EP0205393A1 - Antenne omnidirectionnelle cylindrique - Google Patents

Antenne omnidirectionnelle cylindrique Download PDF

Info

Publication number
EP0205393A1
EP0205393A1 EP86460010A EP86460010A EP0205393A1 EP 0205393 A1 EP0205393 A1 EP 0205393A1 EP 86460010 A EP86460010 A EP 86460010A EP 86460010 A EP86460010 A EP 86460010A EP 0205393 A1 EP0205393 A1 EP 0205393A1
Authority
EP
European Patent Office
Prior art keywords
sources
network
antenna according
radiating
sub
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
EP86460010A
Other languages
German (de)
English (en)
Inventor
Jean-Christophe Marie Bayetto
Claude Jacques Vinatier
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ETAT FRANCAIS REPRESENTE PAR LE MINISTRE DES PTT (
Public De Diffusion Dit Telediffu Ets
Original Assignee
Telediffusion de France ets Public de Diffusion
Etat Francais
Centre National dEtudes des Telecommunications CNET
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Telediffusion de France ets Public de Diffusion, Etat Francais, Centre National dEtudes des Telecommunications CNET filed Critical Telediffusion de France ets Public de Diffusion
Publication of EP0205393A1 publication Critical patent/EP0205393A1/fr
Ceased legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/20Arrays of individually energised antenna units similarly polarised and spaced apart the units being spaced along or adjacent to a curvilinear path
    • H01Q21/205Arrays of individually energised antenna units similarly polarised and spaced apart the units being spaced along or adjacent to a curvilinear path providing an omnidirectional coverage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S343/00Communications: radio wave antennas
    • Y10S343/02Satellite-mounted antenna

Definitions

  • the present invention relates to an array antenna with symmetry of revolution consisting of an array of elementary antennae in a printed circuit of cylindrical shape and intended more particularly for the transmission of terrestrial broadcasting signals in the 12 GHz band.
  • Terrestrial broadcasting antennas must have a very wide omni-directional or sectoral radiation pattern in azimuth and a much narrower diagram in elevation.
  • the radiated power must be constant as a function of the frequency in the operating band of the antenna.
  • planar printed circuit antennas have a directional radiation pattern. Grouping them to obtain an omnidirectional diagram is very difficult at 12 GHz. Indeed, it is necessary to carry out distributions towards the various antennas with severe conditions on the phases to avoid unfavorable recombinations of diagrams of the various elementary antennas. These elementary diagrams must be broad and have a radiated phase as constant as possible; otherwise, the number of elementary antennas must be multiplied, which complicates the power distribution.
  • An object of the invention is to provide an array antenna consisting of an array of elementary antennas in a printed circuit plated on a cylinder which is compact and which has a less wavy azimuth radiation pattern than those of known antennas.
  • omnidirection - nality is not obtained by reducing the phase centers of the elementary antennas to the center of the structure, but by placing these elementary antennas periodically on a circumference centered on an axis of revolution and in sufficient number to have weak undulations of the radiated diagram.
  • an array antenna formed of radiating sources of small dimensions which are arranged on a cylindrical surface in superimposed circles, said sources being angularly distributed with a constant angular pitch on the circles, little coupled between them and, by circle of sources, all supplied in phase and with the same amplitude.
  • an angular offset is provided between all of the sources of a circle and that of the sources of the next circle.
  • the offset is a fraction equal to the angular step divided by the number of circles.
  • the array antenna is supplied by a line on a three-plate printed circuit applied to a cylinder.
  • triplate line creates inside the cylinder an armored space.
  • the supply conductors, located under the external ground plane, are also fully shielded.
  • Another object of the invention consists in using this type of network to produce a network antenna with symmetry of revolution having practically omnidirectional radiation, that is to say whose undulations in the plane perpendicular to the axis of symmetry are significantly reduced compared to those obtained with the antennas forming part of the state of the art.
  • an antenna consisting of a network of doublets folded into plates of the type described in the document FR-A-2 487 588 mentioned above, said doublets being aligned along circles, the gap between them. centers of adjacent doublets being of the order of 0.9 o, where o is the wavelength in vacuum of the carrier emitted by the antenna.
  • the transmitter inside the cylinder is installed the transmitter to which the video signal to be transmitted is applied. and which supplies the network of radiating sources with the modulated carrier.
  • This structure has the advantage of minimizing the lengths of the conductors traversed by the very high frequency signal, which limits losses and increases the radiation of the transmitter.
  • the network of radiating sources is divided into sub-networks, each sub-network covering an angular sector, the output of the transmitter being connected to a power and equiamplitude power divider having as many outputs as there are networks and whose outputs are respectively connected to the attack points of the sub-networks.
  • An elementary antenna usable in the array antenna of the invention can be the folded doublet which is shown in FIG. 1 and which, when it is planar, forms part of the state of the art. As we will see below, we use this elementary antenna giving it a cylindrical shape.
  • the doublet of FIG. 1 comprises a supplied strand formed by two half-plates 1 and 2 separated by a cut 3, and a folded strand formed by a long continuous plate 4 and two symmetrical portions 5 and 6 connecting, on the one hand, 1 and 4 and, on the other hand, 2 and 4.
  • the plate 4 is connected, in its central part, to a ground plate 7, perpendicular to 4 and symmetrical, with respect to the axis of symmetry of the dipole, of the central conductor 8 of a three-ply line.
  • the central conductor 8 is indicated in FIG. 1, by dashed lines because it passes successively under 7, 4, 5 and 1, each of the metal surfaces 7, 4, 5 and 1 serving as ground surfaces on one side of the conductor 8.
  • line 8 is equidistant from the sides of 1.
  • the doublet in FIG. 1 comprises a second continuous long plate 9, symmetrical with the plate 4 with respect to the axis of symmetry 10 of the two half-plates 1 and 2, and two symmetrical portions 11 and 12 connecting, on the one hand, 1 and 9 and , on the other hand, 2 and 9.
  • the portions 11 and 12 are symmetrical with the portions 5 and 6 with respect to the axis 10.
  • the plate 9 is connected, in its central part, to a plate 13 perpendicular to 9 and symmetrical by 7 with respect to the axis 10.
  • the plates 7 and 13 are part of the same large plate 14 which surrounds the doublet proper , with openings 15 and 16 separating the doublet from the plate 14.
  • the openings 15 and 16 are symmetrical relative to the center of the doublet.
  • the central conductor 8 forms with the plate 7, on the one hand, and a ground plate 17, on the other hand, a three-plate supply line.
  • the metal elements 1, 2, 4, 5, 6, 7, 9, 11, 12, 13 and 14 form one side of a first printed circuit 18 while the central conductor 8 forms the other side of this printed circuit board.
  • the bare face of a second circuit is applied printed 19 whose other side is uniformly coated with the metal plate 17.
  • the recesses 15 and 16 must be large enough to avoid an exaggerated coupling between the radiating doublet and the ground plate 14 of the triplate line.
  • the central conductor 8 is successively extended under one half of the plate 4 (towards the portion 5), then under the portion 5, then under the half-plate 1 and, finally, after passing under the cut 3, under a part of the half-plate 2.
  • each of the different segments constituting the central conductor is always under the axis of symmetry of the plate which covers it.
  • the distance between the end 20 of the conductor 8 and the middle of the cutoff 3 is equal to a quarter of a wavelength, that is to say / 4, where denotes the wavelength in the insulating medium of the printed circuits 18, 19, with: where c is the speed of electromagnetic waves in a vacuum.
  • the quarter-wave line under the half-plate 2 is open, which brings a short circuit under the edge of the half-plate 2 adjacent to the cutoff 3. It therefore appears that the quarter-wave line allows avoid passage through circuit 18 and soldering.
  • the antenna 21 of FIG. 4 consists of a hollow support cylinder 22, which is obtained, for example, by rolling and machining, and antenna sub-arrays 23 which are pressed against the external face of the cylinder 22 by suitable means, not shown, such as screws which are screwed into tapped holes provided in the wall of the cylinder 22.
  • the elementary radiating sources of the sub-arrays 23 are, in the example described, doublets identical to that of FIGS. 1 to 3. On the half of the cylinder 22 is placed a sub-network of four horizontal rows of sixteen doublets each.
  • the interior of the cylinder 22 makes it possible to house the active part of the antenna, that is to say the transmitter 24, which conventionally comprises a video input, a DC power supply and a microwave output.
  • the transmitter 24 which conventionally comprises a video input, a DC power supply and a microwave output.
  • a radiator 25 can be added to cool the transmitter.
  • the emitter and the radiator are supported by horizontal plates which are themselves fixed at various points on the internal face of the cylinder 22. These plates are notched as much as possible to allow the air to circulate from bottom upwards around the transmitter and radiator, as well as holes for the passage of the video cable and the power supply.
