EP0197185B1 - Multilayered and highly wear-resistant protective coating of hard material for metallic surfaces or substrates subjected to a high load - Google Patents

Multilayered and highly wear-resistant protective coating of hard material for metallic surfaces or substrates subjected to a high load Download PDF

Info

Publication number
EP0197185B1
EP0197185B1 EP85109800A EP85109800A EP0197185B1 EP 0197185 B1 EP0197185 B1 EP 0197185B1 EP 85109800 A EP85109800 A EP 85109800A EP 85109800 A EP85109800 A EP 85109800A EP 0197185 B1 EP0197185 B1 EP 0197185B1
Authority
EP
European Patent Office
Prior art keywords
tib
layers
layer
cathode
hard material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP85109800A
Other languages
German (de)
French (fr)
Other versions
EP0197185A3 (en
EP0197185A2 (en
Inventor
Helmut Dr. Holleck
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Forschungszentrum Karlsruhe GmbH
Original Assignee
Kernforschungszentrum Karlsruhe GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kernforschungszentrum Karlsruhe GmbH filed Critical Kernforschungszentrum Karlsruhe GmbH
Priority to AT85109800T priority Critical patent/ATE52815T1/en
Publication of EP0197185A2 publication Critical patent/EP0197185A2/en
Publication of EP0197185A3 publication Critical patent/EP0197185A3/en
Application granted granted Critical
Publication of EP0197185B1 publication Critical patent/EP0197185B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • C23C28/044Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material coatings specially adapted for cutting tools or wear applications

Definitions

  • the invention relates to a process for the production of multilayer, highly wear-resistant hard material protective layers consisting of different hard material phases for metallic, highly stressed surfaces or other substrates, the thickness of the total protective layer being in the range from 0.1 to 10 ⁇ m.
  • the hard material layer gives the tough substrate wear protection by increasing the abrasion resistance of the surface, by lowering the friction and thus the temperature, and by reducing the diffusion and adhesion between the material and the workpiece (or chip).
  • the problem of the composite material lies in the often insufficient adhesion between the base material and the layer, the lack of toughness of the layer and the lack of alternating strength. Attempts have been made to solve this problem by means of multiple layers, and substantial improvements have been achieved compared to single layers, but the weak points in the substrate-layer system cannot be completely eliminated.
  • a process for sputtering a layer is known from US Pat. No. 4,060,471, in which the composition of the materials changes over the thickness of the layer, using at least two sources.
  • the first partial target consists of a disc made of two different materials, the materials being used alternately in segments.
  • the second target which is attached axially above the first target, there are segment-shaped openings which just release one of the two materials.
  • the partial targets can be rotated against each other.
  • Multi-layer hard material coatings of hard metals have been described, for example, in Zeitschrift für Metallischen, Volume 75, Issue 11 (November 1984), pages 874 to 880.
  • a ten-layer protective layer was mentioned in which a TiC layer, a Ti (C, N) layer above and a layer sequence consisting of four intermediate layers and four ceramic layers based on Al 2 O 3 were used adjacent to the hard metal.
  • approximately 10 ⁇ m thick multilayer layers based on titanium carbide, titanium carbonitride and titanium nitride were mentioned.
  • PVD physical vapor deposition
  • the invention has for its object to provide a method for producing wear protection layers with improved adhesion, toughness and wear resistance. It should be possible to coat surfaces or substrates of substances with very different coefficients of expansion, such as molybdenum with a very low coefficient of expansion, or a hard metal with a medium coefficient of expansion or high-speed jet with a high coefficient of expansion without significantly restricting the desired protective layer properties.
  • Cathodes made of TiC and TiB 2 or TiN and TiB 2 or TiC and TiN and TiB 2 can be used for both versions of the method according to the invention.
  • cathode combinations of TiB 2 -WC or TiB 2 -Ti (C, N) or TiB 2 - (Ti, V) C or TiB 2 - (Ti, W) C or (Ti, V) B 2 - ( Ti, V) C or (Ti, Nb) B 2 - (Ti, Nb) C or VB 2- TiN or VB 2- WC or HfB 2 -TaC or ZrB 2 -TaC or ZrB 2 -NbC can be used.
  • the successive layers or the very finely divided mixture for example the phases with partially coherent TiC (111) -TiB 2 (0001) - phase boundaries are largely free of tension, tougher, better adhering to the substrate due to the extremely high proportion of inner phase boundaries with a defined dislocation density the entire system is more wear-resistant than with conventional protective layers.
  • the samples 5, 6, 7 to be coated are rotated continuously on a turntable 1 with or without heating under two cathodes, one with TiC 3 , the other with TiB 2 4, during the entire coating process.
  • the composition and microstructure of the layer can be specifically adjusted by changing the plate rotation speed and the sputtering capacity. It is preferred to choose conditions in which the phase proportions of TiC and TiB 2 are similar and the total layer thickness achieved is 3 to 5 ⁇ m.
  • the calculated particle size (single layer thickness) is between 0.5 and 40 nm, depending on the application. The smaller "particle sizes", as X-rays show, the individual phases can no longer be separated.
  • the service life of the cutting tip which is provided with a finely dispersed TilTiB 2 layer 14, is approximately twice that of the simply coated 12 or 13.
  • A, D, E mean densely packed Ti planes, in D and E the atomic centers are not in the paper plane, B are the boron planes, C the carbon planes or N the nitrogen planes in the case of TiN.
  • the filled and unfilled circles are the Ti atoms.
  • the dashed line represents a phase boundary

