EP0142414B1 - Source d'ions, notamment métalliques fortement chargés dont le courant d'ions est régulé - Google Patents

Source d'ions, notamment métalliques fortement chargés dont le courant d'ions est régulé Download PDF

Info

Publication number
EP0142414B1
EP0142414B1 EP84402080A EP84402080A EP0142414B1 EP 0142414 B1 EP0142414 B1 EP 0142414B1 EP 84402080 A EP84402080 A EP 84402080A EP 84402080 A EP84402080 A EP 84402080A EP 0142414 B1 EP0142414 B1 EP 0142414B1
Authority
EP
European Patent Office
Prior art keywords
cavity
ion source
controlling
source according
intensity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP84402080A
Other languages
German (de)
English (en)
Other versions
EP0142414A2 (fr
EP0142414A3 (en
Inventor
Bernard Jacquot
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Original Assignee
Commissariat a lEnergie Atomique CEA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat a lEnergie Atomique CEA filed Critical Commissariat a lEnergie Atomique CEA
Publication of EP0142414A2 publication Critical patent/EP0142414A2/fr
Publication of EP0142414A3 publication Critical patent/EP0142414A3/fr
Application granted granted Critical
Publication of EP0142414B1 publication Critical patent/EP0142414B1/fr
Expired legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J27/00Ion beam tubes
    • H01J27/02Ion sources; Ion guns
    • H01J27/16Ion sources; Ion guns using high-frequency excitation, e.g. microwave excitation
    • H01J27/18Ion sources; Ion guns using high-frequency excitation, e.g. microwave excitation with an applied axial magnetic field

