EP0200645A1 - Procédé et dispositif d'introduction d'échantillons pour spectromètre de masse - Google Patents

Procédé et dispositif d'introduction d'échantillons pour spectromètre de masse Download PDF

Info

Publication number
EP0200645A1
EP0200645A1 EP86400902A EP86400902A EP0200645A1 EP 0200645 A1 EP0200645 A1 EP 0200645A1 EP 86400902 A EP86400902 A EP 86400902A EP 86400902 A EP86400902 A EP 86400902A EP 0200645 A1 EP0200645 A1 EP 0200645A1
Authority
EP
European Patent Office
Prior art keywords
micro
sample
tube
source
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP86400902A
Other languages
German (de)
English (en)
Other versions
EP0200645B1 (fr
Inventor
Robert Boyer
Jean-Pierre Journoux
Claude Duval
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Orano Demantelement SAS
Original Assignee
Compagnie Generale des Matieres Nucleaires SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Compagnie Generale des Matieres Nucleaires SA filed Critical Compagnie Generale des Matieres Nucleaires SA
Publication of EP0200645A1 publication Critical patent/EP0200645A1/fr
Application granted granted Critical
Publication of EP0200645B1 publication Critical patent/EP0200645B1/fr
Expired legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • H01J49/04Arrangements for introducing or extracting samples to be analysed, e.g. vacuum locks; Arrangements for external adjustment of electron- or ion-optical components
    • H01J49/0422Arrangements for introducing or extracting samples to be analysed, e.g. vacuum locks; Arrangements for external adjustment of electron- or ion-optical components for gaseous samples
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • H01J49/04Arrangements for introducing or extracting samples to be analysed, e.g. vacuum locks; Arrangements for external adjustment of electron- or ion-optical components
    • H01J49/0468Arrangements for introducing or extracting samples to be analysed, e.g. vacuum locks; Arrangements for external adjustment of electron- or ion-optical components with means for heating or cooling the sample
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • H01J49/04Arrangements for introducing or extracting samples to be analysed, e.g. vacuum locks; Arrangements for external adjustment of electron- or ion-optical components
    • H01J49/0495Vacuum locks; Valves