Abstract

A protective coating for metallic substrates consists of a plurality of layers having a total thickness ranging from 0.1 to 10 mu , an individual thickness for each layer ranging from 0.5 to 40 nm, and a total number of layers which does not exceed 20,000, each layer being comprised of one kind of at least two kinds of crystalline hard substances and being arranged in a sequentially alternating order with respect to the others, the crystalline hard substances having phase interfaces with respect to one another which are at least crystallographically partially coherent. In an alternate embodiment, the protective coating is a single layer which is a superfinely dispersed mixture of the crystalline hard substances. The multi-layered embodiment is provided by a method which includes positioning the metallic substrate in a physical vapor deposition apparatus; providing at least two cathodes in the apparatus, each cathode being comprised of a different kind of crystalline hard substance; continuously moving the metallic substrate sequentially past each cathode; and causing the vapor deposition of the crystalline hard substances on the metallic substrate as a protective coating having a plurality of layers. The single-layered embodiment is provided by an alternate method in which one cathode is provided and is comprised of at least two kinds of crystalline hard substances. These protective coatings have a resistance to wear which exceeds that for a coating comprised of any one of the crystalline hard substances alone.

Description

Die Erfindung betrifft ein Verfahren zur Herstellung viellagiger, hochverschleißfester aus unterschiedlichen Hartstoff-Phasen bestehender Hartstoff-Schutzschichten für metallische, stark beanspruchte Oberflächen oder andere Substrate, wobei die Dicke Der Gesamtschutzschicht im Bereich von 0,1 bis 10 um liegt.The invention relates to a process for the production of multilayer, highly wear-resistant hard material protective layers consisting of different hard material phases for metallic, highly stressed surfaces or other substrates, the thickness of the total protective layer being in the range from 0.1 to 10 μm.

Hartstoff-Schutzschichten in Form von Einfach-oder Mehrfachschichten, hergestellt in CVD (Chemical Vapor Deposition) auf Stählen oder Hartmetallen stellen eine der wesentlichen Fortschritte dar im Hinblick auf eine Erhöhung der Verschleißfestigkeit und damit Standzeit von Schneidwerkstoffen oder Verschleißteilen. Die Hartstoffschicht verleiht dabei dem zähen Substrat einen Verschleißschutz durch Erhöhung des Abrasionswiderstandes der Oberfläche, durch Erniedrigung der Reibung und damit der Temperatur sowie durch Verminderung der Diffusion und Adhäsion zwischen Werkstoff und Werkstück (bzw. Span).Protective hard material layers in the form of single or multiple layers, produced in CVD (Chemical Vapor Deposition) on steels or hard metals, represent one of the major advances in increasing wear resistance and thus the service life of cutting materials or wearing parts. The hard material layer gives the tough substrate wear protection by increasing the abrasion resistance of the surface, by lowering the friction and thus the temperature, and by reducing the diffusion and adhesion between the material and the workpiece (or chip).

Die Problematik des zusammengesetzten Werkstoffes liegt in der oftmals ungenügenden Haftung zwischen Grundwerkstoff und Schicht, der mangelnden Zähigkeit der Schicht sowie der mangelnden Wechselfestigkeit. Man hat versucht, diese Problematik durch Mehrfachschichten zu lösen, hat wesentliche Verbesserungen gegenüber Einfachschichten erreicht, die Schwachstellen des Systems Substrat-Schicht aber nicht gänzlich eliminieren können.The problem of the composite material lies in the often insufficient adhesion between the base material and the layer, the lack of toughness of the layer and the lack of alternating strength. Attempts have been made to solve this problem by means of multiple layers, and substantial improvements have been achieved compared to single layers, but the weak points in the substrate-layer system cannot be completely eliminated.

Aus der US-PS 4,060,471 ist ein Verfahren zum Sputtern einer Schicht bekannt, in der sich die Zusammensetzung der Materialien über die Dicke der Schicht ändert, wobei mindestens zwei Quellen verwendet werden.A process for sputtering a layer is known from US Pat. No. 4,060,471, in which the composition of the materials changes over the thickness of the layer, using at least two sources.