  • the horizontal section of Fig. 5 shows wound around the cylinder 22, the two layers of printed circuits 26 and 27 carrying the radiating sources with, on the internal face of the layer 26, the ground plane 28, on the internal face of the layer 27, the central conductor of the power distribution network 29 and, on the external surface of the layer 27, the second ground plane 30 in which cutouts reveal the strands of the doublets which constitute the network 23.
  • the structure of the assembly 26 to 30 constitutes a three-ply structure identical to that which has been described in relation to FIGS. 1 to 3, with all the advantages which it entails with regard to the shielding of power distribution lines, that is to say of network 29.
  • ground plane 28 prevents parasitic radiation coming directly from the transmitter from being transmitted to the outside.
  • FIG. 7 the developed representation of the central conductor of a distribution sub-network 29 usable with the sub-network 23 has been shown.
  • the network of FIG. 7 comprises sixteen groups of four radiating sources, only one of which is symbolized in S1 by an H in dashed lines, with their supply conductors L1.1 to L4.16, similar to 8, Fig. 3.
  • Each group i comprises four conductors Ll.i to L4.i.
  • each supply conductor 8 has a terminal segment parallel to the strands of the doublet and a starting segment which is directed perpendicular to the terminal segment towards the middle of the latter, the two segments being joined by an elbow.
  • the feeder segments of conductors Ll.i and L2.i are connected to a power divider by two Dl.i directed parallel to the terminal segments.
  • the starting segments of the conductors L3.i and L4.i are connected to a power divider by two D2.i aligned with the divider Dl.i, but directed in the opposite direction.
  • the inputs of the dividers Dl.i and D2.i are respectively connected to the two outputs of a power divider by two D3.i which is parallel to the starting segments.
  • the assembly of four conductors Ll.i to L4.i and of the three dividers Dl.i to D3.i forms the supply group of a group of four radiating sources. In such a group, the centers of the individual sources are at the four corners of a square and the terminal segments are all directed in the same direction.
  • the groups of radiating sources are grouped by four as follows. Assuming that J is a multiple of four, plus one, the centers of the squares of the groups J. to j + 3 are themselves at the four corners of a square, with their divisors D3.j and D3 (j + 1) aligned, but directed towards each other, and their dividers D3. (j + 2) and D3. (j + 3) aligned, but directed towards each other.
  • the inputs of the dividers D3.j and D3. (J + 1) are connected to the outputs of a power divider by two D4.j while the inputs of the dividers D3. (J + 2) and D3.
  • (J + 3 ) are connected to the outputs of a power divider by two D4 (j + 2).
  • the dividers D4.j and D4. (J + 2) are aligned parallel to the terminal segments, but with their inputs directed towards each other and connected to the outputs of a power divider by two D5.j.
  • dividers D5.1, D5.5, D5.9 and D5.13 which are all orthogonal to the terminal strands.
  • the inputs of the dividers D5.1 and D5.5 are connected, by two conductors of the same length, bent twice, to a power divider by two D6.1.
  • the inputs of the dividers D5.9 and D5.13 are connected to a power divider by two D6.9.
  • the dividers D6.1 and D6.9 are orthogonal to the terminal segments, directed in the same direction, and their inputs are connected to the inputs of a power divider by two D7 which is parallel to them, oriented in the same direction and in the vertical axis of symmetry of the network when it is developed on a plane.
  • the input of the D7 divider is extended vertically to a point of connection to a connector.
  • a distribution network has been considered for four times sixteen radiating sources.
  • To switch to a network of four times thirty two antennas one could juxtapose two 4x16 networks by planning to combine the inputs of the divider D7 and its corresponding to a divider D8.
  • the pitch of the sub-network 23 was, in both directions, horizontal and vertical, equal to 0.9 times the wavelength in a vacuum corresponding to a frequency of 12 GHz for the carrier transmitted, and two sub-arrays were plated on a cylinder 22 cm in diameter.
  • a network comprising four rows of sources requires then to provide a cylinder with a height of about 13 cm.
  • the antenna As shown in Figs. 4 and 8 to 10, provision has been made for the antenna to be provided with two diametrically opposite antenna connectors 31 and 32.
  • a single coaxial connection 33 has been provided between the emitter 24 and the connector 31.
  • a network 23 has been pressed, the distribution network of which was identical to that of FIG. 7, with the input conductor of the divider D7 extended vertically downwards to the connector 31.
  • the transmitter 24 is modulated by the video transmitted by the cable V and supplied by the power supply cable A.
  • the source 24 is connected, by a coaxial link, to the input of a power divider by two 35 whose outputs are respectively connected, by equipaxial coaxial links and equiamplitudes 36 and 37, to the connectors 31 and 32.
  • each connector 31 or 32 is connected to a distribution network identical to that of FIG. 7. The two subnets overlap together around the cylinder and allow 360 ° coverage.
  • FIG. 10 is a variant of that of FIG. 9, in which the divider 35, which can be a commercial 3 dB divider, has been replaced by a custom power divider 38 with equiphase and equiamplitude outputs by construction.
  • the measurements carried out showed that a satisfactory horizontal coverage of 165 ° was obtained, undulations of the horizontal radiation diagram of the order of - 3 dB, a width of 3 dB of the vertical radiation pattern corresponding to an angle of 16 ° and a horizontal polarization.
  • Fig. 6 there is shown schematically a variant of the network shown in FIG. 4.
  • the elementary radiating sources are represented by crosses, these are distributed on four horizontal circles C1 to C4.
  • the sources are equal in number N and the angular pitch between adjacent sources is 360 ° / N.
  • the distribution of the sources on the circle C2, below C1 is angularly offset by 360 ° / (4xN) and so on until the distribution of the circle C4.
  • the angular step is equal to 11 ° 15 '.
  • the undulations in the diagram therefore have an undulation of period 11 ° 15 '.
  • the period of the undulations is reduced to less than 3 °. It should be observed that, when the period of the ripple is reduced, so is the amplitude thereof.
  • the distribution network of FIG. 11 is suitable for such an antenna. Experience has shown that the amplitudes of the ripples are reduced below - 1.5 dB.
  • the power dividers by two successive are no longer dividers by simply widening the input conductor and branching on two conductors without change of direction, but T-dividers as shown in FIG. 12.
  • the T-divider in Fig. 12 includes an input conductor 39 extended by a quarter-wave transformer, then extended by two quarter-wave transformers 40 and 41, perpendicular to the direction of the conductor 39.
  • the distribution network of FIG. It is intended to supply a sub-network of 4x4 sources.
  • a group of sources such as group G1
  • the sources hl and h2 on two different circles are shifted by a quarter of a step.
  • the input segments of their supply conductors L'l.1 and L'2.1 are not aligned.
  • they are respectively joined to the output conductors of a divider by two at T D'1 whose direction of the output conductor makes an angle of + 45 °.
  • the conductors L'3.1 of h3 and L'4.1 of h4 are combined with a T-divider D'2.1 whose input conductor is oriented at -135 °.
  • the dividers D'1.1 and D'2.1 are, to respect the lengths of the course, on the same horizontal circle. So their input conductors are not aligned. These are therefore extended by turning the first by -90 ° then by + 90 °, and the other by + 90 °, then by -90 ° in order to join the output conductors of a T-divider D'3.1 whose input conductor is oriented at -45 °.
  • the conductors L'1.2 and L'2.2, as well as L'3.2 and L'4.2, are not aligned respectively. They are joined to a T-divider D'3.2 by two dividers, similar to those which have been described.
  • the input conductor of the D'3.2 divider is oriented at + 135 °.
  • the input conductors of D'3.1 and D'3.2 are connected by conductors respectively bent at -45 ° and + 45 °, then at -45 ° and + 45 °, to the output conductors of a divider D'4.1 .
  • the output conductor of the divider D'4.1 is oriented at + 45 °.
  • groups G3 and G4 we also find the divider D'4.2 whose input conductor is oriented at -135 °.
  • the input conductors of D'4.1 and D'4.2 are respectively extended by bends at -90 °, then + 45 ° and finally -45 °, to be connected to the output conductors of a divider D'5 whose the input conductor is at -45 °.
  • the input conductor of D'5 is connected, by a suitably bent conductor, to an input connector such as 31 or 32, or to a cascade of dividers, not shown, the input of the latter of which is connected to a connector.
  • a satisfactory omni-directional antenna can be constituted by a printed circuit board plated on a cylinder 22 cm in diameter and 13 cm in height, the transmitter being contained inside the cylinder. It is quite possible to superimpose several of these antennas, each containing a transmitter operating with a different carrier and modulated by a different video to transmit as many programs. This solution is particularly advantageous because it avoids the multiplexing of programs as well as the power limitations imposed to reduce the effects of intermodulations.
  • the superimposed antennas can be constituted by identical arrays.