Definitions

  • the subject of the present invention is a source of highly charged ions, especially metallic ions, the ion current of which is regulated.
  • This highly charged ion current is used in particular for the measurement of physical constants and especially intended to equip particle accelerators, used both in the scientific and medical fields.
  • One of the methods used to obtain a stream of highly charged, or multicharged, ions is to evaporate a solid material, for example a metal sample placed in a microwave cavity, and to ionize the vapors produced.
  • the vaporization and then the ionization of the material are obtained by interaction of a hot electron plasma, confined in said enclosure, with said material.
  • This electron plasma is formed by ionizing a gas, injected into the cavity, thanks to the combined action of a high frequency electromagnetic field, established in said cavity, and a magnetic field prevailing inside this same cavity.
  • the object of the present invention is precisely an ion source producing a regulated ion current making it possible to solve this problem.
  • this source comprises means for pulsing - the electromagnetic field, injected into the cavity, and for controlling the average power of this electromagnetic field, these means being constituted by a high frequency pulse generator, whose useful cycle is adjusted, that is to say the ratio t / T, t being the duration of a pulse and T the period of the pulses, a valve used to modify the flow of gas introduced into the cavity, means for slaving said valve so that the pressure in the cavity remains constant, and means for slowly moving, in the cavity, the solid material so that it intercepts the electron plasma as well as possible.
  • the pulse generator is controlled so that the intensity of the ion current remains constant.
  • control means preferably comprise means for measuring the intensity of the ion current, connected to a microprocessor.
  • the means for controlling the valve consist of pressure measurement means, connected to a microprocessor.
  • the displacement means are controlled so that the intensity of the ion current is constant.
  • control means preferably consist of means for measuring the intensity of the ion current, connected to a microprocessor.
  • the gas introduced into the cavity consists of argon, nitrogen or oxygen.
  • This type of gas is particularly suitable for obtaining metal ions from the vaporization of refractory metals such as tungsten, tantalum, molybdenum, zirconium, etc.
  • This device comprises a containment vacuum enclosure 2 which constitutes a resonant cavity which can be excited by a microwave electromagnetic field, which is according to the invention pulsed.
  • This electromagnetic field produced by a source 3, such as a klystron, is introduced into the cavity by means of a waveguide 4, of circular or rectangular section.
  • This source 3 is supplied with current by a power source 6.
  • a pipe 8 makes it possible to introduce a gas into the microwave cavity 2 such as argon, nitrogen or oxygen.
  • Means shown diagrammatically in phantom and bearing the reference 10, make it possible to create a magnetic field prevailing inside the cavity 2.
  • This magnetic field has an amplitude which satisfies the condition of resonance cy electronic clotronic, condition explained above.
  • reference may be made to French patent application no. 2,475,798 filed on February 13, 1980 by the applicant and entitled “Process and device for the production of highly charged heavy ions and an application implementing the process ".
  • the association of the electromagnetic field and the magnetic field makes it possible to strongly ionize the gas introduced into the cavity 2.
  • the electrons produced are then strongly accelerated by electronic cyclotron resonance, which leads to the formation of a hot plasma of electrons, confined in the cavity.
  • the confinement space of the electron plasma is represented by a hatched ellipse bearing the reference 11.
  • a sample 12 is arranged from which the ion current will be formed.
  • This sample fixed on a support 14, is in particular a metal sample such as, for example, tungsten, tantalum, molybdenum, zirconium, etc.
  • This sample is subjected to the action of hot electron plasma 11, which makes it possible to vaporize it, then to ionize the vapors produced.
  • the metal ions formed are then extracted from the cavity 2, for example by means of electrodes 16 between which a negative potential difference is created using a power source 17.
  • the ions from the cavity (arrow F ) can then be analyzed, for example selected according to their degree of ionization, using any known means, shown diagrammatically in 18, using an electric field and / or a magnetic field.
  • This device comprises a motor 20, connected by means of a rod 22, to the support 14 of the sample 12 making it possible to slowly move the latter, so that it best intercepts the electron plasma 11. More l sample 12 enters the interior of cavity 2, the higher its temperature and therefore its vaporization rate.
  • the vaporization rate and therefore the ionization rate of the vapors, especially metallic depend on the average power of the pulsed electromagnetic field injected into the cavity 2 and this for a given depth of penetration of the sample into the electron plasma.
  • the average power of the pulsed electromagnetic field injected into the cavity 2 and this for a given depth of penetration of the sample into the electron plasma.
  • an electromagnetic field having a power at least equal to 300 watts .
  • Control of the average power of the electromagnetic field is obtained by pulsating the electromagnetic field.
  • This pulsed field can be obtained using a pulse generator 24, the useful cycle of which is adjusted, that is to say the ratio t / T, t being the duration of a pulse and T la period of the pulses, this generator controlling the electrical power source 6 supplying the electromagnetic wave source 3.
  • the plasma electrons acquire the energy necessary to vaporize the sample 12 then ionize the vapors produced upon application of the microwave electromagnetic field and lose this energy almost immediately after the disappearance of said field.
  • the hot electron plasma is obtained firstly by ionization of a gas, in particular argon, nitrogen or oxygen, introduced into the cavity 2 by a pipe 8
  • a gas in particular argon, nitrogen or oxygen
  • the gas supply line 8 is equipped with a valve 26 used to modulate the flow of gas introduced into the cavity.
  • a device 28 for measuring the total pressure prevailing in the cavity 2 such as a pressure gauge, makes it possible, by means of an appropriate device, to ensure the operation of the valve 26 so that the total pressure prevailing in the cavity remains constant.
  • This suitable device can be constituted, as shown in FIG. 1, by a device 30, connected to a reference voltage R, making it possible to compare the voltage supplied by the measuring device 28 and the reference voltage R and to supply a signal control valve 26, signal which corresponds to the voltage difference between the voltage supplied by the measuring device 28 and the reference voltage R.
  • This suitable device can also be constituted, as shown in FIG. 2, by a microprocessor 32 controlling the opening or closing of the valve 26 according to the voltage supplied by the measuring device 28.
  • the microprocessor is for example that marketed under the reference 6800 from MOTOROLA.
  • the starting of the motor 20, serving to move the sample 12, and that of the pulse generator 24, serving to generate the pulsed electromagnetic field can be carried out manually as shown in FIG. 1 or else automatically as shown in FIG. 2.
  • a device 34 for measuring the intensity of the ion current leaving the cavity 2, such as a Faraday cage, must be provided.
  • the signal supplied by the device 34 is entered into the microprocessor 32 controlling the starting or stopping on the one hand of the motor 20 and, on the other hand, of the pulse generator 24.
  • the drive motor 20 and the pulse generator 24 controlled by the intensity of the ion current as well as the valve 26 controlled so that the total pressure prevailing in the enclosure is constant, constitute, according to the invention, the device making it possible to obtain a current of ions, especially metallic, of constant intensity.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Electron Sources, Ion Sources (AREA)
  • Plasma Technology (AREA)