Die Herstellung einer Vielzahl von Einzelschichten mit entsprechend vielen inneren Phasengrenzflächen wird jedoch nicht angesprochen.The production of a large number of individual layers with a corresponding number of inner phase interfaces is not addressed, however.

Ähnliche Schichten können entsprechend der JP-A-599 169, Patent Abstracts of Japan, Bd.8, Nr. 93 (27.4.1984) mit einem zusammengesetzten Target hergestellt werden. Das erste Teiltarget besteht dabei aus einer Scheibe aus zwei verschiedenen Materialien, wobei die Materialien segmentweise abwechselnd eingesetzt werden. Im zweiten Target, das axial über dem ersten Target angebracht ist, sind segmentförmige öffnungen vorhanden, die gerade eines der beiden Materialien freilassen. Die Teiltargets sind gegeneinander drehbar.Similar layers can be made with a composite target according to JP-A-599 169, Patent Abstracts of Japan, Vol. 8, No. 93 (April 27, 1984). The first partial target consists of a disc made of two different materials, the materials being used alternately in segments. In the second target, which is attached axially above the first target, there are segment-shaped openings which just release one of the two materials. The partial targets can be rotated against each other.

Mehrlagige Hartstoff-Beschichtungen von Hartmetallen wurden z.B. in der Zeitschrift für Metallkunde, Band 75, Heft 11 (November 1984), Seiten 874 bis 880, beschrieben. Biespielsweise wurde eine zehnlagige Schutzschicht, bei welcher angrenzend an das Hartmetall eine TiC-, darüber eine Ti(C,N)-Schicht und darüber eine Schichtfolge auz vier Zwischenschichten und vier Keramikschichten auf der Basis von AI203 verwendet wurden, erwähnt. An anderer Stelle dieser Veröffentlichung wurden ca. 10 um dicke, mehrlagige Schichten auf der Basis von Titancarbid, Titancarbonitrid und Titannitrid erwähnt. Für ausgewählte Beschichtungstemperaturen von unter 773 K wurden Vefahren der Physical Vapor Deposition (PVD), darunter das reaktive Kathodenzerstäuben (Sputtern) bei Drücken von ≤10-2 mbar (≤1 Pa), mit N2 oder Ar eingestellt, für brauchbar befunden.Multi-layer hard material coatings of hard metals have been described, for example, in Zeitschrift für Metallkunde, Volume 75, Issue 11 (November 1984), pages 874 to 880. For example, a ten-layer protective layer was mentioned in which a TiC layer, a Ti (C, N) layer above and a layer sequence consisting of four intermediate layers and four ceramic layers based on Al 2 O 3 were used adjacent to the hard metal. Elsewhere in this publication, approximately 10 µm thick multilayer layers based on titanium carbide, titanium carbonitride and titanium nitride were mentioned. For selected coating temperatures below 773 K, physical vapor deposition (PVD) processes, including reactive sputtering at pressures of ≤10 -2 mbar (≤1 Pa), set with N 2 or Ar, were found to be useful.

Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren zur Herstellung von Verschleißschutzschichten mit verbesserter Haftung, Zähigkeit und Verschleißfestigkeit zu schaffen. Es sollen Oberflächen oder Substrate von Stoffen mit sehr unterschiedlichen Ausdehnungskoeffizienten, wie beispielsweise Molybdän mit einem sehr niedrigen Ausdehnungskoeffizienten, oder ein Hartmetall mit einem mittleren Ausdehnungskoeffizienten oder Schnellarbeitsstrahl mit einem hohen Ausdehnungskoeffizienten beschichtet werden können ohne wesentliche Einschränkung der gewünschten Schutzschicht-Eigenschaften.The invention has for its object to provide a method for producing wear protection layers with improved adhesion, toughness and wear resistance. It should be possible to coat surfaces or substrates of substances with very different coefficients of expansion, such as molybdenum with a very low coefficient of expansion, or a hard metal with a medium coefficient of expansion or high-speed jet with a high coefficient of expansion without significantly restricting the desired protective layer properties.

Die Aufgabe wird erfindungsgemäß gelöst durch ein Verfahren zur Herstellung viellagiger, hochverschleißfester, aus unterschiedlichen Hartstoff-Phasen bestehender Hartstoff-Schutzschichten für metallische, stark beanspruchte Oberflächen oder andere Substrate, bei welchem die Dicke der Gesamtschutzschicht im Bereich von 0,1 bis 10 µm liegt und