Abstract

L'antenne réseau à symétrie de révolution est constituée d'un réseau d'antennes élémentaires en circuit imprimé de forme cylindrique.
Elle est formée de sources rayonnantes de faibles dimensions qui sont arrangées sur une surface cylindrique en cercles superposés. Les sources sont angulairement réparties avec un pas angulaire constant sur les cercles. Elles sont peu couplées entre elles. Par cercle de sources, toutes sont alimentées en phase et avec la même amplitude.
Un décalage angulaire peut être prévu entre l'ensemble des sources d'un cercle et celui des sources du cercle suivant. L'antenne peut être alimentée par un ligne en circuit imprimé triplaque. Elle peut être constituée par un réseau de doublets repliés en plaques. A l'intérieur du cylindre est installé l'émetteur (24) auquel est appliqué le signal vidéo à émettre et qui fournit au réseau de sources rayonnantes la porteuse modulée.

Description

  • La présente invention concerne une antenne réseau à symétrie de révolution constituée d'un réseau d'antennes élémentaires en circuit imprimé de forme cylindrique et destinée plus particulièrement à l'émission de signaux de radiodiffusion terrestre dans la bande des 12 GHz.
  • Les antennes de radiodiffusion terrestre doivent avoir, en azimut, un diagramme de rayonnement omnidirectionnel ou sectoriel très large et, en élévation, un diagramme beaucoup plus étroit. De plus, dans une direction donnée, la puissance rayonnée doit être constante en fonction de la fréquence dans la bande de fonctionnement de l'antenne. Pour obtenir ces diagrammes, plusieurs technologies ont jusqu'ici été utilisées avec plus ou moins de succès: antennes à réflecteurs, antennes à fentes, réseaux de dipôles, réseaux de sources en circuit imprimé microruban.
  • Les antennes utilisant une technologie autre que celle du circuit imprimé sont trop encombrantes pour être installées sur la plupart des sites. Dans l'état de la technique, l'idée de base était de ramener le pseudo-centre de phase au centre de la structure pour avoir un rayonnement omnidirectionnel. Ceci a été réalisé avec des antennes à réflecteurs à plusieurs sources primaires au prix de structures lourdes et de grandes dimensions.
  • Les antennes planes en circuit imprimé ont un diagramme de rayonnement directif. Leur groupement pour obtenir un diagramme omnidirectionnel est très délicat à 12 GHz. En effet, il faut réaliser des répartitions vers les différentes antennes avec des conditions sévères sur les phases pour éviter des recombinaisons défavorables de diagrammes des différentes antennes élémentaires. Ces diagrammes élémentaires doivent être larges et avoir une phase rayonnée la plus constante possible; sinon, il faut multiplier le nombre d'antennes élémentaires, ce qui complique la répartition de puissance.
  • Dans un article intitulé "Large-bandwidth flat cylindrical array with circular polarization and omnidirectional radiation" par G. Dubost, J. Samson et R. Frin, paru dans la revue "Electronics Letter" en 1979, il est décrit un réseau de quatre sources rayonnantes en technologie microruban à polarisation circulaire qui sont plaquées sur un cylindre, la répartition de puissance étant réalisée au moyen de câbles coaxiaux et de coupleurs du commerce. Une telle source rayonnante à polarisation circulaire est décrite dans le brevet FR-A-2 429 504.
  • Un objet de l'invention consiste à prévoir une antenne réseau constitué d'un réseau d'antennes élémentaires en circuit imprimé plaqué sur un cylindre qui soit peu encombrante et qui ait un diagramme de rayonnement en azimut moins ondulé que ceux des antennes connues. Suivant une caractéristique de l'invention, l'omnidirection- nalité n'est pas obtenue en ramenant les centres de phase des antennes élémentaires au centre de la structure, mais en plaçant ces antennes élémentaires périodiquement sur une circonférence centrée sur un axe de révolution et en nombre suffisant pour avoir des ondulations faibles du diagramme rayonné.
  • Suivant une caractéristique de l'invention, il est prévu une telle antenne réseau formée de sources rayonnantes de faibles dimensions qui sont arrangées sur une surface cylindrique en cercles superposés, lesdites sources étant angulairement réparties avec un pas angulaire constant sur les cercles, peu couplées entre elles et, par cercle de sources, toutes alimentées en phase et avec la même amplitude.
  • Suivant une autre caractéristique, un décalage angulaire est prévu entre l'ensemble des sources d'un cercle et celui des sources du cercle suivant.
  • Suivant une autre caractéristique, le décalage est une fraction égale au pas angulaire divisé par le nombre de cercles.
  • Suivant une autre caractéristique, l'antenne réseau est alimentée par un ligne en circuit imprimé triplaque appliqué sur un cylindre.
  • L'utilisation d'une ligne triplaque crée à l'intérieur du cylindre un espace blindé. Les conducteurs d'alimentation, se trouvant sous le plan de masse extérieur, sont également complètement blindées.
  • Par ailleurs, dans l'article intitulé "Réseau de doublets repliés symétriques en plaques à large bande autour de 12 GHz" par G. Dubost et C. Vinatier paru dans la revue "L'onde électrique", 1981, vol. 61, n° 4, pp. 34-41, il est décrit une source rayonnante plane dont les éléments rayonnants sont des doublets repliés et qui est alimentée par une ligne triplaque. Ce réseau est également décrit dans les documents FR-A-2 487 588 et EP-A-0 044 779. Ce réseau conduit, entre autres, à des diagrammes directifs quand il est plan.
  • Un autre objet de l'invention consiste à utiliser ce type de réseau pour réaliser une antenne réseau à symétrie de révolution ayant un rayonnement pratiquement omnidirectionnel, c'est-à-dire dont les ondulations dans le plan perpendiculaire à l'axe de symétrie sont sensiblement réduites par rapport à celles que l'on obtenait avec les antennes faisant partie de l'état de la technique.
  • Suivant une caractéristique dé l'invention, il est prévu une telle antenne constituée par un réseau de doublets repliés en plaques du type de ceux qui sont décrits dans le document FR-A-2 487 588 mentionné ci-dessus, lesdits doublets étant alignés suivant des cercles, l'écart entre les. centres des doublets adjacents étant de l'ordre de 0,9 o, où o est la longueur d'onde dans le vide de la porteuse émise par l'antenne.
  • Suivant une autre caractéristique,, à l'intérieur du cylindre est installé l'émetteur auquel est appliqué le signal vidéo à émettre et qui fournit au réseau de sources rayonnantes la porteuse modulée.
  • Cette structure présente l'avantage de réduire au minimum les longueurs des conducteurs parcourus, par le signal à très haute fréquence, ce qui limite les pertes et augmente le rayonnement de l'émetteur.
  • Suivant une autre caractéristique, le réseau de sources rayonnantes est divisé en sous-réseaux, chaque sous-réseau couvrant un secteur angulaire, la sortie de l'émetteur étant reliée à un diviseur de puissance équiphase et équiamplitude ayant autant de sorties que de sous-réseaux et dont les sorties sont respectivement reliées aux points d'attaque des sous-réseaux.
  • Les caractéristiques de l'invention mentionnées ci-dessus, ainsi que d'autres, apparaîtront plus clairement à la lecture de la description suivante d'exemples de réalisation, ladite description étant faite en relation avec les dessins joints, parmi lesquels:
    • la Fig. 1 est une vue en plan d'un doublet replié en plaques connu,
    • la Fig. 2 est une vue en coupe du doublet de la Fig. 1, suivant la ligne II-II,
    • la Fig. 3 est une vue en coupe du doublet de Fig. 1, suivant la ligne III-III,
    • la Fig. 4 est une vue en perspective d'une antenne cylindrique à axe vertical, suivant l'invention,
    • la Fig. 5 est une vue en coupe transversale de l'antenne de la Fig. 4,
    • la Fig. 6 est une vue schématique illustrant une variante de la Fig. 4,
    • la Fig. 7 est une vue développée d'un sous-réseau de distribution alimentant un sous-réseau de sources rayonnantes,
    • les Figs. 8 à 10 sont des vues en coupe verticale partielle de plusieurs structures de répartition de l'antenne des Figs. 4 et 5,
    • la Fig. 11 est une vue d'une variante du réseau de distribution de la Fig. 10, et
    • la Fig. 12 est une vue à plus grande échelle d'un détail du réseau de la Fig. 11.
  • Une antenne élémentaire utilisable dans l'antenne réseau de l'invention peut être le doublet replié qui est montré à la Fig. 1 et qui fait, quand il est plan, partie de l'état de la technique. Comme on le verra dans la suite, on utilise cette antenne élémentaire en lui donnant une forme cylindrique. Le doublet de la Fig. 1 comprend un brin alimenté formé de deux demi-plaques 1 et 2 séparées par une coupure 3, et un brin replié formé d'une plaque longue continue 4 et de deux portions symétriques 5 et 6 reliant, d'une part, 1 et 4 et, d'autre part, 2 et 4.
  • -La plaque 4 est reliée, dans sa partie centrale, à une plaque de masse 7, perpendiculaire à 4 et symétrique, par rapport à l'axe de symétrie du doublet, du conducteur central 8 d'une ligne triplaque. Le conducteur central 8 est indiqué, à la Fig. 1, par des traits tirets car il passe successivement sous 7, 4, 5 et 1, chacune des surfaces métalliques 7, 4, 5 et 1 servant de surfaces de masse d'un côté du conducteur 8. En particulier, sous la demi-plaque 1, la ligne 8 est à égale distance des côtés de 1.
  • De plus, le doublet de la Fig. 1 comprend une seconde plaque longue continue 9, symétrique de la plaque 4 par rapport à l'axe de symétrie 10 des deux demi-plaques 1 et 2, et deux portions symétriques 11 et 12 reliant, d'une part, 1 et 9 et, d'autre part, 2 et 9. Les portions 11 et 12 sont symétriques des portions 5 et 6 par rapport à l'axe 10.
  • La plaque 9 est reliée, dans sa partie centrale, à une plaque 13 perpendiculaire à 9 et symétrique de 7 par rapport à l'axe 10. Les plaques 7 et 13 font partie d'une même grande plaque 14 qui entoure le doublet proprement dit, avec des ouvertures 15 et 16 séparant le doublet de la plaque 14. Bien entendu, les ouvertures 15 et 16 sont symétriques par rapport au centre du doublet.
  • Comme le montre la coupe de la Fig. 2, le conducteur central 8 forme avec la plaque 7, d'une part, et une plaque de masse 17, d'autre part, une ligne d'alimentation triplaque. En pratique, les éléments métalliques 1, 2, 4, 5, 6, 7, 9, 11, 12, 13 et 14 forment une face d'un premier circuit imprimé 18 tandis que le conducteur central 8 forme l'autre face de ce circuit imprimé. Contre la face de 18 portant le conducteur 8, est appliquée la face nue d'un second circuit imprimé 19 dont l'autre face est revêtue uniformément de la plaque métallique 17.
  • Les évidemments 15 et 16 doivent être suffisamment grands pour éviter un couplage exagéré entre le doublet rayonnant et la plaque de masse 14 de la ligne triplaque.
  • A partir de la plaque 7, le conducteur central 8 est prolongé successivement sous une moitié de la plaque 4 (vers la portion 5), puis sous la portion 5, puis sous la demi-plaque 1 et, enfin, après passage sous la coupure 3, sous une partie de la demi-plaque 2. Bien entendu, chacun des différents segments constituant le conducteur central se trouve toujours sous l'axe de symétrie de la plaque qui le recouvre.
  • La distance entre le bout 20 du conducteur 8 et le milieu de la coupure 3 est égale à un quart de longueur d'onde, c'est-à-dire à /4, où désigne la longueur d'onde dans le milieu isolant des circuits imprimés 18, 19, avec:
    Figure imgb0001
    où c est la vitesse des ondes électromagnétiques dans le vide.
  • Ainsi, la ligne quart d'onde sous la demi-plaque 2 est ouverte, ce qui ramène un court-circuit sous le bord de la demi-plaque 2 adjacent à la coupure 3. Il apparaît donc que la ligne quart d'onde permet d'éviter un passage à travers le circuit 18 et une soudure.
  • La description détaillée qui vient d'être faite a uniquement pour but d'illustrer un exemple de réalisation d'une source rayonnante élémentaire et ne doit pas être interprétée comme limitant la portée de l'invention à ce genre de source rayonnante. En effet, on peut avec une ligne triplaque utiliser des fentes ouvertes dans la plaque de masse externe de la ligne. Il faut toutefois encore noter que le doublet des Figs. 1 à 3 constitue une source rayonnante à large bande passante.
