EP0199799A1 - Rotor de moulin a vent avec pales a pas ajustable; moulins a vent utilisant ce rotor - Google Patents

Rotor de moulin a vent avec pales a pas ajustable; moulins a vent utilisant ce rotor

Info

Publication number
EP0199799A1
EP0199799A1 EP85905607A EP85905607A EP0199799A1 EP 0199799 A1 EP0199799 A1 EP 0199799A1 EP 85905607 A EP85905607 A EP 85905607A EP 85905607 A EP85905607 A EP 85905607A EP 0199799 A1 EP0199799 A1 EP 0199799A1
Authority
EP
European Patent Office
Prior art keywords
hub
wing
wings
nose
stays
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP85905607A
Other languages
German (de)
English (en)
Inventor
Christian Riisager
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of EP0199799A1 publication Critical patent/EP0199799A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D1/00Wind motors with rotation axis substantially parallel to the air flow entering the rotor 
    • F03D1/06Rotors
    • F03D1/065Rotors characterised by their construction elements
    • F03D1/0658Arrangements for fixing wind-engaging parts to a hub
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D80/00Details, components or accessories not provided for in groups F03D1/00 - F03D17/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/70Adjusting of angle of incidence or attack of rotating blades
    • F05B2260/79Bearing, support or actuation arrangements therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Definitions

  • the present invention relates to a windmill rotor of the kind comprising a) a hub with an axially protruding hub nose, b) a number of wings extending substantially radially from and being rotatably supported on said hub about axes in general extending radially, ⁇ ) a nose stay extending from the outermost part of the root of each wing to a part of the hub nose axially spaced from the hub, d) a number of intermediate stays connecting the outer ⁇ most parts of the roots of the wings with each other, and e) means for adjusting the angle of the wings relative to the wind direction by turning the wings about said axes.
  • variable-pitch wings In windmill rotors of this kind, it is difficult to sup ⁇ port the variable-pitch wings on the rotor in a stable manner without using heavy and expensive bearing means. In many cases the wing roots are also required to exhi ⁇ bit a very great mechanical strength, which - of course - also increases weight and costs.
  • a first embodiment of the windmill rotor according to the present invention is characterized in that at or near its central part each intermediate stay is connect ⁇ ed to the hub through an arm extending substantially ra ⁇ dially and rigidly connected to the hub. With this ar ⁇ rangement, the bearing shaft mentioned above is relieved of tangential forces and couples caused by wind and gra ⁇ vity.
  • a second embodiment of the windmill rotor according to the present invention is characterized in that the pitch bearings are placed in such a manner relative to each wing, that the wing turning axis (the axis of the shaft) is situated between the forward edge of the wing and the aerodynamic centre line of the wing. With this arrange ⁇ ment, a strong wind load will attempt to move the wings into a pitch position, in which the wind load is reduced, provided - of course - that the adjustment mechanism for the wings is adapted to accommodate such movements.
  • the present invention also relates to a windmill with a windmill rotor of the kind referred to initially, and according to the present invention this windmill is cha ⁇ racterized in that the windmill rotor exhibits at least the features set forth in the paragraph marked f) above.
  • Figure 1 in perspective shows a windmill with a windmill rotor according to the present ' invention
  • Figure 2 is a partial view showing, partly in section, the hub of the windmill rotor, the innermost portion of a wing as well as the means connect- ing the wing to the hub,
  • Figure 3 is a partial section along the line III-III in
  • Fig. 2 shows the control means for the wing in question
  • Figure 4 shows roughly the same as Fig. 3, but as viewed from the front along the axis of the windmill rotor.
  • the windmill or wind power generator shown in Fig. 1 in a known manner comprises a tower 1, on which a gear box 2 is supported rotatably about a vertical axis and adapt- ed to be adjusted in azimuth by means of control rotors 3, the latter in a known manner keeping the main windmill rotor 4 facing towards the wind, the direction of which is indicated by the arrow 5.
  • Each of the wings 6 of the main windmill rotor 4 is ro- tatably supported on a common hub 7 by means of a bearing shaft 8, the radially innermost end of which, as shown in Fig. 4, is secured to the hub 7.
  • the hub 7 consists of a hub sleeve 9 keyed onto a stub shaft 10 protruding from the gear box 2, a triangular hub plate 11 situated in a radial plane and secured by welding around the hub sleeve 9, as well as three wing base plates 12 secured by wel ⁇ ding to the outer edges of the hub plate 11.
  • each wing 6 is rotatably supported about the bearing shaft 8 by means of outer and inner pitch bearings 15 and 16 re- spectively.
  • the inner part of the wing root 14 is surrounded by an inner wing root fit ⁇ ting 17, connected partly to the rotatable part of the inner pitch bearing 15, partly through a rod mechanism 18 to a pitch adjustment cylinder 19, the latter in a si ⁇ milar manner (not shown) also being connected to the re- maining wings 6 and adapted to adjust their angle of attach in relation to the wind.
  • the pitch cylinder 19 is situated in a hub nose 20, in the example shown consisting of a three-legged "tower" of T-profile steel, the broadest end of which is welded to the hub plate 11.
  • a nose stay 21 is secured to the forward end of the hub nose 20, said nose stay 21 extending radially outwards and rearwards to the outermost end of each bearing shaf 8, to which the nose stay is secured immediately radially within the outer pitch bearing 16.
  • the outermost ends of the bearing shafts 8 are intercon ⁇ nected by means of intermediate stays 22, each at or close to the center thereof being secured to the radially outer- most end of a radial arm 23, the radially innermost end of which is secured to the' end of the adjacent wing base pla ⁇ te 12 lying r.earwardmost in the direction 13 of rotation.
  • the wings 6 in Fig. 1 and 2 are shown in a position substantially parallel to the wind direction 5, whereas in Fig. 4 they are shown in a position generally at right angles to this wind direc ⁇ tion. During normal operation, the wings will, of course, be in some angular position between these two extremes.
  • the other force in the couple mentioned is constituted by a forwardly directed force from the inner wing root fitting 17, transmitted to the wing base plate 12 and hence to the hub 7 through the in- ner pitch bearing 15 and the innermost part of the bea ⁇ ring shaft 8.
  • the bearing shaft 8 will only be subjected to bending stresses in its outer ⁇ most and innermost ends, for which reason it may be rela ⁇ tively slim, although it must be able to withstand the "column loading" caused by the radially inwardly directed components of the tensional forces in the nose stay 21 and the two adjacent intermediate stays 22, and further, the shear forces at the two ends.
  • the inner wing root fitting 17 serves to connect the in ⁇ nermost end of the wing root 14 to the inner pitch bea ⁇ ring 15, and an outer wing root fitting 24 serves in a corresponding manner to connect the outermost end of the wing root 14 to the outer pitch bearing 16.
  • the wings are made of wood, such as laminat ⁇ ed wood with thick or thin laminae, but when using metal wings the wing root fittings 17 and 24 may in certain ca ⁇ ses be omitted, provided that the metal has the requisite strength.
  • Both the nose stays 21 and the intermediate stays 22 may be adjustable in length in a manner not shown.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Wind Motors (AREA)