  • a) sowohl aud der metallischen Oberfläche als auch untereinander fest haftende Einzelschichten oder -lagen oder feinstdisperse Hartstoff-Teilchen-Gemische mit Einzelschichtdicken oder Teilchengrößen im Bereich von 0,5 nm bis 40 nm,
  • b) eine Summenzahl der Enzelschichten oder inneren Phasengrenzen zwischen 100 und 20 000, im Falle 0,5 nm dicker Einzelschichten oder Teilchengrößen und
  • c) in Bezug auf das Kristall-Gitter kohärente oder teilkohärente Phasen-Grenzen vorgeshen sind, wobei die Einzelschichten oder -lagen oder die Hartstoff-Teilchen durch Kathodenzerstäubung oder eine andere Physical Vapor Deposition-Methode auf die metallische Oberfläche oder auf das Substrat aufgebracht werden und wobei entweder
    • - die zu beschichtenden Oberflächen während des gesamten Beschichtungsvorganges relativ zu mindestens zwei Zerstäubungskathoden unterschiedlichen Hartstoffmaterials bewegt werden oder
    • - die Beschichtung der Oberläche oder des Substrats mit Hilfe einer Kathode, bestehend aus mindestens zwei miteinander kohärente oder teilkohärente Phasengrenzen bildenden Hartstoffen, durchgeführt wird.
The object is achieved according to the invention by a process for the production of multilayer, highly wear-resistant hard material protective layers consisting of different hard material phases for metallic, highly stressed surfaces or other substrates, in which the thickness of the overall protective layer is in the range from 0.1 to 10 μm and
  • a) both from the metallic surface and from individual layers or layers firmly adhering to one another or finely dispersed hard material-particle mixtures with individual layer thicknesses or particle sizes in the range from 0.5 nm to 40 nm,
  • b) a total number of the individual layers or inner phase boundaries between 100 and 20,000, in the case of 0.5 nm thick individual layers or particle sizes and
  • c) Coherent or partially coherent phase boundaries are provided with respect to the crystal lattice, the individual layers or layers or the hard material particles being applied to the metallic surface or to the substrate by sputtering or another physical vapor deposition method, and being either
    • - The surfaces to be coated are moved during the entire coating process relative to at least two sputtering cathodes of different hard material or
    • - The coating of the surface or of the substrate is carried out with the aid of a cathode consisting of at least two hard materials which form coherent or partially coherent phase boundaries.

Für beide Versionen des erfindungsgemäßen Verfahrens können Kathoden aus TiC und TiB2 oder TiN und TiB2 oder TiC und TiN und TiB2 verwendet werden.Cathodes made of TiC and TiB 2 or TiN and TiB 2 or TiC and TiN and TiB 2 can be used for both versions of the method according to the invention.

Außerdem können Kathoden-Kombinationen aus TiB2-WC oder TiB2-Ti (C,N) oder TiB2-(Ti,V)C oder TiB2-(Ti,W)C oder (Ti,V)B2- (Ti,V)C oder (Ti,Nb)B2-(Ti,Nb)C oder VB2-TiN oder VB2-WC oder HfB2-TaC oder ZrB2-TaC oder ZrB2-NbC verwendet werden.In addition, cathode combinations of TiB 2 -WC or TiB 2 -Ti (C, N) or TiB 2 - (Ti, V) C or TiB 2 - (Ti, W) C or (Ti, V) B 2 - ( Ti, V) C or (Ti, Nb) B 2 - (Ti, Nb) C or VB 2- TiN or VB 2- WC or HfB 2 -TaC or ZrB 2 -TaC or ZrB 2 -NbC can be used.

Die aufeinanderfolgenden Schichten bzw. das feinstdisperse Gemisch, beispielsweise der Phasen mit teilkohärenten TiC (111)-TiB2 (0001) - Phasengrenzen sind durch den extrem hohen Anteil innerer Phasengrenzen mit definierter Versetzungsdichte weitgehend spannungsfrei, zäher, besser haftend auf dem Substrat un machen damit das Gesamtsystem verschleißfester als bei bisher üblichen Schutzschichten.The successive layers or the very finely divided mixture, for example the phases with partially coherent TiC (111) -TiB 2 (0001) - phase boundaries are largely free of tension, tougher, better adhering to the substrate due to the extremely high proportion of inner phase boundaries with a defined dislocation density the entire system is more wear-resistant than with conventional protective layers.

Wichtig ist hierbei die Abstimmung der Phasen, die die Schicht aufbauen in der Weise, daß Kohärenzbeziehungen zwischen Netzebenen der jeweiligen Verbindungen möglich sind und diese während des Beschichtungsvorganges realisiert werden. Bei der Kombination TiC/TiB2 sind dies die dichtest gepackten Ebenen (111) für TiC und (0001) für TiB2. Beim Sputtervorgang lassen sich diese Phasengrenzen wergen der günstigen Grenzflächenenergie leicht erhalten.It is important here to coordinate the phases that build up the layer in such a way that coherence relationships between network levels of the respective connections are possible and that these are realized during the coating process. With the combination TiC / TiB 2 , these are the most densely packed levels (111) for TiC and (0001) for TiB 2 . During the sputtering process, these phase boundaries can easily be maintained due to the favorable interfacial energy.