Definitions

  • the invention relates to the field of sample analysis by mass spectrometry and it relates more particularly to the methods and devices making it possible to introduce, into the spectrometer, a micro-sample flow rate, the ions of which are subjected to analysis.
  • mass spectrometers use either a source of thermionic ions or a source of ions with electron bombardment of a gas flow.
  • the first solution has the advantage of allowing to use * samples of very low weight, frequently from 0.1 to 10 micrograms.
  • the sample is deposited, usually in liquid form, on a refractory metal tape. By evaporation of the liquid, a solid deposit is obtained.
  • the ribbon is placed in the ion source of the device, then brought to high temperature (2600 ° C for example) by Joule effect.
  • the sample then emits neutral molecules and ions. The latter, accelerated and focused in the form of a particle beam, are subjected to analysis.
  • a mass spectrometer using a thermionic source cannot be used to conduct chemical composition analyzes and can very easily be connected online to a separation or treatment line.
  • the usual method consists in introducing the sample from a sealed container through piping and micro-leakage valves allowing a well determined and very low gas flow to pass without altering the very low pressure which must prevail in the analyzer of the spectrometer.
  • the molecules of gas or vapor which pass at very low flow rate are subjected to the action of a beam of electrons of determined energy which ionizes the gas to give rise to ions subjected to analysis.
  • the intensity of the ion currents obtained is usually of the order of 10-9 A, that is to say much higher than in thermo-ionization spectrometers, which simplifies the measurement.
  • measurements made using a spectrometer using an ion source by electron bombardment are generally differential measurements, which guarantee high precision, typically 50 to 100 times higher than with a thermionization source.
  • the present invention aims to provide a supply method and device for a mass spectrometer, using the ionization technique of a very low flow rate, typically using an electron beam, but responding better than those previously known to the requirements of the practice, in particular in that they authorize the use of samples of very low mass.
  • the invention proposes in particular a process for introducing micro-samples in gaseous form into the ionization source of a mass spectrum, process according to which the sample is transformed into gaseous compound by heating in an atmosphere of a reactive gas, a flow of the compound and of the reactive gas in molecular flow regime is organized towards a wall maintained at a temperature low enough to trap the gaseous compound and the reagent and the gaseous compounds are selectively released by temperature control. of said wall.
  • the invention also proposes a device for introducing micro-samples into the ionization source of a mass spectrometer, comprising a reactor provided with means for introducing the micro-sample, with means for heating the micro-sample, means for connecting to a vacuum source and means for supplying an adjustable flow rate of reagent for transforming the micro-sample into gaseous compounds; a throttled and calibrated passage of gas flow from the reactor; and a sublimation tube connected on the one hand to the passage, on the other hand to the ion source of the spectrometer via a valve, provided with means making it possible to bring it to an adjustable cryogenic temperature.
  • this device keeps all the advantages of using an electron bombardment source in the apparatus: it makes it possible to work with relatively intense ion beams, which simplifies their measurement; it avoids breaking the vacuum in the source to introduce the sample; It is not necessary to have watertight containers to handle the samples and connect them to the device.
  • the proposed device has many advantages: the size of the samples to be analyzed is reduced to a few micrograms; It is not necessary to have sealed containers for handling the samples and introducing them into the device; the consumption of standards or reference products can be reduced to the order of magnitude of that of the samples, the preparation of which is simple and rapid.
  • the device shown in Figures t 2 can be viewed as comprising a reactor 10, the essential element of which is a micro-oven with adjustable temperature, a passage 12 sufficiently constricted for the flow to take place therein in the form of molecular flow, and a micro- sublimator 14.
  • the microsublimator is connected, by means of a valve 16, to the ion source 18 of the spectrometer, which can be of any of the types making it possible to ionize a low flow of gas which penetrates it .
  • this source will perform ionization by electron bombardment.
  • the reactor 10 the schematic diagram of which is shown in FIG. 1, comprises an enclosure, generally cylindrical, in the axis of which is placed the actual micro-oven 20 consisting of a metal tube capable of withstanding high temperatures, for example nickel , nichrome or "monel". Means are provided for heating the oven by the Joule effect.
  • these means are shown in the form of an electrical source 22 connected to one end of the tube, the other of which is grounded.
  • Another solution consists in winding an electric heating resistor around the tube 20.
  • This tube can carry a temperature sensor 24 connected to a circuit 26 for regulating the temperature by modulating the electric power supplied by the source 22.
  • a sample holder 28 is provided to allow the introduction of a very small quantity of samples, in the form of a deposit on a needle or a thread.
  • the head of this sample holder will be provided to seal the microfour.
  • One end of the tube 20 forming a micro-oven is connected, by a valve 30, to a vacuum source 32 (mechanical primary pump for example) and to a source 34 of reagent, of a nature such that it gives rise with the sample to a gaseous or volatile compound.
  • the sources 32 and 34 are each provided with a shut-off valve 36 and 38.
  • the valves 30 and 38 at least must be made of a material resistant to very corrosive gases, since it will frequently be necessary to use highly reactive chemical species, such as fluorine.
  • the valve 30 must also be strictly sealed.
  • the constricted passage 12 may have a fixed passage section.