  • L'antenne 21 de la Fig. 4 est constituée d'un cylindre support creux 22, qui est obtenu, par exemple, par roulage et usinage, et de sous-réseaux d'antennes 23 qui sont plaqués contre la face extérieure du cylindre 22 par des moyens adéquats, non montrés, tels que des vis qui sont vissées dans des trous taraudés prévus dans la paroi du cylindre 22. Les sources rayonnantes élémentaires des sous-réseaux 23 sont, dans l'exemple décrit, des doublets identiques à celui des Figs. 1 à 3. Sur la moitié du cylindre 22 est plaqué un sous-réseau de quatre rangées horizontales de seize doublets chacune.
  • L'intérieur du cylindre 22 permet de loger la partie active de l'antenne, c'est-à-dire l'émetteur 24, qui classiquement comporte une entrée vidéo, une alimentation en courant continu et une sortie en hyperfréquences. Eventuellement, un radiateur 25 peut être ajouté pour assurer le refroidissement de l'émetteur. L'émetteur et le radiateur sont supportés par des plaques horizontales qui sont elles-mêmes fixées en divers points de la face interne du cylindre 22. Ces plaques sont échancrées le plus possible pour laisser l'air circuler de bas en haut autour de l'émetteur et du radiateur, ainsi que des trous pour le passage du câble vidéo et l'amimentation.
  • La coupe horizontale de la Fig. 5 montre enroulées autour du cylindre 22, les deux couches de circuits imprimés 26 et 27 portant les sources rayonnantes avec, sur la face interne de la couche 26, le plan de masse 28, sur la face interne de la couche 27, le conducteur central du réseau de distribution d'alimentation 29 et, sur la surface externe de la couche 27, le second plan de masse 30 dans lequel des découpes font apparaître les brins des doublets qui constituent le réseau 23.
  • En pratique, la structure de l'ensemble 26 à 30 constitue une structure triplaque identique à celle qui a été décrite en relation avec les Figs. 1 à 3, avec tous les avantages qu'elle comporte en ce qui concerne le blindage des lignes de distribution d'alimentation, c'est-à-dire du réseau 29.
  • De plus, il faut noter que le plan de masse 28 évite à des rayonnements parasites provenant directement de l'émetteur d'être transmis à l'extérieur.
  • A la Fig. 7, on a montré la représentation développée du conducteur central d'un sous-réseau de distribution 29 utilisable avec le sous-réseau 23. Pour des raisons de commodité d'exposé, au lieu de considérer les sources élémentaires groupées en quatre rangées circulaires, on considérera que le réseau de la Fig. 7 comprend seize groupes de quatre sources rayonnantes, dont une seule est symbolisée en S1 par un H en traits tirets, avec leurs conducteurs d'alimentation L1.1 à L4.16, semblables à 8, Fig. 3. Chaque groupe i comprend quatre conducteurs Ll.i à L4.i. On rappelle, comme le montre la Fig. 1, que chaque conducteur d'alimentation 8 a un segment terminal parallèle aux brins du doublet et un segment de départ qui est dirigé perpendiculairement au segment terminal vers le milieu de ce dernier, les deux segments étant réunis par un coude.
  • Les segments de départs des conducteurs Ll.i et L2.i sont reliés à un diviseur de puissance par deux Dl.i dirigé parallèlement aux segments terminaux. Les segments de départ des conducteurs L3.i et L4.i sont reliés à un diviseur de puissance par deux D2.i aligné avec le diviseur Dl.i, mais dirigé en sens contraire. Les entrées des diviseurs Dl.i et D2.i sont respectivement reliées aux deux sorties d'un diviseur de puissance par deux D3.i qui est parallèle aux segments de départ. L'ensemble de quatre conducteurs Ll.i à L4.i et des trois diviseurs Dl.i à D3.i forme le groupe d'alimentation d'un groupe de quatre sources rayonnantes. Dans un tel groupe, les centres des sources individuelles sont aux quatre coins d'un carré et les segments terminaux sont tous dirigés dans le même sens.
  • Les groupes de sources rayonnantes sont groupés par quatre de la manière suivante. En supposant que J est un multiple de quatre, plus un, les centres des carrés des groupes J. à j+3 sont eux-mêmes aux quatre coins d'un carré, avec leurs diviseurs D3.j et D3(j+1) alignés, mais dirigés l'un vers l'autre, et leurs diviseurs D3.(j+2) et D3.(j+3) alignés, mais dirigés l'un vers l'autre. Les entrées des diviseurs D3.j et D3.(j+1) sont reliées aux sorties d'un diviseur de puissance par deux D4.j tandis que les entrées des diviseurs D3.(j+2) et D3.(j+3) sont reliées aux sorties d'un diviseur de puissance par deux D4(j+2). Les diviseurs D4.j et D4.(j+2) sont alignés parallèlement aux segments terminaux, mais avec leurs entrées dirigées l'une vers l'autre et reliées aux sorties d'un diviseur de puissance par deux D5.j.
  • Etant donné qu'il y a seize groupes eux-mêmes assemblés quatre par quatre, il y a quatre diviseurs D5.1, D5.5, D5.9 et D5.13 qui sont tous orthogonaux aux brins terminaux. Les entrées des diviseurs D5.1 et D5.5 sont reliées, par deux conducteurs de même longueur, coudés deux fois, à un diviseur de puissance par deux D6.1. De même, les entrées des diviseurs D5.9 et D5.13 sont reliées à un diviseur de puissance par deux D6.9. Les diviseurs D6.1 et D6.9 sont orthogonaux aux segments terminaux, dirigés dans le même sens, et leurs entrées sont reliées aux entrées d'un diviseur de puissance par deux D7 qui leur est parallèle, orienté dans le même sens et dans l'axe de symétrie vertical du réseau quand celui-ci est développé sur un plan. L'entrée du diviseur D7 est prolongé verticalement jusqu'à un point de raccordement à un connecteur.
  • Dans l'exemple de réalisation de la Fig. 7, on a considéré un réseau de distribution pour quatre fois seize sources rayonnantes. Pour passer à un réseau de quatre fois trente deux antennes, on pourrait juxtaposer deux réseaux de 4x16 en prévoyant de réunir les entrées du diviseur D7 et de son correspondant à un diviseur D8.
  • Dans un exemple de réalisation de l'invention, le pas du sous-réseau 23 était, dans les deux sens, horizontal et vertical, égal à 0,9 fois la longueur d'onde dans le vide correspondant à la une fréquence de 12 GHz pour la porteuse émise, et deux sous-réseaux étaient plaqués sur un cylindre de 22 cm de diamètre. Un réseau comportant quatre rangées de sources nécessite de prévoir alors un cylindre d'une hauteur d'environ 13 cm.
  • Comme montré aux Figs. 4 et 8 à 10, on a prévu que l'antenne est pourvue de deux connecteurs d'antenne 31 et 32 diamétralement opposés.
  • A la Fig. 8, on a prévu une seule liaison coaxiale 33 entre l'émetteur 24 et le connecteur 31. Au-dessus du connecteur 31, on a plaqué un réseau 23 dont le réseau de distribution était identique à celui de la Fig. 7, avec le conducteur d'entrée du diviseur D7 prolongé verticalement vers le bas jusqu'au connecteur 31. L'émetteur 24 est modulé par la vidéo transmise par le câble V et alimenté par le câble d'alimentation électrique A.
  • A la Fig. 9, la source 24 est reliée, par une liaison coaxiale, à l'entrée d'un diviseur de puissance par deux 35 dont les sorties sont respectivement reliées, par des liaisons coaxiales équiphases et équiamplitudes 36 et 37, aux connecteurs 31 et 32. Dans ce cas, chaque connecteur 31 ou 32 est relié a un réseau de distribution identique à celui de la Fig. 7. Les deux sous-réseaux recouvrent ensemble le pourtour du cylindre et permettent une couverture de 360°.
  • La configuration de la Fig. 10 est une variante de celle de la Fig. 9, dans laquelle le diviseur 35, qui peut être un diviseur à 3 dB du commerce, a été remplacé par un diviseur de puissance sur mesure 38 à sorties équiphases et équiamplitudes par construction.
  • Avec le montage de la Fig. 8, le diamètre du cylindre 22 étant de 22 cm, les mesures effectuées ont montré que l'on obtenait une couverture horizontale satisfaisante de 165°, des ondulations du diagramme de rayonnement horizontal de l'ordre de - 3 dB, une largeur à 3 dB du diagramme de rayonnement vertical correspondant à un angle de 16° et une polarisation horizontale.
  • Avec le montage de la Fig. 9 et le même cylindre, ces résultats deviennent: - 3 dB, omnidirectionnel, 16° et une polarisation horizontale.
  • A la Fig. 6, on a représenté schématiquement une variante du réseau montré à la Fig. 4. Dans ce réseau, où les sources rayonnantes élémentaires sont représentée par des croix, celles-ci sont distribuées sur quatre cercles horizontaux C1 à C4. Sur tous les cercles, les sources sont en nombre égal N et le pas angulaire entre sources adjacentes est de 360°/N. La distribution des sources sur le cercle C2, au-dessous de C1, est décalée angulairement de 360°/(4xN) et ainsi de suite jusqu'à la distribution du cercle C4. Avec 16 sources sur 180°, comme à la Fig. 3, le pas angulaire est égal à 11° 15'. Les ondulations du diagramme ont donc une ondulation de période 11° 15'. Avec l'antenne de la Fig. 6, la période des ondulations est réduite à moins de 3°. Il faut observer que, quand la période de l'ondulation est réduite, il en est de l'amplitude de celle-ci.
  • Le réseau de distribution de la Fig. 11 est adapté à une telle antenne. L'expérience a prouvé que les amplitudes des ondulations étaient réduites au-dessous de - 1,5 dB.
  • Dans le réseau de la Fig. 11, les diviseurs de puissance par deux successifs ne sont plus des diviseurs par simple élargissement du conducteur d'entrée et dérivation sur deux conducteurs sans changement de direction, mais des diviseurs en T tel que montré à la Fig. 12.
  • Le diviseur en T de la Fig. 12 comprend un conducteur d'entrée 39 prolongé par un transformateur quart d'onde, puis prolongé par deux transformateurs quart d'onde 40 et 41, perpendiculaires à la direction du conducteur 39.
  • Plus particulièrement, le réseau de distribution de la Fig. 11 est prévu pour alimenter un sous-réseau de 4x4 sources. Dans un groupe de sources tel que le groupe G1, les sources hl et h2, sur deux cercles différents, sont décalées d'un quart de pas. Il en résulte que les segments d'entrée de leurs conducteurs d'alimentation L'l.1 et L'2.1 ne sont pas alignés. Dans l'exemple de réalisation, ils sont respectivement réunis aux conducteurs de sortie d'un diviseur par deux en T D'1 dont la direction du conducteur de sortie fait un angle de +45°. De même, les conducteurs L'3.1 de h3 et L'4.1 de h4 sont réunis à un diviseur en T D'2.1 dont le conducteur d'entrée est orienté à -135°. A noter que les diviseurs D'1.1 et D'2.1 sont, pour respecter les longueurs de parcours, sur un même cercle horizontal. Donc leurs conducteurs d'entrée ne sont pas alignés. Ceux-ci sont donc prolongés en tournant le premier de -90° puis de +90°, et l'autre de +90°, puis de -90° afin de rejoindre les conducteurs de sortie d'un diviseur en T D'3.1 dont le conducteur d'entrée est orienté à -45°.
  • Pour les sources du groupe G2, les conducteurs L'1.2 et L'2.2, ainsi que L'3.2 et L'4.2, ne sont pas respectivement alignés. Ils sont réunis à un diviseur en T D'3.2 par deux diviseurs, semblables à ceux qui ont été décrits. Le conducteur d'entrée du diviseur D'3.2 est orienté à +135°. Les conducteurs d'entrées de D'3.1 et D'3.2 sont reliés par des conducteurs respectivement coudés à -45° et +45°, puis à -45° et +45°, aux conducteurs de sortie d'un diviseur D'4.1. Le conducteur de sortie du diviseur D'4.1 est orienté à +45°. Dans les groupes G3 et G4, on trouve de la même manière le diviseur D'4.2 dont le conducteur d'entrée est orienté à -135°.
  • Les conducteurs d'entrées de D'4.1 et D'4.2 sont respectivement prolongés par des coudes à -90°, puis +45° et enfin -45°, pour être relié aux conducteurs de 'sortie d'un diviseur D'5 dont le conducteur d'entrée est à -45°.
  • Le conducteur d'entrée de D'5 est relié, par un conducteur coudé convenablement, à un connecteur d'entrée tel que 31 ou 32, ou à une cascade de diviseurs, non montrés, dont l'entrée du dernier est relié à un connecteur.
  • Comme on l'a mentionné ci-dessus, une antenne omnidirectionnelle satisfaisante peut être constituée par un circuit imprimé plaqué sur un cylindre de 22 cm de diamètre pour 13 cm de hauteur, l'émetteur étant contenu à l'intérieur du cylindre. Il est tout à fait possible de superposer plusieurs de ces antennes contenant chacune un émetteur fonctionnant avec une porteuse différente et modulé par une vidéo différente pour émettre autant de programmes. Cette solution est particulièrement avantageuse car elle évite le multiplexage des programmes ainsi que les limitations de puissance imposées pour réduire les effets des intermodulations.
  • A noter encore qu'en utilisant comme source rayonnante élémentaire des doublets tels que celui des Figs. 1 à 3 qui ont une grande largeur de bande, les antennes superposées peuvent être constituées par des réseaux identiques.