Description

  • La présente invention a pour objet une source d'ions, notamment métalliques, fortement chargés dont le courant d'ions est régulé. Ce courant d'ions fortement chargés est notamment utilisé pour la mesure de constantes physiques et surtout destiné à équiper les accélérateurs de particules, utilisés aussi bien dans le domaine scientifique que médical.
  • L'un des procédés utilisé pour obtenir un courant d'ions fortement chargés, ou multichargés, consiste à évaporer un matériau solide, par exemple un échantillon de métal placé dans une cavité hyperfréquence, et à ionisier les vapeurs produites.
  • La vaporisation, puis l'ionisation du matériau sont obtenues par interaction d'un plasma chaud d'électrons, confiné dans ladite enceinte, avec ledit matériau. Ce plasma d'électrons est formé en ionisant un gaz, injecté dans la cavité, grâce à l'action conjuguée d'un champ électromagnétique de haute fréquence, établi dans ladite cavité, et d'un champ magnétique régnant à l'intérieur de cette même cavité. Le champ magnétique présente une amplitude B satisfaisant à la condition de résonance cyclotronique électronique: B = f · 2nm, où m est la masse de l'électron, e sa e charge et f la fréquence du champ électromagnétique. Cette résonance permet d'accélérer fortement les électrons créés, tout d'abord à partir du gaz, puis à partir de la vaporisation du matériau.
  • Ce procédé de vaporisation a été décrit dans une demande de brevet n° 2 512 623 déposée le 10 septembre 1981 par le demandeur et intitulée «Procédé de fusion et/ou d'évaporation pulsée d'un matériau solide». Les ions métalliques créés peuvent ensuite être extraits de la cavité pour former un faisceau d'ions.
  • Dans un tel procédé de production d'un courant d'ions multichargés, l'un des problèmes importants réside dans la régulation du courant d'ions, c'est-à-dire dans l'obtention d'un courant d'ions d'intensité constante. Ceci est très important notamment pour l'utilisation de ces courants d'ions dans les accélérateurs de particules.
  • La présente invention a justement pour objet une source d'ions produisant un courant d'ions régulé permettant de résoudre ce problème.
  • De façon plus précise, l'invention a trait à une source d'ions, notamment métalliques, fortement chargés, obtenu selon le procédé d'évaporation décrit précédemment. Selon une des caractéristiques de l'invention, cette source comprend des moyens pour pulser - le champ électromagnétique, injecté dan la cavité, et pour contrôler la puissance moyenne de ce champ électromagnétique, ces moyens étant constitués par un générateur d'impulsions haute fréquence, dont on règle le cycle utile, c'est-à-dire le rapport t/T, t étant la durée d'une impulsion et T la période des impulsions, une vanne servant à modifier le flux de gaz introduit dans la cavité, des moyens permettant d'asservir ladite vanne de façon que la pression régnant dans la cavité reste constante, et des moyens permettant de déplacer lentement, dans la cavité, le matériau solide de façon que celui-ci intercepte au mieux le plasma d'électrons.
  • Dans un mode préféré de réalisation de la source d'ions de l'invention, le générateur d'impulsions est asservi de façon que l'intensité du courant d'ions reste constante. Ces moyens d'asservissement comprennent de préférence des moyens de mesure de l'intensité du courant d'ions, connectés à un microprocesseur.
  • Dans un mode préféré de réalisation de la source de l'invention, les moyens pour asservir la vanne sont constitués de moyens de mesure de la pression, connectés à un microprocesseur.
  • Dans un mode préféré de réalisation de la source de l'invention, les moyens de déplacement sont asservis pour que l'intensité du courant d'ions soit constante. Ces moyens d'asservissement sont de préférence constitués de moyens de mesure de l'intensité du courant d'ions, connectés à un microprocesseur.