  • a diaphragm or a capillary duct can be used. It can also be adjustable and formed by a conventional type micro-leakage valve or a piezoelectric valve, the opening of which is caused by the deformation of a piezoelectric crystal under the action of an electric field.
  • the passage must prohibit any entry of ambient air and it must offer a passage section having a sufficiently small diameter (typically a few microns) so that the gas flow between the reactor 10 and the microsublimation tube maintained at low pressure or in molecular regime. We know that in this regime the free path of the gaseous molecules is greater than the transverse dimensions of the passage.
  • the microsublimator 14 will generally consist of a tube 40 of small diameter, one end of which is tightly connected to the passage 12 and the other end is connected, by means of the valve 16, to the ion source 18.
  • This tube is provided with cryogenic temperature cooling means.
  • cryogenic temperature cooling means These means are represented in FIG. 1 in the form of an enclosure 42 provided with an inlet and an outlet for fluid at very low temperature.
  • adjustable heating means are associated with it. In the case of Figure 1, these means are constituted by a heating resistor 44 wound around the tube 40 and supplied by an electric generator 46 of adjustable power.
  • a temperature probe may be placed on the tube 40 to regulate, via a circuit similar to circuit 26, the temperature of the tube to an adjustable value. This temperature can also be slaved to a reference value by the intensity of the ion beams received at the collectors of the mass spectrometer.
  • a signal is taken from the ion current amplifier. This is constantly compared with a reference representing the chosen temperature, this reference being able to be programmed itself using a computer. A voltage is therefore obtained which is converted into calibrated pulses giving quantities of energy supplying the heating systems of the tube 40.
  • a valve 46 in parallel with the valve 16, makes it possible to connect the outlet of the tube 40 to a vacuum pump.
  • An additional connector provided with a valve 47 may be provided to connect the ion source to a reference gas supply and / or to another device similar to that which has just been described.
  • the elements 10, 12 and 14 of FIG. 1 are grouped together to form a one-piece assembly made up of several assembled parts, for example by welding.
  • the reactor is delimited by two nozzles 48 and 50 and a cylindrical shell in the axis of which the tube 20 is placed, a few millimeters in internal diameter, forming the micro-oven.
  • the downstream end of this tube is grounded via the end piece 50.
  • the upstream end isolated from ground by a pin 52, is connected to the electrical heating source by means of a tab 54 which crosses the vi.ro- tightly.
  • the sample holder 28 comprises a head screwable into the end piece 48, the seal being ensured by a seal 58.
  • a locking screw 60 provided in the head makes it possible to retain a thread or a needle 62 for supporting the dry sample.
  • a channel 64 formed in the end piece 48 makes it possible to connect the tube 20 to a valve 30 for admitting the reagent (gaseous fluorinating agent in general) or to a vacuum pump.
  • the latter has a very similar constitution to that of the reactor 10, except that the ferrule is provided with fittings 68 and 70 for inlet and outlet of cryogenic fluid.
  • the micro-sublimation tube 40 is connected, via an insulating pin 72, to the end piece 50 and its downstream end is welded to an end piece 74 provided with a seat intended for the valve 46 (not shown) .
  • this nozzle comprises a tubular extension 76 intended to be connected to the valve 16.
  • the device used is of the type shown in FIG. 2.
  • the sample must first be transferred to the sample holder 28.
  • the wire 62 which for example is 0.8 mm in diameter and 7 cm long, is deposited, using a micro-pipette , a few drops of uranyl nitrate containing a total of for example 10 micrograms of uranium to be analyzed.
  • the wire covered with the deposit is placed in the sample holder 28 and the latter fixed to the end piece 48.
  • the tube 20 is put under vacuum by pumping up to a pressure of the order of 10 _ 3 torr. And heating the tube 20, by passing current to a temperature of about 400 * C to remove the residual water vapor.
  • the temperature of the micro-sublimation tube 20 is then brought to that of liquid nitrogen by circulation of this nitrogen around the tube 40, from the connection 68 to the connection 70 by the circulation of a heat transfer gas (helium for example) brought to the temperature of liquid nitrogen.
  • a heat transfer gas helium for example
  • valve 12 is closed.
  • the pumping valve 46 is open, and one very gradually heats the tube 40 by passing an electric current. The oxygen sublimes and it is evacuated by the vacuum pump, through the valve 46.
  • the valve 46 is closed and the valve 16 is opened.
  • the heating is carried out with a temperature programming such that, as soon as the flow rate of hexafluoride reaches a predetermined value (that is to say when one reaches the set value of the intensity of the ion beam in the spectrometer), the temperature is controlled, so that the flow rate, measured by means not shown, remains constant until the mass of hexafluoride trapped uranium.
  • a predetermined value that is to say when one reaches the set value of the intensity of the ion beam in the spectrometer
  • Another solution consists in using two devices of the kind shown in FIG. 2. One of them receives a wire carrying a deposit whose isotopic ratio is to be measured, the other a deposit of U 0 of known isotopic composition.
  • This very low mass allows in particular the use of a device according to the invention for the analysis of irradiated fuels containing the isotopes of plutonium, the analysis then being carried out on PuF 6 formed by fluorination of PuO 2 .
  • the invention is not however limited to these particular embodiments. It is applicable whenever a reaction giving a gaseous compound of the sample is available.
  • the method is applicable in the case of carbon, which can be fluorinated to give CF 4 , which is particularly interesting for the isotopic analysis C 12 / C 14 used in dating.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Abstract