Claims (9)

1) Antenne réseau à symétrie de révolution constituée d'un réseau d'antennes élémentaires en circuit imprimé arrangées sur une surface cylindrique (22) caractérisée en ce qu'elle est formée d'une pluralité (N) de sources rayonnantes de faibles dimensions par rapport à la circonférence de ladite surface cylindrique et disposées en rangées circulaires superposées (C1 à C4), lesdites sources étant, dans chaque rangée circulaire, angulairement réparties avec un pas angulaire constant (360°/N) et toutes alimentées en phase et avec la même amplitude par une ligne en circuit imprimé triplaque (28-26-29-27-30) appliquée sur ladite surface cylindrique (22).
2) Antenne réseau suivant la revendication 1, caractérisée en ce que chaque source rayonnante est un doublet replié en plaques (1-2-4-5-6-9-11-12).
3) Antenne réseau suivant la revendication 2, caractérisée en ce que l'écart entre les centres des doublets adjacents est de l'ordre de 0,9 ao, où λo est la longueur d'onde dans le vide de la porteuse émise par l'antenne.
4) Antenne réseau suivant l'une des revendications 1 à 3, caractérisée en ce qu'à l'intérieur du cylindre est installé l'émetteur (24) auquel est appliqué le signal vidéo à émettre et qui fournit au réseau de sources rayonnantes la porteuse modulée.
5) Antenne réseau suivant l'une des revendications 1 à 4, caractérisée en ce que le réseau de sources rayonnantes est divisé en sous-réseaux, chaque sous-réseau couvrant un secteur angulaire, la sortie de l'émetteur étant reliée à un diviseur de puissance équiphase (35 ou 38) ayant autant de sorties que de sous-réseaux et dont les sorties sont respectivement reliées aux points d'attaque des sous-réseaux.
6) Antenne réseau suivant l'une des revendications 1 à 5, caractérisée en ce qu'un décalage angulaire (360°/4N) est prévu entre l'ensemble des sources rayonnantes d'une rangée circulaire et celui des sources rayonnantes de la rangée circulaire suivante.
7) Antenne suivant la revendication 6, caractérisée en ce que le décalage est une fraction égale au pas angulaire divisé par le nombre de rangées circulaires.
8) Antenne réseau suivant l'une des revendications 1 à 7, caractérisée en ce que plusieurs d'entre elles sont superposées avec même axe vertical, chacune comportant, à l'intérieur de son cylindre, son émetteur modulé par la vidéo à transmettre.
9) Antenne suivant l'une des revendications 2 à 8 et destinée à fonctionner autour de 12 GHz, caractérisée en ce que, sur une rangée circulaire, sont prévues trente-deux sources rayonnantes, le diamètre de la surface cylindrique étant de 22 cm.
EP86460010A 1985-06-10 1986-06-04 Antenne omnidirectionnelle cylindrique Ceased EP0205393A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8508840A FR2583226B1 (fr) 1985-06-10 1985-06-10 Antenne omnidirectionnelle cylindrique
FR8508840 1985-06-10

Publications (1)

Publication Number Publication Date
EP0205393A1 true EP0205393A1 (fr) 1986-12-17

Family

ID=9320127

Family Applications (1)

Application Number Title Priority Date Filing Date
EP86460010A Ceased EP0205393A1 (fr) 1985-06-10 1986-06-04 Antenne omnidirectionnelle cylindrique

Country Status (4)

Country Link
US (1) US4899162A (fr)
EP (1) EP0205393A1 (fr)
CA (1) CA1274015A (fr)
FR (1) FR2583226B1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2698212A1 (fr) * 1992-11-16 1994-05-20 Alcatel Espace Source élémentaire rayonnante pour antenne réseau et sous-ensemble rayonnant comportant de telles sources.
EP1056154A1 (fr) * 1999-02-16 2000-11-29 Radio Frequency Systems Inc. Antenne microruban en forme cylindrique