in den Zeichnungen zeigt

  • Fig. 1 eine beim erfindungsgemäßen Verfahren eingesetzte Anordnung,
  • Fig. 2 die Abhängigkeit des Verschließes von der Einsatzzeit bei erfindungsgemäß beschichteten und anderen Schneidplättchen und
  • Fig. 3 ein Schema der Grenzflächen in der erfindungsgemäß hergestellten Beschichtung.
shows in the drawings
  • 1 shows an arrangement used in the method according to the invention,
  • Fig. 2 shows the dependence of the closure on the time of use in the case of inventive and other cutting tips and
  • 3 shows a diagram of the interfaces in the coating produced according to the invention.

Man läßt z.B. die zu beschichtenden Proben 5, 6,7 gemäß Figur 1 auf einem Drehteller 1 mit oder ohne Heizung ständig unter zwei Kathoden, eine mit TiC 3, die andere mit TiB2 4 bestückt, während des gesamten Beschichtungsvorganges rotieren. Durch Änderung der Tellerdrehgeschwindigkeit und der Sputterleistung läßt sich die Zusammensetzung und Mikrostruktur der Schicht gezielt einstellen. Man wählt bevorzugt Bedingungen, bei welchen die Phasenanteile von TiC und TiB2 ähnlich sind, und die erzielte Gesamtschichtdicke 3 bis 5 um beträgt. Die errechnete Teilchengröße (Einzelschichtdicke) liegt je nach Anwendungszweck zwischen 0,5 und 40 nm. Bei den kleineren "Teilchengroßen" lassen sich, wie Röntgenaufnahmen zeigen, die einzelnen Phasen nicht mehr trennen. Man beobachtet eine röntgenographisch amorphe Mischschicht, die so stabil ist, daß auch eine Wärmezufuhr bis 1200° keine Rekristallisation bewirkt. Bei einer Aufnahme der Bruchfläche einer sogenannten Simultanschicht, hergestellt, mit Kathoden bestehend aus beispielsweise TiB2 und TiC gemäß Anspruch 2, erkennt man den gleichmäßigen Aufbau der Schicht ohne Stengelkristalle oder Inhomogenitäten und gute Haftung. Diese gute Haftung wird auch dokumentiert durch den Vergleich der Ergebnisse, die mit Hilfe des sogenannten Scratchtests erhalten wurden. Dieser relative Haftfestigkeitstest belegt eindrucksvoll den Spannungsabbau in der feindispersen TiC/TiB2-Schicht im Vergleich zu den Einfachschichten von TiC und TiB2. Auch Härteeindrücke in eine TiC-Schicht einerseits und eine feinstdisperse TiC/ TiB2-Schicht andererseits machen das unterschiedliche Zähigkeitsverhalten deutlich. Infolge der "Anpassungsfähigkeit" dieser relative zähen Schicht können als Substrate Stoffe mit sehr unterschiedlichen Ausdehnungskoeffizienten gewählt werden.For example, the samples 5, 6, 7 to be coated are rotated continuously on a turntable 1 with or without heating under two cathodes, one with TiC 3 , the other with TiB 2 4, during the entire coating process. The composition and microstructure of the layer can be specifically adjusted by changing the plate rotation speed and the sputtering capacity. It is preferred to choose conditions in which the phase proportions of TiC and TiB 2 are similar and the total layer thickness achieved is 3 to 5 μm. The calculated particle size (single layer thickness) is between 0.5 and 40 nm, depending on the application. The smaller "particle sizes", as X-rays show, the individual phases can no longer be separated. An X-ray-amorphous mixed layer is observed which is so stable that even a heat supply up to 1200 ° does not cause recrystallization. When recording the fracture surface of a so-called simultaneous layer, produced with cathodes consisting of, for example, TiB 2 and TiC according to claim 2, one recognizes the uniform structure of the layer without stem crystals or inhomogeneities and good adhesion. This good liability is also documented by comparing the results obtained using the so-called scratch test. This relative adhesive strength test impressively demonstrates the stress reduction in the finely dispersed TiC / TiB 2 layer compared to the single layers of TiC and TiB 2 . Hardness impressions in a TiC layer on the one hand and a finely dispersed TiC / TiB 2 layer on the other hand make the different toughness behavior clear. Due to the "adaptability" of this relatively tough layer, substances with very different expansion coefficients can be selected as substrates.