Le dispositif permet d'introduire des microéchantillons dans la source d'ionisation du spectromètre. Il comprend un réacteur (10) muni de moyens d'introduction du micro-échantillon, de moyens de chauffage du micro-échantillon, de moyens de liaison avec une source de vide et de moyens (38, 36) d'amenée d'un débit réglable de réactif de transformation du micro-échantillon en composés gazeux; un passage étranglé et calibré (12) d'écoulement des gaz à partir du réacteur; et un tube de sublimation (40) relié, d'une part, au passage, d'autre part, à la source d'ions du spectromètre par l'intermédiaire d'une vanne (16), muni de moyens permettant de le porter à une température cryogénique réglable.

Description

  • L'invention concerne le domaine de l'analyse d'échantillons par spectrométrie de masse et elle a plus particulièrement pour objet les procédés et dispositifs permettant d'introduire, dans le spectromètre, un micro- débit d'échantillon dont les ions sont soumis à analyse.
  • Elle trouve une application particulièrement importante dans le domaine de l'analyse isotopique, qui doit souvent être effectuée sur des échantillons de petite taille, par exemple parce que ces échantillons sont fortement radioactifs ou particulièrement précieux.
  • A l'heure actuelle, les spectromètres de masse utilisent soit une source d'ions thermo-ionique, soit une source d'ions à bombardement électronique d'un flux gazeux.
  • La première solution a l'avantagé de permettre d'utiliser des* échantillons de masse très faible, fréquemment comprise entre 0,1 et 10 microgrammes. L'échantillon est déposé, habituellement sous forme liquide, sur un ruban en métal réfractaire. Par évaporation du liquide, on obtient un dépôt solide. Le ruban est placé dans la source d'ions de l'appareil, puis porté à haute température (2600°C par exemple) par effet Joule. L'échantillon émet alors des molécules neutres et des ions. Ces derniers, accélérés et focalisés sous forme d'un faisceau de particules, sont soumis à l'analyse.
  • Si cette technique a l'avantage de permettre l'utilisation de très faibles quantités d'échantillons, elle a en contrepartie de nombreux inconvénients. L'intensité des courants ioniques obtenue au collecteur du spectromètre est faible : elle implique, dans la pratique, qu'il soit possible de mesurer des courants aussi faibles que 10-17 ampères, ce qui exige des multiplicateurs. L'émission d'ions par thermo-ionisation est mal connue, sa stabilité et son évolution dans le temps ne sont pas toujours parfaitement maitrisées. Il est nécessaire de tenir compte d'effets de fractionnement isotopique ou de discrimination de masse par des corrections, établies généralement en étalonnant l'appareil avec des produits connus. On ne peut obtenir des mesures stables et reproductibles qu'en contrôlant avec précision la pureté de l'échantillon, son mode de préparation et de dépôt, la pureté du réfractaire constituant le support, les dégazages, la vitesse de montée en température.
  • Toutes ces limitations se traduisent par le fait qu'on ne peut espérer dépasser une précision de l'ordre du millième lorsque les rapports isotopiques dans l'échantillon sont de l'ordre de 1/200, ce qui est courant dans le domaine nucléaire.
  • Au surplus, un spectromètre de masse utilisant une source thermo-ionique n'est pas utilisable pour conduire des analyses de composition chimique et peut très difficilement être connecté en ligne sur une ligne de séparation ou de traitement.
  • Une partie des inconvénients énumérés ci-dessus des sources thermo-ioniques est écartée dans les sources à bombardement électronique, qui sont d'application beaucoup plus large puisqu'elles permettent des analyses chimiques aussi bien qu'isotopiques, mais impliquent que l'échantillon à analyser soit gazeux ou facilement vaporisable.
  • Le procédé habituel consiste à introduire l'échantillon à partir d'un récipient étanche par des canalisations et des vannes à microfuite laissant passer un débit gazeux bien déterminé et très faible pour ne pas altérer la très basse pression qui doit régner dans l'analyseur du spectromètre. Les molécules de gaz ou de vapeur qui passent à très faible débit sont soumises à l'action d'un faisceau d'électrons d'énergie déterminée qui ionise le gaz pour donner naissance à des ions soumis à l'analyse.
  • L'intensité des courants ioniques obtenue est habituellement de l'ordre de 10-9 A, c'est-à-dire beaucoup plus élevée que dans les spectromètres à thermo-ionisation, ce qui simplifie la mesure.
  • Comme il n'est pas nécessaire de "casser le vide" dans la source pour introduire l'échantillon, contrairement à ce qui se passe dans le cas d'une source thermo-ionique et que la durée avant stabilisation est plus courte, le temps nécessaire à l'obtention d'un résultat est globalement réduit dans un facteur de l'ordre de 4, ce qui rend l'appareil utilisable en ligne.
  • En contrepartie des avantages mentionnés ci-dessus, les sources à bombardement électronique présentent des inconvénients qui les rendent difficilement utilisables dans certains cas.
  • En particulier, il est nécessaire de disposer d'échantillons de taille plus importante que dans le premier cas et de les manipuler. On ne sait en effet pas concevoir des bouteilles à échantillons, des volumes de transfert et des vannes ayant des capacités internes inférieures à quelques centimètres cubes au total.De plus, l'interaction des molécules gazeuses avec les parois qui les contiennent fait apparaitre des phénomènes de mémoire qui influencent les résultats des mesures et obligent à tenir compte de facteurs correctifs, déterminés à partir d'étalons consommables.
  • En d'autres termes, les mesures effectuées à l'aide d'un spectromètre utilisant une source d'ions par bombardement électronique sont en règle générale des mesures différentielles, qui garantissent une grande précision, typiquement 50 à 100 fois plus élevée qu'avec une source à thermo-ionisation.
  • On voit que chacune des solutions connues présente des inconvénients qui la rendent impropre à un certain nombre d'applications. En particulier, les sources d'ions utilisant l'ionisation d'un débit moléculaire faible exigent des volumes importants d'échantillons, ce qui représente une contrainte grave ou même rédhibitoire dans certains cas.
  • La présente invention vise à fournir un procédé et un dispositif d'alimentation pour spectromètre de masse, utilisant la technique de ionisation d'un très faible débit, typiquement à l'aide d'un faisceau d'électrons, mais répondant mieux que ceux antérieurement connus aux exigences de la pratique, notamment en ce qu'ils autorisent la mise en oeuvre d'échantillons de très faible masse.
  • Dans ce but, l'invention propose notamment un procédé d'introduction de micro-échantillons sous forme gazeuse dans la source d'ionisation d'un spectre de masse, procédé suivant lequel on transforme l'échantillon en composé gazeux par chauffage dans une atmosphère d'un gaz réactif, on organise un écoulement du composé et du gaz réactif en régime de débit moléculaire vers une paroi maintenue à température suffisamment basse pour piéger le composé gazeux et le réactif et on libère sélectivement les composés gazeux par commande de la température-de ladite paroi.