  • De façon avantageuse, le gaz introduit dans la cavité est constitué par de l'argon, de l'azote ou de l'oxygène. Ce type de gaz convient particulièrement bien à l'obtention d'ions métalliques provenant de la vaporisation de métaux réfractaires tels que le tungstène, le tantale, le molybdène, le zirconium, etc...
  • D'autres caractéristiques et avantages de l'invention ressortiront mieux de la description qui va suivre, donnée à titre explicatif et nullement limitatif, en référence aux figures annexées, dans lesquelles:
    • - la figure 1 représente, schématiquement, selon une première variante, une source d'ions comportant un dispositif de régulation manuelle du courant d'ions obtenus selon le procédé de vaporisation d'un matériau, et
    • - la figure 2 représente, schématiquement, selon une deuxième variante, une source d'ions comportant un dispositif de régulation automatique d'un courant d'ions obtenus selon le procédé de vaporisation d'un matériau.
  • En se référant aux figures 1 et 2, on va tout d'abord décrire la source d'ions, c'est-à-dire l'appareil permettant de produire le courant d'ions fortement chargés.
  • Cet appareil comprend une enceinte à vide de confinement 2 qui constitue une cavité résonante pouvant être excitée par un champ électromagnétique hyperfréquence, qui est selon l'invention pulsé. Ce champ électromagnétique, produit par une source 3, tel qu'un klystron, est introduit dans la cavité au moyen d'un guide d'ondes 4, à section circulaire ou rectangulaire. Cette source 3 est alimentée en courant par une source d'alimentation 6. Une conduite 8 permet d'introduire un gaz dans la cavité hyperfréquence 2 tel que de l'argon, de l'azote ou de l'oxygène.
  • Des moyens, schématisés en traits mixtes et portant la référence 10, permettent de créer un champ magnétique régnant à l'intérieur de la cavité 2. Ce champ magnétique présente une amplitude qui satisfait à la condition de résonance cyclotronique électronique, condition explicitée précédemment. Comme moyen permettant de produire un tel champ magnétique, on peut se référer à la demande de brevet français n° 2 475 798 déposée le 13 février 1980 par le demandeur et intitulée «Procédé et dispositif de production d'ions lourds fortement chargés et une application mettant en oeuvre le procédé».
  • L'association du champ électromagnétique et du champ magnétique permet d'ioniser fortement le gaz introduit dans le cavité 2. Les électrons produits sont alors fortement accélérés par résonance cyclotronique électronique, ce qui conduit à la formation d'un plasma chaud d'électrons, confiné dans la cavité. L'espace de confinement du plasma d'électrons est représenté par une ellipse hachurée portant la référence 11.
  • Dans la cavité 2, est disposé un échantillon 12 à partir duquel sera formé le courant d'ions. Cet échantillon, fixé sur un support 14, est notamment un échantillon de métal comme par exemple de tungstène, de tantale, de molybdène, de zirconium, etc... Cet échantillon est soumis à l'action du plasma chaud d'électrons 11, ce qui permet de la vaporiser, puis d'ioniser les vapeurs produites. Les ions métalliques formés sont ensuite extraits de la cavité 2 par exemple au moyen d'électrodes 16 entre lesquelles est créée une différence de potentiel négative à l'aide d'une source d'alimentation 17. Les ions issus de la cavité (flèche F) peuvent ensuite être analysés, par exemple sélectionnés suivant leur degré d'ionisation, à l'aide de tout moyen connu, schématisé en 18, utilisant un champ électrique et/ou un champ magnétique.
  • On va maintenant décrire le dispositif selon l'invention, permettant de réguler le courant d'ions produits, c'est-à-dire permettant d'obtenir un courant d'ions d'intensité constante.
  • Ce dispositif comprend un moteur 20, relié par l'intermédiaire d'une tige 22, au support 14 de l'échantillon 12 permettant de déplacer lentement ce dernier, de façon qu'il intercepte au mieux le plasma d'électrons 11. Plus l'échantillon 12 pénètre à l'intérieur de la cavité 2, plus sa température et donc son taux de vaporisation sont élevés.
