686L (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6838999B1 (en) 1999-08-27 2005-01-04 Job Lizenz Gmbh & Co. Kg Method and device for automatically allocating detector addresses in an alarm system
WO2005024749A2 (en) * 2003-09-11 2005-03-17 Robert Bosch Gmbh Sensor, control unit and method for operating sensors connected to a control unit
EP1622039A1 (en) * 2004-07-30 2006-02-01 SICK MAIHAK GmbH Method and apparatus for assigning addresses to users of a bus system
EP1645965A2 (en) * 2004-10-11 2006-04-12 Meta System S.p.A. Method and system for automatic addressing of a plurality of elements which communicate by means of a single bus

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3765016A (en) * 1971-05-24 1973-10-09 Oak Electro Netics Corp Security system including means for polling the premises to be protected
FR2214385A5 (en) * 1973-01-16 1974-08-09 Honeywell Bull Soc Ind
EP0035277A1 (en) * 1980-03-05 1981-09-09 Georg Prof. Dr. Färber Sequential transmission system for connecting without addressing a plurality of subscribers to an exchange
BE892272A (en) * 1982-02-25 1982-06-16 Cifco S A Remote measuring and signalling system - has transceiver units in series along common line by which they are cyclically interrogated by cpu using identifier circuits
EP0093872A1 (en) * 1982-04-28 1983-11-16 Cerberus Ag Method for the transmission of measured values in a control system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3765016A (en) * 1971-05-24 1973-10-09 Oak Electro Netics Corp Security system including means for polling the premises to be protected
FR2214385A5 (en) * 1973-01-16 1974-08-09 Honeywell Bull Soc Ind
EP0035277A1 (en) * 1980-03-05 1981-09-09 Georg Prof. Dr. Färber Sequential transmission system for connecting without addressing a plurality of subscribers to an exchange
BE892272A (en) * 1982-02-25 1982-06-16 Cifco S A Remote measuring and signalling system - has transceiver units in series along common line by which they are cyclically interrogated by cpu using identifier circuits
EP0093872A1 (en) * 1982-04-28 1983-11-16 Cerberus Ag Method for the transmission of measured values in a control system

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6838999B1 (en) 1999-08-27 2005-01-04 Job Lizenz Gmbh & Co. Kg Method and device for automatically allocating detector addresses in an alarm system
WO2005024749A2 (en) * 2003-09-11 2005-03-17 Robert Bosch Gmbh Sensor, control unit and method for operating sensors connected to a control unit
WO2005024749A3 (en) * 2003-09-11 2005-04-28 Bosch Gmbh Robert Sensor, control unit and method for operating sensors connected to a control unit
EP1622039A1 (en) * 2004-07-30 2006-02-01 SICK MAIHAK GmbH Method and apparatus for assigning addresses to users of a bus system
EP1645965A2 (en) * 2004-10-11 2006-04-12 Meta System S.p.A. Method and system for automatic addressing of a plurality of elements which communicate by means of a single bus
EP1645965A3 (en) * 2004-10-11 2006-07-12 Meta System S.p.A. Method and system for automatic addressing of a plurality of elements which communicate by means of a single bus

Also Published As

Publication number Publication date
DE3670164D1 (en) 1990-05-10
EP0212106B1 (en) 1990-04-04
NO862686L (en) 1987-01-12
CH668496A5 (en) 1988-12-30
BR8603217A (en) 1987-02-24
NO862686D0 (en) 1986-07-02
ATE51723T1 (en) 1990-04-15

Similar Documents

Publication Publication Date Title
CH664637A5 (en) METHOD FOR TRANSMITTING MEASURED VALUES IN A MONITORING SYSTEM.
DE2362344C3 (en) Data transmission system
EP1206765B1 (en) Method and device for automatically allocating detector addresses in an alarm system
EP0489346B1 (en) Method for the automatic ranging of detector addresses by an alarm system
DE19960422C1 (en) Faulty detector detection method for centralized alarm system e.g. fire alarm system, uses current-modulated data supplied by interrogated detectors to central evaluation point with controlled switch opening for fault location
EP0067339A2 (en) Method and arrangement for disturbance detection in hazard signalling systems, especially fire signalling systems
DE2533354C3 (en) Device for transmitting control commands in a fire protection system
DE3611949C2 (en)
EP0212106B1 (en) Measured value transmission method
DE3623705C2 (en)
EP1703481B1 (en) Method for determining the configuration of an alarm system and alarm system
DE4017533A1 (en) Control-supervisory signal transmission system - employs shared data line for bidirectional traffic between controller and controlled devices or device state monitors
DE3614692C2 (en)
EP0904644B1 (en) Distributed closed and/or open-loop control device for building management systems with network and local bus
DE3225032C2 (en) Method and device for the optional automatic query of the detector identification or the detector measured value in a hazard alarm system
EP0362797B2 (en) Method for the energy-saving operation of risk detectors in a risk detection arrangement
DE3424294A1 (en) Interrogation device for identification of the position of switches
DE4426466C2 (en) Arrangement and method for operating hazard detectors
EP1363261B1 (en) Method for the operation of an alarm system, and alarm system for the implementation of said method
DE3415819A1 (en) Fire alarm device
EP0098553B1 (en) Method and device for automatically demanding signal measure values and/or signal identification in an alarm installation
AT399957B (en) Alarm signalling system
EP0450119A1 (en) Device for connecting additional elements to an existing alarm line
WO2002084220A2 (en) Method for suppressing mutual interference of an optical multi-sensor system and corresponding multi-sensor system
EP0419703B1 (en) Method for the freely selective allocation of signalling addresses in a danger-signalling system operating in accordance to the cascade synchronisation principle

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19860606

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

17Q First examination report despatched

Effective date: 19890426

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

ITF It: translation for a ep patent filed

Owner name: VETTOR GALLETTI DI SAN CATALDO

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

REF Corresponds to:

Ref document number: 51723

Country of ref document: AT

Date of ref document: 19900415

Kind code of ref document: T

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19900510

Year of fee payment: 5

REF Corresponds to:

Ref document number: 3670164

Country of ref document: DE

Date of ref document: 19900510

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19900516

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19900518

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 19900523

Year of fee payment: 5

ET Fr: translation filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19900630

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19900630

Year of fee payment: 5

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19910422

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19910513

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19910515

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19910530

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Effective date: 19910606

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19910607

ITTA It: last paid annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19910630

BERE Be: lapsed

Owner name: CERBERUS A.G.

Effective date: 19910630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19920101

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19920606

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19920630

Ref country code: CH

Effective date: 19920630

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19920606

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19930226

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19930302

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

EUG Se: european patent has lapsed

Ref document number: 86107772.5

Effective date: 19920109

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050606