  • L'invention propose également un dispositif d'introduction de micro-échantillons dans la source d'ionisation d'un spectromètre de masse, comprenant un réacteur muni de moyens d'introduction du micro-échantillon, de moyens de chauffage du micro-échantillon, de moyens de liaison avec une source de vide et de moyens d'amenée d'un débit réglable de réactif de transformation du micro-échantillon en composés gazeux ; un passage étranglé et calibré d'écoulement des gaz à partir du réacteur ; et un tube de sublimation relié d'une part au passage, d'autre part à la source d'ions du spectromètre par l'intermédiaire d'une vanne, muni de moyens permettant de le porter à une température cryogénique réglable.
  • On voit que ce dispositif conserve à l'appareil tous les avantages de l'utilisation d'une source à bombardement électronique : il permet de travailler avec des faisceaux d'ions relativement intenses, ce qui simplifie leur mesure ; il évite de casser le vide dans la source pour introduire l'échantillon ; il n'est pas nécessaire de disposer de récipients étanches pour manipuler les échantillons et les relier au dispositif.
  • Et, comparé au dispositif classique pour spectromètre à bombardement électronique, le dispositif proposé présente de nombreux avantages : la taille des échantillons à analyser est réduite à quelques microgrammes ; il n'est pas nécessaire de disposer de récipients étanches pour manipuler les échantillons et les introduire dans le dispositif ; la consommation d'étalons ou produits de référence peut être réduite à l'ordre de grandeur de celle des échantillons, dont la préparation est simple et rapide.
  • Au surplus, on peut aisément placer plusieurs dispositifs à l'entrée de la source d'ions à bombardement électronique d'un-spectromètre, ce qui autorise des comparaisons faciles d'échantillons entre eux ou avec un étalon. De plus, un dispositif permettant l'admission d'un gaz de référence contenu dans une bouteille étanche peut être prévu pour le comparer au gaz échantillon issu du tube de sublimation.
  • L'invention sera mieux comprise à la lecture de la description qui suit d'un dispositif qui en constitue un mode particulier d'exécution donné à titre d'exemple non limitatif.
  • La description se réfère aux dessins qui l'accompagnent, dans lesquels :
    • - la figure 1 est un schéma de principe du dispositif,
    • - la figure 2 montre un dispositif particulier suivant l'invention, en coupe suivant un plan passant par son axe.
  • Le dispositif montré en Figures let 2 peut être regardé comme comportant un réacteur 10 dont l'élément essentiel est un microfour à température réglable, un passage 12 suffisamment étranglé pour que l'écoulement y intervienne sous forme de débit moléculaire, et un micro-sublimeur 14. Le microsublimeur est relié, par l'intermédiaire d'une vanne 16, à la source d'ions 18 du spectromètre, qui peut être de l'un quelconque des types permettant d'ioniser un faible débit de gaz qui le pénètre. En règle générale, cette source effectuera l'ionisation par bombardement électronique.
  • Le réacteur 10 dont le schéma de principe est montré en figure 1 comporte une enceinte, généralement cylindrique, dans l'axe de laquelle est placé le microfour proprement dit 20 constitué par un tube en métal capable de supporter des hautes températures, par exemple en nickel, nichrome ou "monel". Des moyens sont prévus pour chauffer le four par effet Joule. Sur la figure 1, ces moyens sont représentés sous forme d'une source électrique 22 reliée à une extrémité du tube dont l'autre est à la masse. Une autre solution consiste à bobiner une résistance électrique chauffante autour du tube 20. Ce tube peut porter un capteur de température 24 relié à un circuit 26 de régulation de température par modulation de la puissance électrique fournie par la source 22.
  • Un porte-échantillon 28 est prévu pour permettre d'introduire une quantité très faible d'échantillons, sous forme d'un dépôt sur une aiguille ou un fil. La tête de ce porte-échantillon sera prévue pour obturer de façon étanche le microfour.
  • Une des extrémités du tube 20 formant microfour est reliée, par une vanne 30, à une source de vide 32 (pompe primaire mécanique par exemple) et à une source 34 de réactif, de nature telle qu'il donne naissance avec l'échantillon à un composé gazeux ou volatil. Les sources 32 et 34 sont munies chacune d'une vanne d'arrêt 36 et 38. En règle générale, les vannes 30 et 38 au moins doivent être en un matériau résistant aux gaz très corrosifs, étant donné qu'on sera fréquemment amené à utiliser des espèces chimiques très réactives, telles que le fluor. La vanne 30 doit au surplus être rigoureusement étanche.
  • Le passage étranglé 12 peut présenter une section de passage fixe. On peut dans ce cas utiliser un diaphragme ou un conduit capillaire. Elle peut également être ajustable et formée par une vanne à microfuite de type classique ou une vanne piézo-électrique, dont l'ouverture est provoquée par la déformation d'un cristal piézo-électrique sous l'action d'un champ électrique. Mais, dans tous les cas, le passage doit interdire toute entrée d'air ambiant et il doit offrir une section de passage ayant un diamètre suffisamment faible (typiquement quelques microns) pour que le débit gazeux entre le réacteur 10 et le tube de microsublimation maintenu à basse pression soit en régime moléculaire. On sait que dans ce régime le libre parcours des molécules gazeuses est supérieur aux dimensions transversales du passage.
  • Le microsublimateur 14 sera généralement constitué par un tube 40 de faible diamètre, dont une extrémité est reliée de façon étanche au passage 12 et l'autre extrémité est reliée, par l'intermédiaire de la vanne 16, à la source d'ions 18. Ce tube est muni de moyens de refroidissement à température cryogénique. Ces moyens sont représentés sur la figure 1 sous forme d'une enceinte 42 munie d'une entrée et d'une sortie de fluide à très basse température. Une autre solution consiste à placer le tube dans le circuit d'un cryogénérateur. Pour permettre de régler la température du tube 40, des moyens de chauffage réglables lui sont associés. Dans le cas de la figure 1, ces moyens sont constitués par une résistance chauffante 44 bobinée autour du tube 40 et alimentée par un générateur électrique 46 de puissance réglable. Une sonde de température pourra être placée sur le tube 40 pour réguler, par l'intermédiaire d'un circuit similaire au circuit 26, la température du tube à une valeur réglable. Cette température peut également être asservie à une valeur de référence par l'intensité des faisceaux d'ions reçus aux collecteurs du spectromètre de masse.