  • Par ailleurs, le taux de vaporisation et donc d'ionisation des vapeurs, notamment métalliques, dépendent de la puissance moyenne du champ électromagnétique pulsé injecté dans la cavité 2 et ce pour une profondeur donnée de pénétration de l'échantillon dans le plasma d'électrons. Par exemple, pour obtenir des ions d'aluminium 10 fois chargés (avec un échantillon en oxyde d'aluminium, le gaz support étant l'oxygène), il est nécessaire d'utiliser un champ électromagnétique ayant une puissance au moins égale à 300 watts.
  • Le contrôle de la puissance moyenne du champ électromagnétique est obtenu en pulsant le champ électromagnétique. Ce champ pulsé peut être obtenu à l'aide d'un générateur d'impulsions 24, dont on ajuste le cycle utile, c'est-à-dire le rapport t/T, t étant la durée d'une impulsion et T la période des impulsions, ce générateur commandant la source d'alimentation électrique 6 alimentant la source d'onde électromagnétique 3. En effet, les électrons du plasma acquièrent l'énergie nécessaire pour vaporiser l'échantillon 12 puis ioniser les vapeurs produites dès l'application du champ électromagnétique hyperfréquence et perdent cette énergie presque aussitôt après la disparition dudit champ.
  • Comme on l'a dit précédemment, le plasma d'électrons chaud est obtenu tout d'abord par une ionisation d'un gaz, notamment d'argon, d'azote ou d'oxygène, introduit dans la cavité 2 par une conduite 8. Ce gaz permet la formation du plasma avant que la pression partielle des vapeurs métalliques soit suffisante pour engendrer des ions métalliques.
  • Pour réguler le courant d'ions sortant de la cavité (flèche F), la pression totale régnant dans la cavité doit être maintenue constante. A cet effet, la conduite d'alimentation en gaz 8 est équipée d'une vanne 26 servant à moduler le flux de gaz introduit dans la cavité. Un dispositif 28 de mesure de la pression totale régnant dans la cavité 2, tel qu'un manomètre, permet, par l'intermédiaire d'un dispositif approprié, d'assurer le fonctionnement de la vanne 26 pour que la pression totale régnant dans la cavité reste constante.
  • Ce dispositif approprié peut être constitué, comme représenté sur la figure 1, par un dispositif 30, connecté à une tension de référence R, permettant de comparer la tension fournie par le dispositif de mesure 28 et la tension de référence R et de fournir un signal de commande à la vanne 26, signal qui correspond à la différence de tension entre la tension fournie par le dispositif de mesure 28 et la tension de référence R.
  • Ce dispositif approprié peut aussi être constitué, comme représenté sur la figure 2, par un microprocesseur 32 commandant l'ouverture ou la fermeture de la vanne 26 suivant la tension fournie par le dispositif de mesure 28. Le microprocesseur est par exemple celui commercialisé sous la référence 6800 de MOTOROLA.
  • Par ailleurs, la mise en marche du moteur 20, servant à déplacer l'échantillon 12, et celle du générateur d'impulsions 24, servant à engendrer le champ électromagnétique pulsé peuvent être effectuées manuellement comme représenté sur la figure 1 ou bien automatiquement comme représenté sur la figure 2. Dans le deuxième cas, un dispositif 34 de mesure de l'intensité du courant d'ions sortant de la cavité 2, telle qu'une cage de Faraday, doit être prévu. Le signal fourni par le dispositif 34 est entré dans le microprocesseur 32 commandant la mise en marche ou l'arrêt d'une part du moteur 20 et, d'autre part, du générateur d'impulsions 24.
  • Le moteur d'entraînement 20 et le générateur d'impulsions 24 asservis à l'intensité du courant d'ions ainsi que la vanne 26 asservie pour que la pression totale régnant dans l'enceinte soit constante, constituent, selon l'invention, le dispositif permettant d'obtenir un courant d'ions, notamment métalliques, d'intensité constante.