Abstract

La caractéristique nouvelle d'un rotor de moulin à vent avec des ailes (6) à pas ajustable, un étai (21) de nez pour chaque aile et des étais intermédiaires (22) entre les ailes, est le fait que les étais (21) de nez et les étais intermédiaires (22) sont fixés à l'extrémité extérieure d'un arbre de support (8) généralement radial dont l'extrémité intérieure est fixée au moyeu (7). Les ailes (6) sont soutenues à la partie antérieure de la jonction (14) de l'aile (vue dans le sens de rotation) sur un support intérieur (15) et extérieur (16) de rotation de l'aile ou du pas, respectivement, placés aux extrémités intérieure et extérieure de l'arbre de support (8). Cet agencement permet d'obtenir un support stable des ailes (6) même avec des arbres de support (8) relativement faibles. Dans un mode de réalisation, les étais intermédiaires (22) sont connectés à des bras radiaux rigides (23) sur le moyeu (7). Cet agencement soulage l'arbre de support (8) des forces tangentielles dues au vent et à la gravité. L'invention porte également sur un moulin à vent avec ce rotor.
EP85905607A 1984-11-01 1985-10-30 Rotor de moulin a vent avec pales a pas ajustable; moulins a vent utilisant ce rotor Withdrawn EP0199799A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DK5200/84 1984-11-01
DK520084A DK520084A (da) 1984-11-01 1984-11-01 Vindmoellerotor med vridbare vinger og vindmoeller med en saadan rotor

Publications (1)

Publication Number Publication Date
EP0199799A1 true EP0199799A1 (fr) 1986-11-05

Family

ID=8140363

Family Applications (1)

Application Number Title Priority Date Filing Date
EP85905607A Withdrawn EP0199799A1 (fr) 1984-11-01 1985-10-30 Rotor de moulin a vent avec pales a pas ajustable; moulins a vent utilisant ce rotor