Families Citing this family (151)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5270721A (en) * 1989-05-15 1993-12-14 Matsushita Electric Works, Ltd. Planar antenna
US5321411A (en) * 1990-01-26 1994-06-14 Matsushita Electric Works, Ltd. Planar antenna for linearly polarized waves
GB2248344B (en) * 1990-09-25 1994-07-20 Secr Defence Three-dimensional patch antenna array
US5241323A (en) * 1990-12-13 1993-08-31 Hughes Aircraft Company Shaped beams from uniformly illuminated and phased array antennas
ATE172060T1 (de) * 1991-11-08 1998-10-15 Teledesic Llc Bodenantennen für satellitenkommunikationssystem
US5291211A (en) * 1992-11-20 1994-03-01 Tropper Matthew B A radar antenna system with variable vertical mounting diameter
US5539414A (en) * 1993-09-02 1996-07-23 Inmarsat Folded dipole microstrip antenna
US5574967A (en) * 1994-01-11 1996-11-12 Ericsson Ge Mobile Communications, Inc. Waste energy control and management in power amplifiers
GB9402550D0 (en) * 1994-02-10 1994-04-06 Northern Telecom Ltd Antenna
US5986610A (en) * 1995-10-11 1999-11-16 Miron; Douglas B. Volume-loaded short dipole antenna
US5940048A (en) 1996-07-16 1999-08-17 Metawave Communications Corporation Conical omni-directional coverage multibeam antenna
US5872547A (en) * 1996-07-16 1999-02-16 Metawave Communications Corporation Conical omni-directional coverage multibeam antenna with parasitic elements
US6067055A (en) * 1996-09-20 2000-05-23 Lcc International Inc. Polarization diversity antenna array
SE517649C2 (sv) * 2000-11-06 2002-07-02 Ericsson Telefon Ab L M Gruppantenn med smala huvudlober i horisontalplanet
US6693595B2 (en) * 2002-04-25 2004-02-17 Southern Methodist University Cylindrical double-layer microstrip array antenna
US6879291B2 (en) * 2003-03-04 2005-04-12 Nortel Networks Limited Offsetting patch antennas on an ominidirectional multi-facetted array to allow space for an interconnection board
US7522095B1 (en) * 2005-07-15 2009-04-21 Lockheed Martin Corporation Polygonal cylinder array antenna
JP4040661B2 (ja) * 2006-05-01 2008-01-30 株式会社神戸製鋼所 Rfidタグの取り付け構造及び検知方法
US7701384B2 (en) * 2008-04-08 2010-04-20 Honeywell International Inc. Antenna system for a micro air vehicle
FR2932338A1 (fr) * 2008-06-10 2009-12-11 Commissariat Energie Atomique Systeme de tranmission d'un signal electrique, notamment frequentiel et dispositif de mesure de rayonnements equipe d'un tel systeme
JP2010032497A (ja) * 2008-07-02 2010-02-12 Toshiba Corp レーダ装置とその受信ビーム形成方法
WO2010050892A1 (fr) * 2008-10-30 2010-05-06 Nanyang Polytechnic Antenne à diversité accordable compacte
US8547275B2 (en) 2010-11-29 2013-10-01 Src, Inc. Active electronically scanned array antenna for hemispherical scan coverage
US9525524B2 (en) 2013-05-31 2016-12-20 At&T Intellectual Property I, L.P. Remote distributed antenna system
US9999038B2 (en) 2013-05-31 2018-06-12 At&T Intellectual Property I, L.P. Remote distributed antenna system
JP6003811B2 (ja) * 2013-06-05 2016-10-05 日立金属株式会社 アンテナ装置
US8897697B1 (en) 2013-11-06 2014-11-25 At&T Intellectual Property I, Lp Millimeter-wave surface-wave communications
US9490535B2 (en) 2014-06-30 2016-11-08 Huawei Technologies Co., Ltd. Apparatus and assembling method of a dual polarized agile cylindrical antenna array with reconfigurable radial waveguides
US9502765B2 (en) * 2014-06-30 2016-11-22 Huawei Technologies Co., Ltd. Apparatus and method of a dual polarized broadband agile cylindrical antenna array with reconfigurable radial waveguides
US10074910B1 (en) * 2014-08-01 2018-09-11 Rockwell Collins, Inc. Switchable X band communication panel
KR102172187B1 (ko) * 2014-08-22 2020-10-30 주식회사 케이엠더블유 이동통신 서비스용 옴니 안테나
US9768833B2 (en) 2014-09-15 2017-09-19 At&T Intellectual Property I, L.P. Method and apparatus for sensing a condition in a transmission medium of electromagnetic waves
US10063280B2 (en) 2014-09-17 2018-08-28 At&T Intellectual Property I, L.P. Monitoring and mitigating conditions in a communication network
US9615269B2 (en) 2014-10-02 2017-04-04 At&T Intellectual Property I, L.P. Method and apparatus that provides fault tolerance in a communication network
US9685992B2 (en) 2014-10-03 2017-06-20 At&T Intellectual Property I, L.P. Circuit panel network and methods thereof
US9503189B2 (en) 2014-10-10 2016-11-22 At&T Intellectual Property I, L.P. Method and apparatus for arranging communication sessions in a communication system
US9973299B2 (en) 2014-10-14 2018-05-15 At&T Intellectual Property I, L.P. Method and apparatus for adjusting a mode of communication in a communication network
US9312919B1 (en) 2014-10-21 2016-04-12 At&T Intellectual Property I, Lp Transmission device with impairment compensation and methods for use therewith
US9627768B2 (en) 2014-10-21 2017-04-18 At&T Intellectual Property I, L.P. Guided-wave transmission device with non-fundamental mode propagation and methods for use therewith
US9577306B2 (en) 2014-10-21 2017-02-21 At&T Intellectual Property I, L.P. Guided-wave transmission device and methods for use therewith
US9769020B2 (en) 2014-10-21 2017-09-19 At&T Intellectual Property I, L.P. Method and apparatus for responding to events affecting communications in a communication network
US9780834B2 (en) 2014-10-21 2017-10-03 At&T Intellectual Property I, L.P. Method and apparatus for transmitting electromagnetic waves
US9653770B2 (en) 2014-10-21 2017-05-16 At&T Intellectual Property I, L.P. Guided wave coupler, coupling module and methods for use therewith
US9544006B2 (en) 2014-11-20 2017-01-10 At&T Intellectual Property I, L.P. Transmission device with mode division multiplexing and methods for use therewith
US9461706B1 (en) 2015-07-31 2016-10-04 At&T Intellectual Property I, Lp Method and apparatus for exchanging communication signals
US9997819B2 (en) 2015-06-09 2018-06-12 At&T Intellectual Property I, L.P. Transmission medium and method for facilitating propagation of electromagnetic waves via a core
US9742462B2 (en) 2014-12-04 2017-08-22 At&T Intellectual Property I, L.P. Transmission medium and communication interfaces and methods for use therewith
US9954287B2 (en) 2014-11-20 2018-04-24 At&T Intellectual Property I, L.P. Apparatus for converting wireless signals and electromagnetic waves and methods thereof
US10340573B2 (en) 2016-10-26 2019-07-02 At&T Intellectual Property I, L.P. Launcher with cylindrical coupling device and methods for use therewith
US10009067B2 (en) 2014-12-04 2018-06-26 At&T Intellectual Property I, L.P. Method and apparatus for configuring a communication interface
US9800327B2 (en) 2014-11-20 2017-10-24 At&T Intellectual Property I, L.P. Apparatus for controlling operations of a communication device and methods thereof
US10243784B2 (en) 2014-11-20 2019-03-26 At&T Intellectual Property I, L.P. System for generating topology information and methods thereof
US9876570B2 (en) 2015-02-20 2018-01-23 At&T Intellectual Property I, Lp Guided-wave transmission device with non-fundamental mode propagation and methods for use therewith
US9749013B2 (en) 2015-03-17 2017-08-29 At&T Intellectual Property I, L.P. Method and apparatus for reducing attenuation of electromagnetic waves guided by a transmission medium
US10224981B2 (en) 2015-04-24 2019-03-05 At&T Intellectual Property I, Lp Passive electrical coupling device and methods for use therewith
US9705561B2 (en) 2015-04-24 2017-07-11 At&T Intellectual Property I, L.P. Directional coupling device and methods for use therewith
US9793954B2 (en) 2015-04-28 2017-10-17 At&T Intellectual Property I, L.P. Magnetic coupling device and methods for use therewith
US9748626B2 (en) 2015-05-14 2017-08-29 At&T Intellectual Property I, L.P. Plurality of cables having different cross-sectional shapes which are bundled together to form a transmission medium
US9490869B1 (en) 2015-05-14 2016-11-08 At&T Intellectual Property I, L.P. Transmission medium having multiple cores and methods for use therewith
US9871282B2 (en) 2015-05-14 2018-01-16 At&T Intellectual Property I, L.P. At least one transmission medium having a dielectric surface that is covered at least in part by a second dielectric
US10650940B2 (en) 2015-05-15 2020-05-12 At&T Intellectual Property I, L.P. Transmission medium having a conductive material and methods for use therewith
US9917341B2 (en) 2015-05-27 2018-03-13 At&T Intellectual Property I, L.P. Apparatus and method for launching electromagnetic waves and for modifying radial dimensions of the propagating electromagnetic waves
US9866309B2 (en) 2015-06-03 2018-01-09 At&T Intellectual Property I, Lp Host node device and methods for use therewith
US10812174B2 (en) 2015-06-03 2020-10-20 At&T Intellectual Property I, L.P. Client node device and methods for use therewith
US9912381B2 (en) 2015-06-03 2018-03-06 At&T Intellectual Property I, Lp Network termination and methods for use therewith
US9913139B2 (en) 2015-06-09 2018-03-06 At&T Intellectual Property I, L.P. Signal fingerprinting for authentication of communicating devices
US9820146B2 (en) 2015-06-12 2017-11-14 At&T Intellectual Property I, L.P. Method and apparatus for authentication and identity management of communicating devices
US9667317B2 (en) 2015-06-15 2017-05-30 At&T Intellectual Property I, L.P. Method and apparatus for providing security using network traffic adjustments
US9865911B2 (en) 2015-06-25 2018-01-09 At&T Intellectual Property I, L.P. Waveguide system for slot radiating first electromagnetic waves that are combined into a non-fundamental wave mode second electromagnetic wave on a transmission medium
US9640850B2 (en) 2015-06-25 2017-05-02 At&T Intellectual Property I, L.P. Methods and apparatus for inducing a non-fundamental wave mode on a transmission medium
US9509415B1 (en) 2015-06-25 2016-11-29 At&T Intellectual Property I, L.P. Methods and apparatus for inducing a fundamental wave mode on a transmission medium
US10044409B2 (en) 2015-07-14 2018-08-07 At&T Intellectual Property I, L.P. Transmission medium and methods for use therewith
US10205655B2 (en) 2015-07-14 2019-02-12 At&T Intellectual Property I, L.P. Apparatus and methods for communicating utilizing an antenna array and multiple communication paths
US9628116B2 (en) 2015-07-14 2017-04-18 At&T Intellectual Property I, L.P. Apparatus and methods for transmitting wireless signals
US9882257B2 (en) 2015-07-14 2018-01-30 At&T Intellectual Property I, L.P. Method and apparatus for launching a wave mode that mitigates interference
US10148016B2 (en) 2015-07-14 2018-12-04 At&T Intellectual Property I, L.P. Apparatus and methods for communicating utilizing an antenna array