  • Pour ce faire, un signal est prélevé sur l'amplificateur de mesure du courant d'ions. Celui-ci est comparé en permanence à une référence représentant la température choisie, cette référence pouvant être elle-même programmée à l'aide d'un calculateur. On obtient donc une tension qui est convertie en impulsions calibrées donnant des quantités d'énergie alimentant les systèmes de chauffage du tube 40.
  • A chaque diminution du signal de mesure, une impulsion en quantité d'énergie correspondante est appliquée au chauffage régulant ainsi la quantité de produit introduit vers la source du spectromètre de masse. Dans la pratique, on sera amené à porter le tube à une température qui peut varier entre quelques K et quelques centaines de K.
  • Une vanne 46, en parallèle avec la vanne 16, permet de relier la sortie du tube 40 à une pompe à vide.
  • Un raccord supplémentaire muni d'une vanne 47 (ou plusieurs) peut être prévu pour raccorder la source d'ions à une alimentation en gaz de référence et/ou à un autre dispositif similaire à celui qui vient d'être décrit.
  • Dans le mode particulier de réalisation montré en figure 2, les éléments 10,12 et 14 de la figure 1 sont regroupés pour constituer un ensemble monobloc en plusieurs pièces assemblées, par exemple par soudage.
  • Sur la figure 2, où les organes correspondant à ceux de la figure 1 sont désignés par le même numéro de référence, le réacteur est délimité par deux embouts 48 et 50 et une virole cylindrique dans l'axe de laquelle est placé le tube 20, de quelques millimètres de diamètre intérieur, formant le microfour. L'extrémité aval de ce tube est mise à la masse par l'intermédiaire de l'embout 50. L'extrémité amont, isolée de la masse par un pion 52, est reliée à la source électrique de chauffage par l'intermédiaire d'une patte 54 qui traverse la vi.ro- le de façon étanche. Le porte-échantillon 28 comporte une tête vissable dans l'embout 48, l'étanchéité étant assurée par un joint 58. Une vis de blocage 60 prévue dans la tête permet de retenir un fil ou une aiguille 62 de support d'échantillon sec. Un canal 64 ménagé dans l'embout 48 permet de raccorder le tube 20 à une vanne 30 d'admission de réactif (agent fluorant gazeux en général) ou à une pompe à vide.
  • Dans l'embout 50 est usiné un siège 66 destiné à recevoir la vanne à micro-fuite (non reprêsentée) constituant le passage-12 vers le micro-sublimateur 14. Ce dernier a une constitution très comparable à celle du réacteur 10, si ce n'est que la virole est munie de raccords 68 et 70 d'entrée et de sortie de fluide cryogénique. Le tube 40 de micro-sublimation est relié, par l'intermédiaire d'un pion isolant 72, à l'embout 50 et son extrémité aval est soudée à un embout 74 pourvu d'un siège destiné à la vanne 46 (non représentée).
  • Enfin, cet embout comprend un prolongement tubulaire 76 destiné à être raccordé à la vanne 16.
  • A titre de simple exemple de mise en oeuvre du procédé suivant l'invention, on décrira maintenant l'introduction d'échantillons en vue de l'analyse isotopique de l'uranium.
  • Le dispositif utilisé est du genre montré en figure 2.
  • L'échantillon doit d'abord être reporté sur le porte-échantillon 28. Sur le fil 62, qui a par exemple 0,8 mm de diamètre et 7 cm de long, on dépose, à l'aide d'une micro-pipette, quelques gouttes de nitrate d'uranyle contenant au total par exemple 10 microgrammes d'uranium à analyser.
  • Pour transformer ce dépôt en phase solide, on pose le fil entre deux contacts électriques et on fait circuler un courant de chauffage par effet Joule. Le nitrate d'uranyle se transforme en un dépôt de U03, puis U308 lorsque la température dépasse 350*C.
  • Le fil recouvert du dépôt est mis en place dans le porte-échantillon 28 et ce dernier fixé sur l'embout 48. Le tube 20 est mis sous vide par pompage jusqu'à une pression de l'ordre de 10_ 3 torr. Puis on chauffe le tube 20, par passage de courant, jusqu'à une température d'environ 400*C pour éliminer la vapeur d'eau résiduelle.
  • On amène alors la température du tube de micro- sublimation 20 à celle de l'azote liquide par circulation de cet azote autour du tube 40, du raccord 68 au raccord 70 par la circulation d'un gaz caloporteur (hélium par exemple) amené à la température de l'azote liquide.
  • On peut alors passer à la première phase de mise en oeuvre du procédé suivant l'invention, constituée par le piégeage de produits gazeux dans le micro-sublimateur 14.
  • Pour cela, on envoie un débit calibré de fluor très pur dans le tube 20, à travers les vannes 38 et 30. Les produits de la réaction (UF6 et 02) s'échappent à très faible débit à travers la vanne 12 et sont piégés dans le tube 40, en se répartissant suivant la température de solidification.
  • Une fois le piégeage achevé, la vanne 12 est fermée. La vanne de pompage 46 est ouverte, et l'on chauffe très progressivement le tube 40 par passage d'un courant électrique. L'oxygène se sublime et il est évacué par la pompe à vide, à travers la vanne 46.
  • Lorsque la température augmente au-delà du point de sublimation de l'oxygène et atteint le point de sublimation de l'hexafluorure, on peut passer à l'alimentation de la source d'ions.
  • Pour cela, on ferme la vanne 46 et on ouvre la vanne 16. Le chauffage est réalisé avec une programmation en température telle que, dès que le débit d'hexafluorure atteint une valeur prédéterminée (c'est-à-dire lorsqu'on atteint la valeur de consigne de l'intensité du faisceau d'ions dans le spectromètre), on asservit la température, de façon que le débit, mesuré par des moyens non représentés, reste constant jusqu'à épuisement de la masse d'hexafluorure d'uranium piégé. Dans la pratique; avec un débit de 1013 molécules par seconde, la durée d'épuisement est d'environ 30 minutes lorsqu'on a déposé 10 microgrammes d'uranium sur le fil 62.
  • Toute cette durée est disponible pour effectuer les mesures de rapports isotopiques, qu'on peut ensuite comparer à celles d'un hexafluorure d'uranium étalon, admis au spectromètre à travers la vanne 47.
  • Une autre solution consiste à utiliser deux dispositifs du genre montré en figure 2. L'un d'eux reçoit un fil portant un dépôt dont le rapport isotopique est à mesurer, l'autre un dépôt d'U 0 de composition isotopique connue.
  • On voit que, quel que soit le mode de réalisation utilisé, on obtient tout à la fois la haute précision et la rapidité de mesure d'une source à gaz et la faible masse d'échantillon en jeu d'un spectromètre à thermo-ionisation.
  • Cette très faible masse autorise en particulier l'emploi d'un dispositif suivant l'invention pour l'analyse des combustibles irradiés contenant les isotopes du plutonium, l'analyse étant alors conduite sur PuF6 formé par fluoration de PuO2.
  • L'invention ne se limite cependant pas à ces modes particuliers de réalisation. Elle est applicable chaque fois qu'est disponible une réaction donnant un composé gazeux de l'échantillon. Par exemple, la méthode est applicable au cas du carbone, qui peut être fluoré pour donner CF4, ce qui est particulièrement intéressant pour l'analyse isotopique C12/C14 utilisée en datation.