Claims (7)

1. Source d'ions fortement chargés, obtenus en vaporisant, dans une cavité hyperfréquence (2), un matériau solide (12) puis en ionisant les vapeurs produites grâce à l'action d'un plasma chaud d'électrons (11), confiné dans ladite cavité, ce plasma (11) étant créé en ionisant un gaz, introduit dans la cavité (2), grâce à l'action conju- gée d'un champ électromagnétique de haute fréquence, établi dans la cavité, et d'un champ magnétique dont l'amplitude est telle que les électrons sont accélérés par résonance cyclotronique électronique, caractérisée en ce qu'elle comprend des moyens (24) permettant de pulser le champ électromagnétique, injecté dans la cavité, et de contrôler la puissance moyenne de ce champ, comportant un générateur d'impulsions (24) dont on règle le cycle utile, une vanne (26) servant à modifier le flux de gaz introduit dans la cavité, des moyens (28, 30, 32) pour asservir ladite vanne de façon que la pression régnant dans la cavité reste constante, et des moyens (20) pour déplacer lentement, dans la cavité (2), le matériau solide (12) de façon que celui-ci intercepte au mieux le plasma d'électrons (11).
2. Source d'ions selon la revendication 1, caractérisée en ce qu'elle comprend des moyens (32, 34) pour asservir le générateur d'impulsions (24) de façon que l'intensité du courant d'ions soit constante.
3. Source d'ions selon la revendication 2, caractérisée en ce que les moyens pour asservir le générateur comprennent des moyens de mesure de l'intensité du courant d'ions (34), connectés à un microprocesseur (32).,
4. Source d'ions selon la revendication 1, caractérisée en ce que les moyens pour asservir la vanne (26) comprennent des moyens de mesure de la pression (28), connectés à un microprocesseur (32).
5. Source d'ions selon la revendication 1, caractérisée en ce qu'elle comprend des moyens (32, 34) pour asservir les moyens de déplacement (20) de façon que l'intensité du courant d'ions soit constante.
6. Source d'ions selon la revendication 5, caractérisée en ce que les moyens pour asservir les moyens de déplacement (20) comprennent des moyens de mesure de l'intensité du courant d'ions (34), connectés à un microprocesseur (32). 7. Source d'ions selon le revendication 1, caractérisée en ce que le gaz introduit dans la cavité est de l'argon, de l'azote ou de l'oxygène.
EP84402080A 1983-10-17 1984-10-16 Source d'ions, notamment métalliques fortement chargés dont le courant d'ions est régulé Expired EP0142414B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8316465 1983-10-17
FR8316465A FR2553574B1 (fr) 1983-10-17 1983-10-17 Dispositif de regulation d'un courant d'ions notamment metalliques fortement charges

Publications (3)

Publication Number Publication Date
EP0142414A2 EP0142414A2 (fr) 1985-05-22
EP0142414A3 EP0142414A3 (en) 1986-06-04
EP0142414B1 true EP0142414B1 (fr) 1989-03-22

Family

ID=9293205

Family Applications (1)

Application Number Title Priority Date Filing Date
EP84402080A Expired EP0142414B1 (fr) 1983-10-17 1984-10-16 Source d'ions, notamment métalliques fortement chargés dont le courant d'ions est régulé

Country Status (5)

Country Link
US (1) US4582997A (fr)
EP (1) EP0142414B1 (fr)
JP (1) JPS60101843A (fr)
DE (1) DE3477444D1 (fr)
FR (1) FR2553574B1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103974517A (zh) * 2014-05-22 2014-08-06 哈尔滨工业大学 高频电磁场条件下的束缚等离子体聚集器及采用该聚集器实现的聚集方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
HU190959B (en) * 1984-04-20 1986-12-28 Gyulai,Jozsef,Hu Method and apparatus for the irradiation of solid materials with ions
FR2595868B1 (fr) * 1986-03-13 1988-05-13 Commissariat Energie Atomique Source d'ions a resonance cyclotronique electronique a injection coaxiale d'ondes electromagnetiques
US4780608A (en) * 1987-08-24 1988-10-25 The United States Of America As Represented By The United States Department Of Energy Laser sustained discharge nozzle apparatus for the production of an intense beam of high kinetic energy atomic species
DE3834984A1 (de) * 1988-10-14 1990-04-19 Leybold Ag Einrichtung zur erzeugung von elektrisch geladenen und/oder ungeladenen teilchen
US5208512A (en) * 1990-10-16 1993-05-04 International Business Machines Corporation Scanned electron cyclotron resonance plasma source
DE19513345C2 (de) * 1995-04-08 2000-08-03 Ehret Hans P ECR-Ionenquelle
FR2757310B1 (fr) * 1996-12-18 2006-06-02 Commissariat Energie Atomique Systeme magnetique, en particulier pour les sources ecr, permettant la creation de surfaces fermees d'equimodule b de forme et de dimensions quelconques
DE19933762C2 (de) * 1999-07-19 2002-10-17 Juergen Andrae Gepulste magnetische Öffnung von Elektronen-Zyklotron-Resonanz-Jonenquellen zur Erzeugung kurzer, stromstarker Pulse hoch geladener Ionen oder von Elektronen