US9853342B2 (en) 2015-07-14 2017-12-26 At&T Intellectual Property I, L.P. Dielectric transmission medium connector and methods for use therewith
US9722318B2 (en) 2015-07-14 2017-08-01 At&T Intellectual Property I, L.P. Method and apparatus for coupling an antenna to a device
US9847566B2 (en) 2015-07-14 2017-12-19 At&T Intellectual Property I, L.P. Method and apparatus for adjusting a field of a signal to mitigate interference
US10090606B2 (en) 2015-07-15 2018-10-02 At&T Intellectual Property I, L.P. Antenna system with dielectric array and methods for use therewith
US9793951B2 (en) 2015-07-15 2017-10-17 At&T Intellectual Property I, L.P. Method and apparatus for launching a wave mode that mitigates interference
US9912027B2 (en) 2015-07-23 2018-03-06 At&T Intellectual Property I, L.P. Method and apparatus for exchanging communication signals
US9948333B2 (en) 2015-07-23 2018-04-17 At&T Intellectual Property I, L.P. Method and apparatus for wireless communications to mitigate interference
US9749053B2 (en) 2015-07-23 2017-08-29 At&T Intellectual Property I, L.P. Node device, repeater and methods for use therewith
US9871283B2 (en) 2015-07-23 2018-01-16 At&T Intellectual Property I, Lp Transmission medium having a dielectric core comprised of plural members connected by a ball and socket configuration
US9967173B2 (en) 2015-07-31 2018-05-08 At&T Intellectual Property I, L.P. Method and apparatus for authentication and identity management of communicating devices
US9735833B2 (en) 2015-07-31 2017-08-15 At&T Intellectual Property I, L.P. Method and apparatus for communications management in a neighborhood network
US9904535B2 (en) 2015-09-14 2018-02-27 At&T Intellectual Property I, L.P. Method and apparatus for distributing software
US9769128B2 (en) 2015-09-28 2017-09-19 At&T Intellectual Property I, L.P. Method and apparatus for encryption of communications over a network
US9729197B2 (en) 2015-10-01 2017-08-08 At&T Intellectual Property I, L.P. Method and apparatus for communicating network management traffic over a network
US9876264B2 (en) 2015-10-02 2018-01-23 At&T Intellectual Property I, Lp Communication system, guided wave switch and methods for use therewith
US10355367B2 (en) 2015-10-16 2019-07-16 At&T Intellectual Property I, L.P. Antenna structure for exchanging wireless signals
US9860075B1 (en) 2016-08-26 2018-01-02 At&T Intellectual Property I, L.P. Method and communication node for broadband distribution
US10135147B2 (en) 2016-10-18 2018-11-20 At&T Intellectual Property I, L.P. Apparatus and methods for launching guided waves via an antenna
US10135146B2 (en) 2016-10-18 2018-11-20 At&T Intellectual Property I, L.P. Apparatus and methods for launching guided waves via circuits
US10811767B2 (en) 2016-10-21 2020-10-20 At&T Intellectual Property I, L.P. System and dielectric antenna with convex dielectric radome
US9991580B2 (en) 2016-10-21 2018-06-05 At&T Intellectual Property I, L.P. Launcher and coupling system for guided wave mode cancellation
US10374316B2 (en) 2016-10-21 2019-08-06 At&T Intellectual Property I, L.P. System and dielectric antenna with non-uniform dielectric
US9876605B1 (en) 2016-10-21 2018-01-23 At&T Intellectual Property I, L.P. Launcher and coupling system to support desired guided wave mode
US10312567B2 (en) 2016-10-26 2019-06-04 At&T Intellectual Property I, L.P. Launcher with planar strip antenna and methods for use therewith
US10291334B2 (en) 2016-11-03 2019-05-14 At&T Intellectual Property I, L.P. System for detecting a fault in a communication system
US10225025B2 (en) 2016-11-03 2019-03-05 At&T Intellectual Property I, L.P. Method and apparatus for detecting a fault in a communication system
US10498044B2 (en) 2016-11-03 2019-12-03 At&T Intellectual Property I, L.P. Apparatus for configuring a surface of an antenna
US10224634B2 (en) 2016-11-03 2019-03-05 At&T Intellectual Property I, L.P. Methods and apparatus for adjusting an operational characteristic of an antenna
US10340601B2 (en) 2016-11-23 2019-07-02 At&T Intellectual Property I, L.P. Multi-antenna system and methods for use therewith
US10535928B2 (en) 2016-11-23 2020-01-14 At&T Intellectual Property I, L.P. Antenna system and methods for use therewith
US10340603B2 (en) 2016-11-23 2019-07-02 At&T Intellectual Property I, L.P. Antenna system having shielded structural configurations for assembly
US10090594B2 (en) 2016-11-23 2018-10-02 At&T Intellectual Property I, L.P. Antenna system having structural configurations for assembly
US10178445B2 (en) 2016-11-23 2019-01-08 At&T Intellectual Property I, L.P. Methods, devices, and systems for load balancing between a plurality of waveguides
US10361489B2 (en) 2016-12-01 2019-07-23 At&T Intellectual Property I, L.P. Dielectric dish antenna system and methods for use therewith
US10305190B2 (en) 2016-12-01 2019-05-28 At&T Intellectual Property I, L.P. Reflecting dielectric antenna system and methods for use therewith
US10205212B2 (en) 2016-12-06 2019-02-12 At&T Intellectual Property I, L.P. Methods and apparatus for adjusting a phase of electromagnetic waves
US10694379B2 (en) 2016-12-06 2020-06-23 At&T Intellectual Property I, L.P. Waveguide system with device-based authentication and methods for use therewith
US10755542B2 (en) 2016-12-06 2020-08-25 At&T Intellectual Property I, L.P. Method and apparatus for surveillance via guided wave communication
US10637149B2 (en) 2016-12-06 2020-04-28 At&T Intellectual Property I, L.P. Injection molded dielectric antenna and methods for use therewith
US10135145B2 (en) 2016-12-06 2018-11-20 At&T Intellectual Property I, L.P. Apparatus and methods for generating an electromagnetic wave along a transmission medium
US10727599B2 (en) 2016-12-06 2020-07-28 At&T Intellectual Property I, L.P. Launcher with slot antenna and methods for use therewith
US10326494B2 (en) 2016-12-06 2019-06-18 At&T Intellectual Property I, L.P. Apparatus for measurement de-embedding and methods for use therewith
US9927517B1 (en) 2016-12-06 2018-03-27 At&T Intellectual Property I, L.P. Apparatus and methods for sensing rainfall
US10382976B2 (en) 2016-12-06 2019-08-13 At&T Intellectual Property I, L.P. Method and apparatus for managing wireless communications based on communication paths and network device positions
US10096883B2 (en) 2016-12-06 2018-10-09 At&T Intellectual Property I, L.P. Methods and apparatus for adjusting a wavelength electromagnetic waves
US10020844B2 (en) 2016-12-06 2018-07-10 T&T Intellectual Property I, L.P. Method and apparatus for broadcast communication via guided waves
US10439675B2 (en) 2016-12-06 2019-10-08 At&T Intellectual Property I, L.P. Method and apparatus for repeating guided wave communication signals
US10819035B2 (en) 2016-12-06 2020-10-27 At&T Intellectual Property I, L.P. Launcher with helical antenna and methods for use therewith
US10389029B2 (en) 2016-12-07 2019-08-20 At&T Intellectual Property I, L.P. Multi-feed dielectric antenna system with core selection and methods for use therewith
US10547348B2 (en) 2016-12-07 2020-01-28 At&T Intellectual Property I, L.P. Method and apparatus for switching transmission mediums in a communication system
US10027397B2 (en) 2016-12-07 2018-07-17 At&T Intellectual Property I, L.P. Distributed antenna system and methods for use therewith
US10359749B2 (en) 2016-12-07 2019-07-23 At&T Intellectual Property I, L.P. Method and apparatus for utilities management via guided wave communication
US10446936B2 (en) 2016-12-07 2019-10-15 At&T Intellectual Property I, L.P. Multi-feed dielectric antenna system and methods for use therewith
US9893795B1 (en) 2016-12-07 2018-02-13 At&T Intellectual Property I, Lp Method and repeater for broadband distribution
US10243270B2 (en) 2016-12-07 2019-03-26 At&T Intellectual Property I, L.P. Beam adaptive multi-feed dielectric antenna system and methods for use therewith
US10168695B2 (en) 2016-12-07 2019-01-01 At&T Intellectual Property I, L.P. Method and apparatus for controlling an unmanned aircraft
US10139820B2 (en) 2016-12-07 2018-11-27 At&T Intellectual Property I, L.P. Method and apparatus for deploying equipment of a communication system
US9911020B1 (en) 2016-12-08 2018-03-06 At&T Intellectual Property I, L.P. Method and apparatus for tracking via a radio frequency identification device
US10389037B2 (en) 2016-12-08 2019-08-20 At&T Intellectual Property I, L.P. Apparatus and methods for selecting sections of an antenna array and use therewith
US10103422B2 (en) 2016-12-08 2018-10-16 At&T Intellectual Property I, L.P. Method and apparatus for mounting network devices
US9998870B1 (en) 2016-12-08 2018-06-12 At&T Intellectual Property I, L.P. Method and apparatus for proximity sensing
US10938108B2 (en) 2016-12-08 2021-03-02 At&T Intellectual Property I, L.P. Frequency selective multi-feed dielectric antenna system and methods for use therewith
US10601494B2 (en) 2016-12-08 2020-03-24 At&T Intellectual Property I, L.P. Dual-band communication device and method for use therewith
US10777873B2 (en) 2016-12-08 2020-09-15 At&T Intellectual Property I, L.P. Method and apparatus for mounting network devices
US10326689B2 (en) 2016-12-08 2019-06-18 At&T Intellectual Property I, L.P. Method and system for providing alternative communication paths
US10916969B2 (en) 2016-12-08 2021-02-09 At&T Intellectual Property I, L.P. Method and apparatus for providing power using an inductive coupling
US10530505B2 (en) 2016-12-08 2020-01-07 At&T Intellectual Property I, L.P. Apparatus and methods for launching electromagnetic waves along a transmission medium
US10069535B2 (en) 2016-12-08 2018-09-04 At&T Intellectual Property I, L.P. Apparatus and methods for launching electromagnetic waves having a certain electric field structure
US10411356B2 (en) 2016-12-08 2019-09-10 At&T Intellectual Property I, L.P. Apparatus and methods for selectively targeting communication devices with an antenna array
US9838896B1 (en) 2016-12-09 2017-12-05 At&T Intellectual Property I, L.P. Method and apparatus for assessing network coverage
US10264586B2 (en) 2016-12-09 2019-04-16 At&T Mobility Ii Llc Cloud-based packet controller and methods for use therewith
US10340983B2 (en) 2016-12-09 2019-07-02 At&T Intellectual Property I, L.P. Method and apparatus for surveying remote sites via guided wave communications
US9973940B1 (en) 2017-02-27 2018-05-15 At&T Intellectual Property I, L.P. Apparatus and methods for dynamic impedance matching of a guided wave launcher
US10298293B2 (en) 2017-03-13 2019-05-21 At&T Intellectual Property I, L.P. Apparatus of communication utilizing wireless network devices
CN111684659B (zh) 2018-02-09 2022-07-05 京瓷Avx元器件公司 管状相控阵天线