Claims (7)

1. Procédé d'introduction de micro-échantillons sous forme gazeuse dans la source d'ionisation d'un spectre de masse, procédé suivant lequel on transforme l'échantillon en composé gazeux par chauffage dans une atmosphère d'un gaz réactif, on organise un écoulement du composé et du gaz réactif en régime de débit moléculaire vers une paroi (40) maintenue à température suffisamment basse pour piéger le composé gazeux et le réactif et on libère sélectivement le composé gazeux par commande de la température de ladite paroi.
2. Dispositif d'introduction de micro-échantillons dans la source d'ionisation d'un spectromètre de masse, comprenant un réacteur (10) muni de moyens d'introduction du micro-échantillon, de moyens de chauffage du micro-échantillon, de moyens de liaison avec une source de vide et de moyens (38,40) d'amenée d'un débit réglable de réactif de transformation du micro-échantillon en composés gazeux ; un passage étranglé et calibré (12) d'écoulement des gaz à partir du réacteur ;-et un tube de sublimation (40) relié d'une part au passage, d'autre part à la source d'ions du spectromètre par l'intermédiairé.d'une vanne (16), muni de moyens permettant de le porter à une température cryogénique réglable.
3; Dispositif selon la revendication 2, caractérisé en ce que le réacteur comporte un tube (20) destiné à recevoir le micro-échantillon et muni de moyens de chauffage programmés par effet Joule.
4. Dispositif selon la revendication 2 , caractérisé en ce que le tube de sublimation est disposé dans une enceinte de circulation d'un fluide cryogénique et est muni de moyens de chauffage à régulation du débit de sortie vers la source d'ions.
5. Dispositif selon la revendication 2, caractérisé en ce que le passage étranglé et calibré a des dimensions telles que l'écoulement y soit moléculaire.
6. Dispositif selon la revendication 5, caractérisé en ce que le passage est constitué par un diaphragme percé d'un orifice calibré, un capillaire ou une vanne à micro-fuite.
7. Dispositif selon la revendication 2 . caractérisé en ce que le réacteur et le tube de sublimation sont munis de sondes de température reliées à des circuits de régulation des moyens de chauffage.
EP19860400902 1985-04-24 1986-04-24 Procédé et dispositif d'introduction d'échantillons pour spectromètre de masse Expired EP0200645B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8506257A FR2581246B1 (fr) 1985-04-24 1985-04-24 Procede et dispositif d'introduction d'echantillons pour spectrometre de masse
FR8506257 1985-04-24

Publications (2)

Publication Number Publication Date
EP0200645A1 true EP0200645A1 (fr) 1986-11-05
EP0200645B1 EP0200645B1 (fr) 1989-07-12

Family

ID=9318634

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19860400902 Expired EP0200645B1 (fr) 1985-04-24 1986-04-24 Procédé et dispositif d'introduction d'échantillons pour spectromètre de masse