Verschleißtests wurden durchgeführt, entsprechend Figur 2, mit Schneidplättchen aus Schnellarbeitsstahl, unbeschichtet (Kurve 11), TiC-, TiB2- und simultan TiC/TiB2-beschichtet (Kurven 12 bis 14). Die Simultan-TiC/TiB2-Schicht hatte eine rechnerisch ermittelte TiC- bzw. TiB2-Einzelschichtdicke von 2.5 nm und eine Gesamtschichtdicke von 2.9 µm, d.h. theoretisch in der Schicht senkrecht zur Substratoberfläche über 103 teilkohärente TiC/TiB2-Granzflächen.Wear tests were carried out, as in FIG. 2, with cutting tips made of high-speed steel, uncoated (curve 11), TiC, TiB 2 - and simultaneously TiC / TiB 2 -coated (curves 12 to 14). The simultaneous TiC / TiB 2 layer had a calculated TiC or TiB 2 single layer thickness of 2.5 nm and a total layer thickness of 2.9 µm, i.e. theoretically in the layer perpendicular to the substrate surface over 10 3 partially coherent TiC / TiB 2 fronts.

Obwohl Drehbedingungen, Schneidplättchengeometrie und Beschichtungsvorgang nicht optimiert wurden, ergibt sich, wie Figure 2 dokumentiert, eine etwa verdoppelte Standzeit der mit einer feinstdispersen TilTiB2-Schicht 14 versehenen Schneidplatte im Vergleich mit den einfach beschichteten 12 bzw. 13.Although the turning conditions, cutting tip geometry and coating process have not been optimized, as shown in Figure 2, the service life of the cutting tip, which is provided with a finely dispersed TilTiB 2 layer 14, is approximately twice that of the simply coated 12 or 13.

Eine theoretische Betrachtung der Struktur- und Kohärenzbeziehungen der Hartstoffverbindungen ergibt eine noch bessere Anpassung der Grenzflächen, z.B. bei Erzeugung einer feinstdispersen Ti(C,N)/TiB2-Schicht. Dies verdeutlicht Figur 3, in welcher die in der Schicht erhaltenen Grenzflächen schematisch dargestellt sind.A theoretical consideration of the structure and coherence relationships of the hard material compounds results in an even better adaptation of the interfaces, for example when producing a finely dispersed Ti (C, N) / TiB 2 layer. This is illustrated in FIG. 3, in which the interfaces obtained in the layer are shown schematically.

Hierbei bedeuten A, D, E dicht gepackte Ti-Ebenen, bei D und E liegen die Atomzentren nicht in der Papierebene, B sind die Borebenen, C die Kohlstoffebenen bzw. N die Stickstoffebenen im Falle von TiN. Die ausgefüllten und nicht ausgefüllten Kreise sind die Ti-Atome. Die gestrichelte Linie stellt eine Phasengrenze darHere, A, D, E mean densely packed Ti planes, in D and E the atomic centers are not in the paper plane, B are the boron planes, C the carbon planes or N the nitrogen planes in the case of TiN. The filled and unfilled circles are the Ti atoms. The dashed line represents a phase boundary

Ausführungsbeispiele:Examples:

  • 1. Schneidplatten aus Schnellarbeitsstahl oder Hartmetall wurden fein poliert (Diamantpaste 3 µm), im Ultraschallbad 4 min und mit reinem Alkohol gereinigt und anschließend auf den Substratteller einer Sputterablage entweder eben oder 45° gekantet (Schneidecke nach oben) gelegt. Der Kessel wurde bis auf 2 x 10-6 mbar evakuiert und anschließend mit hochreinem Argon bis zu einem Druck von 2.0 x 10-2 mbar aufgefüllt. Die Proben wurden 10 min mit einer Leistung von 1000 Watt HF geätzt. Der Argondruck wurde dann auf 1.3 x 10-2 mbar (1,3 Pa) abgesenkt, die Kathode anschließend 1 min mit einer Leistung von 1250 bzw. 800 Watt gereinigt (Sputtern auf die Blende). Der Substratteller wurde mit 1.6 Umdrehungen/Minute gedreht. Von der TiB2-Kathode wurde mit einer Leistung von 1250 Watt, von TiC-Kathode mit 800 Watt, 5 Stunden gesputtert. Es ergab sich eine homogene 4.1 pm dicke Schicht. Dies entspricht bei einer Einzelschichtdicke von 4.4 nm etwa 103 TiC/TiBz Grenzflächen.1. Cutting inserts made of high-speed steel or hard metal were finely polished (diamond paste 3 µm), cleaned in an ultrasonic bath for 4 min and with pure alcohol and then placed on the substrate plate of a sputter tray either flat or at 45 ° (cutting corner up). The boiler was evacuated to 2 x 10- 6 mbar and then filled up with high-purity argon to a pressure of 2.0 x 10- 2 mbar. The samples were etched for 10 minutes with a power of 1000 watts HF. The argon pressure was then x 10- 2 mbar (1.3 Pa) lowered to 1.3, the cathode followed by 1 min at a power of 1250 watts or 800 chromatography (sputtering on the diaphragm). The substrate plate was rotated at 1.6 revolutions / minute. The TiB 2 cathode was sputtered for 5 hours with a power of 1250 watts, of TiC cathode with 800 watts. The result was a homogeneous 4.1 pm thick layer. With a single layer thickness of 4.4 nm, this corresponds to approximately 10 3 TiC / TiB z interfaces.
  • 2. Gleiche Vorbereitungen wie bei Beispiel 1, Ätzen 10 min mit 500 Watt, Arbeitsdruck 1.2 x 10-2 mbar (1,2 Pa) Argon, TiB2 Sputterleistung 650 Watt, TiC Sputterleistung 500 Watt, Zeit 15 h Schichtdicke 7 um, Einzelschichtdicke 2.3 nm, -3 x 103 TiC/TiB2 Grenzfläche.2. The same preparations in Example 1, etching 10 2 sputtering, TiC sputtering power 500 watts, time min 500 Watt, working pressure of 1.2 x 10- 2 mbar (1.2 Pa) argon, TiB 650 watts for 15 h layer thickness 7 microns, individual layer thickness as 2.3 nm, -3 x 10 3 TiC / TiB 2 interface.