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1099513A (fr) * 1954-01-22 1955-09-06 Thomson Houston Comp Francaise Antenne à large bande
DE1297707B (de) * 1962-06-29 1969-06-19 Rohde & Schwarz Antennenanordnung bestehend aus je einer Antenne fuer horizontal und vertikal polarisierte Abstrahlung
FR2092676A1 (fr) * 1970-05-29 1972-01-28 Truskanov David
US3936836A (en) * 1974-07-25 1976-02-03 Westinghouse Electric Corporation Z slot antenna

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3713166A (en) * 1970-12-18 1973-01-23 Ball Brothers Res Corp Flush mounted antenna and receiver tank circuit assembly
GB1364941A (en) * 1972-01-05 1974-08-29 Secr Defence Aerials
US3747114A (en) * 1972-02-18 1973-07-17 Textron Inc Planar dipole array mounted on dielectric substrate
US4054874A (en) * 1975-06-11 1977-10-18 Hughes Aircraft Company Microstrip-dipole antenna elements and arrays thereof
US4079268A (en) * 1976-10-06 1978-03-14 Nasa Thin conformal antenna array for microwave power conversion
JPS6011846B2 (ja) * 1977-06-28 1985-03-28 日本電気株式会社 人工衛星空中線装置
US4162499A (en) * 1977-10-26 1979-07-24 The United States Of America As Represented By The Secretary Of The Army Flush-mounted piggyback microstrip antenna
GB2113476B (en) * 1982-01-15 1985-07-03 Marconi Co Ltd Antenna arrangement
US4605932A (en) * 1984-06-06 1986-08-12 The United States Of America As Represented By The Secretary Of The Navy Nested microstrip arrays

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1099513A (fr) * 1954-01-22 1955-09-06 Thomson Houston Comp Francaise Antenne à large bande
DE1297707B (de) * 1962-06-29 1969-06-19 Rohde & Schwarz Antennenanordnung bestehend aus je einer Antenne fuer horizontal und vertikal polarisierte Abstrahlung
FR2092676A1 (fr) * 1970-05-29 1972-01-28 Truskanov David
US3936836A (en) * 1974-07-25 1976-02-03 Westinghouse Electric Corporation Z slot antenna

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
AP-S INTERNATIONAL SYMPOSIUM 1979, INTERNATIONAL SYMPOSIUM DIGEST ANTENNAS AND PROPAGATION, vol. 2, juin 1979, Seattle, Washington, US, pages 489-493, IEEE, New York, US; J.D. MARTINKO: "International sun-earth explorers medium gain antenna systems for the A&C missions" *
AP-S INTERNATIONAL SYMPOSIUM DIGEST ANTENNAS AND PROPAGATION, 1975, Urbana, IL, pages 177-180, IEEE, New York, US; H.D. WEINSCHEL: "A cylindrical array of circularly polarized microstrip antenna" *
L'ONDE ELECTRIQUE, vol. 61, no. 4, 1981, pages 34-41, Masson, Paris, FR; G. DUBOST et al.: "Réseau de doublets repliés symétriques en plaques, à large bande autour de 12 GHz" *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2698212A1 (fr) * 1992-11-16 1994-05-20 Alcatel Espace Source élémentaire rayonnante pour antenne réseau et sous-ensemble rayonnant comportant de telles sources.
EP0598656A1 (fr) * 1992-11-16 1994-05-25 Alcatel Espace Source élémentaire rayonnante pour antenne réseau et sous-ensemble rayonnant comportant de telles sources
US5434581A (en) * 1992-11-16 1995-07-18 Alcatel N.V. Societe Dite Broadband cavity-like array antenna element and a conformal array subsystem comprising such elements
EP1056154A1 (fr) * 1999-02-16 2000-11-29 Radio Frequency Systems Inc. Antenne microruban en forme cylindrique
AU759468B2 (en) * 1999-02-16 2003-04-17 Radio Frequency Systems Inc. Microstrip antenna

Also Published As

Publication number Publication date
FR2583226B1 (fr) 1988-03-25
US4899162A (en) 1990-02-06
CA1274015A (fr) 1990-09-11
FR2583226A1 (fr) 1986-12-12

Similar Documents

Publication Publication Date Title
EP0205393A1 (fr) Antenne omnidirectionnelle cylindrique
EP0108463B1 (fr) Elément rayonnant ou récepteur de signaux hyperfréquences à polarisations orthogonales et antenne plane comprenant un réseau de tels éléments juxtaposés
EP0243289B1 (fr) Antenne plaque à double polarisations croisées
EP0205212B1 (fr) Modules unitaires d'antenne hyperfréquences et antenne hyperfréquences comprenant de tels modules
LU86727A1 (fr) Antennes a microbandes a couplage electromagnetique,a plaquettes de transmission couplees capacitivement a des lignes de transmission
EP0374008B1 (fr) Antenne à couverture tridimensionnelle et balayage électronique, du type réseau volumique raréfié aléatoire
EP0315141B1 (fr) Dispositif d'excitation d'un guide d'onde en polarisation circulaire par une antenne plane
FR2652453A1 (fr) Antenne coaxiale a fentes du type a alimentation a ondes progressives.
FR2672436A1 (fr) Dispositif de controle electronique du diagramme de rayonnement d'une antenne a un ou plusieurs faisceaux de direction et/ou de largeur variable.
FR2743199A1 (fr) Antenne reseau plane hyperfrequence receptrice et/ou emettrice, et son application a la reception de satellites de television geostationnaires
EP0575211A1 (fr) Motif élémentaire d'antenne à large bande passante et antenne-réseau le comportant
CA2869648A1 (fr) Repartiteur de puissance compact bipolarisation, reseau de plusieurs repartiteurs, element rayonnant compact et antenne plane comportant un tel repartiteur
EP0682383A1 (fr) Antenne multi-faisceaux pour la réception de micro-ondes émanant de plusieurs satellites
EP3176875B1 (fr) Architecture d'antenne active a formation de faisceaux hybride reconfigurable
EP2654121B1 (fr) Réseau de formation de faisceau d'antenne à faible encombrement pour réseau antennaire circulaire ou tronc-conique
EP0477102B1 (fr) Réseau directif pour radiocommunications, à éléments rayonnants adjacents et ensemble de tels réseaux directifs
CA2808511C (fr) Antenne plane pour terminal fonctionnant en double polarisation circulaire, terminal aeroporte et systeme de telecommunication par satellite comportant au moins une telle antenne
FR2552273A1 (fr) Antenne hyperfrequence omnidirectionnelle
WO1993000723A1 (fr) Antenne reseau lineaire
EP0225219A1 (fr) Antenne réseau à balayage conique et radar comportant une telle antenne
CA2327371C (fr) Source rayonnante pour antenne d'emission et de reception destinee a etre installee a bord d'un satellite
WO1991018428A1 (fr) Antenne orientable plane, fonctionnant en micro-ondes
FR2629644A1 (fr) Antenne boucle large bande a alimentation dissymetrique, notamment antenne pour emission, et antenne reseau formee d'une pluralite de telles antennes
FR2634598A1 (fr) Antenne omnidirectionnelle, notamment pour l'emission de signaux de radiodiffusion ou de television dans la bande des ondes decimetriques, et systeme rayonnant forme d'un groupement de ces antennes
EP0156684A1 (fr) Elément rayonnant des ondes électromagnétiques, et son application à une antenne à balayage électronique

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB NL SE

17P Request for examination filed

Effective date: 19870603

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ETAT FRANCAIS REPRESENTE PAR LE MINISTRE DES PTT (

Owner name: ETABLISSEMENT PUBLIC DE DIFFUSION DIT TELEDIFFU

17Q First examination report despatched

Effective date: 19881208

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED

18R Application refused

Effective date: 19930614

RIN1 Information on inventor provided before grant (corrected)

Inventor name: VINATIER, CLAUDE JACQUES

Inventor name: BAYETTO, JEAN-CHRISTOPHE MARIE