Country Status (5)

Country Link
EP (1) EP0200645B1 (fr)
CA (1) CA1263765A (fr)
DE (1) DE3664401D1 (fr)
FR (1) FR2581246B1 (fr)
WO (1) WO1986006545A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2629270A2 (fr) * 1988-03-25 1989-09-29 Cogema Dispositif d'introduction d'echantillons pour spectrometre de masse

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1132049A (fr) * 1954-05-26 1957-03-04 Thomson Houston Comp Francaise Dispositif d'introduction d'un échantillon dans un spectrographe de masse
US3888107A (en) * 1969-10-08 1975-06-10 Dow Chemical Co Differential thermal analysis cell assembly
EP0083472A1 (fr) * 1981-11-30 1983-07-13 Vg Instruments Group Limited Système d'introduction d'échantillons pour un spectromètre de masse

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1132049A (fr) * 1954-05-26 1957-03-04 Thomson Houston Comp Francaise Dispositif d'introduction d'un échantillon dans un spectrographe de masse
US3888107A (en) * 1969-10-08 1975-06-10 Dow Chemical Co Differential thermal analysis cell assembly
EP0083472A1 (fr) * 1981-11-30 1983-07-13 Vg Instruments Group Limited Système d'introduction d'échantillons pour un spectromètre de masse

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
REVIEW OF SCIENTIFIC INSTRUMENTS, vol. 55, no. 7, juillet 1984, pages 1160,1161, Am. Inst. of Physics, New York, US; S. HALAS et al.: "Device for rapid transfer of condensable gases into a capillary" *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2629270A2 (fr) * 1988-03-25 1989-09-29 Cogema Dispositif d'introduction d'echantillons pour spectrometre de masse

Also Published As

Publication number Publication date
EP0200645B1 (fr) 1989-07-12
DE3664401D1 (en) 1989-08-17
CA1263765A (fr) 1989-12-05
WO1986006545A1 (fr) 1986-11-06
FR2581246B1 (fr) 1987-07-10
FR2581246A1 (fr) 1986-10-31

Similar Documents

Publication Publication Date Title
Chan et al. Study of laser-material interactions using inductively coupled plasma-atomic emission spectrometry
EP0768525B1 (fr) Procédé pour détecter d'espèces moléculaires en phase gazeuse des gaz de sortie d'une chambre de traitement d'un matériau semi-conducteur, et système de traitement d'un matériau semi-conducteur ainsi équipé
US4851683A (en) Element specific radio frequency discharge helium plasma detector for chromatography
Lee et al. Laser-induced breakdown spectrometry
JPS604933B2 (ja) 所定の化学的パラメ−タについて試料を分析する方法と装置
Pisonero et al. High efficiency aerosol dispersion cell for laser ablation-ICP-MS
FR2757082A1 (fr) Procede d'epuration d'un gaz plasmagene et installation pour la mise en oeuvre d'un tel procede
Dvořák et al. Radical theory of hydride atomization confirmed after four decades–determination of H radicals in a quartz hydride atomizer by two-photon absorption laser-induced fluorescence
US4933548A (en) Method and device for introducing samples for a mass spectrometer
EP0200645B1 (fr) Procédé et dispositif d'introduction d'échantillons pour spectromètre de masse
EP0142414B1 (fr) Source d'ions, notamment métalliques fortement chargés dont le courant d'ions est régulé
FR2532470A1 (fr) Dispositif d'ionisation d'un materiau par chauffage a haute temperature
EP1212779A2 (fr) Dispositif de detection et d'analyse par ablation laser et transfert vers une trappe ionique d'un spectrometre et procede associe
Imai et al. Investigations of pyrolysed ascorbic acid in an electrothermal graphite furnace by inductively coupled argon plasma mass spectrometry and Raman spectrometry
EP0305241A1 (fr) Procédé de traitement de surfaces, utilisant une post-décharge électrique dans un gaz en écoulement et dispositif pour la mise en oeuvre de ce procédé
FR2743204A1 (fr) Dispositif laser a vapeur metallique
FR2629270A2 (fr) Dispositif d'introduction d'echantillons pour spectrometre de masse
FR2684497A1 (fr) Laser impulsionnel.
JP2557435B2 (ja) 誘導結合プラズマ質量分析用試料導入装置
JP2557473B2 (ja) 誘導結合プラズマ質量分析用試料導入装置
Sergeev et al. A new compact linear beam-plasma discharge simulator BPD-PSI
EP1080613B1 (fr) Dispositif destine a creer un champ magnetique a l'interieur d'une enceinte
EP0446080A1 (fr) Procédé et dispositif d'analyse élémentaire d'un échantillon par spectrométrie de masse couplée à un plasma induit par haute fréquence
Doyle A 1m normal incidence multi-channel spectrometer for laser plasma spectroscopy
Goodfellow et al. Experimental verification of a high-current cathode thermal model

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE GB

17P Request for examination filed

Effective date: 19870110

17Q First examination report despatched

Effective date: 19880324

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE GB

REF Corresponds to:

Ref document number: 3664401

Country of ref document: DE

Date of ref document: 19890817

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19920416

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19920418

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19930424

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19930424

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19940101