Country Status (4)

Country Link
EP (1) EP0199799A1 (fr)
AU (1) AU5090885A (fr)
DK (1) DK520084A (fr)
WO (1) WO1986002701A1 (fr)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2065803B1 (es) * 1992-02-24 1997-02-01 Antoune Ivan Lahuerta Turbina eolica pendular de potencia regulable por empuje axial.
NL1015558C2 (nl) * 2000-06-28 2002-01-08 Stichting En Onderzoek Ct Nede Blad van een windturbine.
US7713028B2 (en) * 2006-11-27 2010-05-11 Ning Liao Turbine blade assembly
EP2112372A1 (fr) 2008-04-21 2009-10-28 Lm Glasfiber A/S Éolienne à pales portées du côté sous le vent
GB0818610D0 (en) 2008-10-10 2008-11-19 Sway As Wind turbine rotor and wind turbine
WO2010048958A2 (fr) * 2008-10-30 2010-05-06 Vestas Wind Systems A/S Aérogénérateur comprenant un rotor à pales inclinées vers l'arrière
WO2010048959A2 (fr) * 2008-10-30 2010-05-06 Vestas Wind Systems A/S Aérogénérateur comprenant un support de pale étendu
WO2011124707A2 (fr) 2010-04-09 2011-10-13 Sway Turbine As Rotor d'éolienne et éolienne
GB2479403A (en) * 2010-04-09 2011-10-12 Sway As Wind turbine rotor and blade mounting arrangement for wind turbine
WO2014056507A1 (fr) 2012-10-12 2014-04-17 Aalborg Universitet Rotor d'éolienne à pales jointes
DE102012025127A1 (de) * 2012-12-21 2014-06-26 Voith Patent Gmbh Wasserkraftwerk zur Ausnutzung der Energie geführter oder freier Wasserströme
CN106917719B (zh) * 2015-12-24 2021-03-09 罗天珍 T型副翼联合自由环加固的风电风轮

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2825061C2 (de) * 1978-06-08 1981-09-24 M.A.N. Maschinenfabrik Augsburg-Nürnberg AG, 8000 München Windrad
US4403916A (en) * 1980-09-02 1983-09-13 Chicago Province Of The Society Of Jesus Wind turbines

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO8602701A1 *

Also Published As

Publication number Publication date
DK520084D0 (da) 1984-11-01
DK520084A (da) 1986-05-02
WO1986002701A1 (fr) 1986-05-09
AU5090885A (en) 1986-05-15

Similar Documents

Publication Publication Date Title
US7713028B2 (en) Turbine blade assembly
US7503750B1 (en) Variable pitch rotor blade with double flexible retention elements
EP0199799A1 (fr) Rotor de moulin a vent avec pales a pas ajustable; moulins a vent utilisant ce rotor
US7911076B2 (en) Wind driven power generator with moveable cam
US4533297A (en) Rotor system for horizontal axis wind turbines
US6394745B1 (en) Straight-bladed vertical axis wind turbine
JP2010501054A (ja) 風力発電機
US4360315A (en) Vortex wind turbine
CA3044387C (fr) Eolienne a pales multiples avec rotors carenes
KR20070116107A (ko) 풍력 및 수력 터빈용 로터 시스템의 장력 휠
US10479483B2 (en) Pitch control assembly and propeller assembly and method of adjusting pitch
US6514043B1 (en) Wind turbine hub
JP2019518160A (ja) 風力発電装置用ロータブレード及び同物を備えた風力発電装置
EP2653385A1 (fr) Fixation de pale aérodynamique pour un rotor sans palier d'un hélicoptère
US5619797A (en) Flow-straightener vane for counter-torque device with ducted rotor and ducted flow-straightening stator, for helicopter
WO2009146541A1 (fr) Turbine éolienne d'axe horizontal
US4349315A (en) Adjustable vane windmills
GB1565486A (en) Windmill
GB1592114A (en) Rotors preferably for wind power stations
NL8202174A (nl) Windmolen, rotor, rotorblad en mast daarvoor, alsmede werkwijze voor het vervaardigen van het rotorblad.
US4704067A (en) Helicoidal propeller pitch control mechanism
CA2309850C (fr) Eolienne a axe vertical et aubes radiales
US4611125A (en) Power potentiating windmill
JPS61500926A (ja) 風回転体部材
NL2025800B9 (en) A horizontal axis wind turbine and method for generating electrical energy

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 19861010