Claims (3)

1. Method of producing multilayered, highly wear-resistant protective layers, formed from different hard material phases, for protecting metallic surfaces or other substrates which are subjected to a high load, wherein the thickness of the total protective layer lies in the range of from 0.1 to 10 µm and
a) individual layers or plies, which adhere fixedly both on the metallic surface and to one another, or finely dispersed mixtures of hard material particles are provided, having individual layer thicknesses or particle sizes in the range of from 0.5 nm to 40 µm,
b) a total number of individual layers or inner phase interfaces being between 100 and 20 000, in the case of individual layers or particle sizes which are 0.5 nm thick, and
c) phase interfaces are provided, which are coherent or partially coherent relative to the crystal lattice, wherein the individual layers or plies or the hard material particles are applied to the metallic surface or to the substrate by cathode sputtering or by a different Physical Vapor Deposition method, and wherein
- either the surfaces to be covered during the entire covering process are displaced relative to at least two sputtering cathodes of different hard materials,
- or the surface or substrate is coated by means of a cathode, formed from at last two hard materials forming phase interfaces which are coherent or partially coherent with one another.
2. Method according to claim 1, characterised in that cathodes of TiC and TiB2 or TiN and TiB2 or TiC and TiN and TiB2 are used.
3. Method according to claim 1 or 2, characterised in that cathode combinations of TiB2-WC or TiB2-Ti(C,N) or TiB2-(Ti,V)C or TiB2-(Ti,W)C or (Ti,V)B2-(Ti,V)C or (Ti,Nb)B2-(Ti,Nb)C or VB2-TiN or VB2-WC or HfB2-TaC or ZrB2-TaC or ZrB2-NbC are used.
EP85109800A 1985-04-11 1985-08-05 Multilayered and highly wear-resistant protective coating of hard material for metallic surfaces or substrates subjected to a high load Expired - Lifetime EP0197185B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT85109800T ATE52815T1 (en) 1985-04-11 1985-08-05 MULTI-LAYER, HIGHLY WEAR-RESISTANT HARD COMPONENT PROTECTIVE LAYER FOR METALLIC, HEAVY-DUTY SURFACES OR SUBSTRATES.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3512986 1985-04-11
DE19853512986 DE3512986A1 (en) 1985-04-11 1985-04-11 VIELLAGE, HIGH-WEAR-RESISTANT HARD MATERIAL PROTECTIVE LAYER FOR METALLIC, STRICTLY STRESSED SURFACES OR SUBSTRATES

Publications (3)

Publication Number Publication Date
EP0197185A2 EP0197185A2 (en) 1986-10-15
EP0197185A3 EP0197185A3 (en) 1988-03-30
EP0197185B1 true EP0197185B1 (en) 1990-05-16

Family

ID=6267732

Family Applications (1)

Application Number Title Priority Date Filing Date
EP85109800A Expired - Lifetime EP0197185B1 (en) 1985-04-11 1985-08-05 Multilayered and highly wear-resistant protective coating of hard material for metallic surfaces or substrates subjected to a high load

Country Status (5)

Country Link
US (1) US4835062A (en)
EP (1) EP0197185B1 (en)
JP (1) JPS61235555A (en)
AT (1) ATE52815T1 (en)
DE (1) DE3512986A1 (en)