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2826708A (en) * 1955-06-02 1958-03-11 Jr John S Foster Plasma generator
US3792251A (en) * 1971-04-08 1974-02-12 Phillips Petroleum Co Surface analysis
US3898496A (en) * 1974-08-12 1975-08-05 Us Energy Means for obtaining a metal ion beam from a heavy-ion cyclotron source
US4206383A (en) * 1978-09-11 1980-06-03 California Institute Of Technology Miniature cyclotron resonance ion source using small permanent magnet
FR2475798A1 (fr) * 1980-02-13 1981-08-14 Commissariat Energie Atomique Procede et dispositif de production d'ions lourds fortement charges et une application mettant en oeuvre le procede
FR2512623A1 (fr) * 1981-09-10 1983-03-11 Commissariat Energie Atomique Procede de fusion et/ou d'evaporation pulsee d'un materiau solide

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103974517A (zh) * 2014-05-22 2014-08-06 哈尔滨工业大学 高频电磁场条件下的束缚等离子体聚集器及采用该聚集器实现的聚集方法

Also Published As

Publication number Publication date
US4582997A (en) 1986-04-15
EP0142414A2 (fr) 1985-05-22
FR2553574B1 (fr) 1985-12-27
DE3477444D1 (en) 1989-04-27
FR2553574A1 (fr) 1985-04-19
EP0142414A3 (en) 1986-06-04
JPS60101843A (ja) 1985-06-05

Similar Documents

Publication Publication Date Title
EP0238397B1 (fr) Source d'ions à résonance cyclotronique électronique à injection coaxiale d'ondes électromagnétiques
US4859908A (en) Plasma processing apparatus for large area ion irradiation
EP0142414B1 (fr) Source d'ions, notamment métalliques fortement chargés dont le courant d'ions est régulé
US8119208B2 (en) Apparatus and method for focused electric field enhanced plasma-based ion implantation
CA2449307A1 (fr) Dispositif et methode de regulation de l'intensite d'un faisceau extrait d'un accelerateur de particules.
EP0685143B1 (fr) Source micro-onde lineaire pour le traitement de surfaces par plasma
Ninomiya et al. Development of a vacuum electrospray droplet ion gun for secondary ion mass spectrometry
EP0199625B1 (fr) Source d'ions négatifs à résonance cyclotronique des électrons
EP0104973B1 (fr) Dispositif d'ionisation d'un matériau par chauffage à haute température
EP0532411B1 (fr) Source d'ions à résonance cyclotronique électronique et à injection coaxiale d'ondes électromagnétiques
EP0305241A1 (fr) Procédé de traitement de surfaces, utilisant une post-décharge électrique dans un gaz en écoulement et dispositif pour la mise en oeuvre de ce procédé
FR2512623A1 (fr) Procede de fusion et/ou d'evaporation pulsee d'un materiau solide
EP0241362B1 (fr) Dispositif et notamment duoplasmatron utilisable pour ioniser un gaz et procédé d'utilisation de ce dispositif
FR2981193A1 (fr) Procede de commande d'un implanteur ionique en mode immersion plasma.
JPH04351838A (ja) イオンビーム装置の中性化器
Yonesu et al. Impurity ions in a plasma produced by electron cyclotron resonance heating
Gabovich et al. Mechanism of excitation of nonlinear capillary waves on the surface of a liquid metal in contact with dense plasma
Zolotukhin Diagnostics of beam plasma produced in dielectric cavity at fore-vacuum pressures
JPH07105893A (ja) イオンビーム処理装置および加工法
JP2557473B2 (ja) 誘導結合プラズマ質量分析用試料導入装置
Mišina et al. Plasma diagnostics of low pressure microwave-enhanced dc sputtering discharge
EP0200645B1 (fr) Procédé et dispositif d'introduction d'échantillons pour spectromètre de masse
JP2004011007A (ja) 成膜方法
CN117529975A (zh) 火花光学发射光谱的等离子体控制
FR2719120A1 (fr) Procédé et dispositif pour la détermination et le contrôle de la composition du mélange gazeux réactif agissant sur un substrat au cours d'un traitement physico-chimique sous atmosphère rarefiée.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): DE GB NL

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): DE GB NL

17P Request for examination filed

Effective date: 19861106

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: COMMISSARIAT A L'ENERGIE ATOMIQUE

17Q First examination report despatched

Effective date: 19880331

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE GB NL

REF Corresponds to:

Ref document number: 3477444

Country of ref document: DE

Date of ref document: 19890427

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19890925

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19891031

Year of fee payment: 6

Ref country code: GB

Payment date: 19891031

Year of fee payment: 6

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19901016

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19910501

GBPC Gb: european patent ceased through non-payment of renewal fee
NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19910702