Families Citing this family (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5310603A (en) * 1986-10-01 1994-05-10 Canon Kabushiki Kaisha Multi-layer reflection mirror for soft X-ray to vacuum ultraviolet ray
US5433988A (en) * 1986-10-01 1995-07-18 Canon Kabushiki Kaisha Multi-layer reflection mirror for soft X-ray to vacuum ultraviolet ray
JPS63125602A (en) * 1986-11-12 1988-05-28 Sumitomo Electric Ind Ltd Hard alloy for tool
DE3811907C1 (en) * 1988-04-09 1989-08-03 Kernforschungszentrum Karlsruhe Gmbh, 7500 Karlsruhe, De
DE3830525A1 (en) * 1988-09-08 1990-03-22 Beck August Gmbh Co CARBIDE CUTTING PLATE COATED WITH HARD MATERIAL AND METHOD FOR THEIR PRODUCTION
JP2793696B2 (en) * 1990-05-17 1998-09-03 神鋼コベルコツール株式会社 Wear resistant coating
JPH05198575A (en) * 1991-05-01 1993-08-06 Kobe Steel Ltd Corrosion-resistant a1 or a1 alloy material
WO1993022746A1 (en) * 1992-05-01 1993-11-11 National Research Council Of Canada Optically variable coins, medals, tokens and other non-fibrous articles and method for making same
EP0592986B1 (en) * 1992-10-12 1998-07-08 Sumitomo Electric Industries, Limited Ultra-thin film laminate
JP2638406B2 (en) * 1992-10-26 1997-08-06 神鋼コベルコツール株式会社 Wear resistant multilayer hard film structure
US5789071A (en) * 1992-11-09 1998-08-04 Northwestern University Multilayer oxide coatings
US5783295A (en) * 1992-11-09 1998-07-21 Northwestern University Polycrystalline supperlattice coated substrate and method/apparatus for making same
US5952085A (en) * 1994-03-23 1999-09-14 Rolls-Royce Plc Multiple layer erosion resistant coating and a method for its production
GB9405744D0 (en) * 1994-03-23 1994-05-11 Rolls Royce Plc A multilayer erosion resistant coating and a method for its production
EP0695731B1 (en) * 1994-08-01 2000-11-08 Sumitomo Electric Industries, Limited Super hard composite material for tools
EP0701982B1 (en) * 1994-09-16 2002-07-03 Sumitomo Electric Industries, Limited Layered film made of ultrafine particles and a hard composite material for tools possessing the film
EP0709483B1 (en) 1994-10-28 2002-04-10 Sumitomo Electric Industries, Ltd. Multilayer material
DE19503070C1 (en) 1995-02-01 1996-08-14 Karlsruhe Forschzent Wear protection layer
US5750207A (en) * 1995-02-17 1998-05-12 Si Diamond Technology, Inc. System and method for depositing coating of modulated composition
US5681653A (en) * 1995-05-11 1997-10-28 Si Diamond Technology, Inc. Diamond cutting tools
US5593234A (en) * 1995-05-16 1997-01-14 Ntn Corporation Bearing assembly with polycrystalline superlattice coating
US5588975A (en) * 1995-05-25 1996-12-31 Si Diamond Technology, Inc. Coated grinding tool
BR9711680A (en) 1996-09-03 1999-08-24 Balzers Hochvakuum Coated pe-a for anti-wear
SE518145C2 (en) * 1997-04-18 2002-09-03 Sandvik Ab Multilayer coated cutting tool
JP4185172B2 (en) * 1997-06-19 2008-11-26 住友電工ハードメタル株式会社 Coated hard tool
DE10016958A1 (en) * 2000-04-06 2001-10-18 Widia Gmbh Process for the production of multilayer layers on substrate bodies and composite material, consisting of a coated substrate body
US6634781B2 (en) 2001-01-10 2003-10-21 Saint Gobain Industrial Ceramics, Inc. Wear resistant extruder screw
SE522722C2 (en) * 2001-03-28 2004-03-02 Seco Tools Ab Cutting tool coated with titanium diboride
US6660133B2 (en) 2002-03-14 2003-12-09 Kennametal Inc. Nanolayered coated cutting tool and method for making the same
DE102006046917C5 (en) 2006-10-04 2014-03-20 Federal-Mogul Burscheid Gmbh Piston ring for internal combustion engines
DE102006046915C5 (en) 2006-10-04 2015-09-03 Federal-Mogul Burscheid Gmbh Piston ring for internal combustion engines
JP4916021B2 (en) * 2007-09-26 2012-04-11 日立ツール株式会社 Film
DE102007058564A1 (en) * 2007-11-30 2009-06-04 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Smooth wear-protection coating for metal or ceramic components or tools, deposits layers of alternating structure to limit growth of defects and prevent unacceptable surface roughness
CN101889104B (en) * 2007-12-06 2013-11-06 森拉天时奥地利有限公司 Coated article
CN101643889B (en) * 2008-08-07 2012-10-10 三菱重工业株式会社 Part for rotary machine and its method of manufacture
DE102009002868A1 (en) 2009-05-06 2010-11-18 Inncoa Gmbh Method for applying a multi-layered layer structure to a substrate and substrate having a multi-layered layer structure
US8267805B2 (en) * 2009-10-01 2012-09-18 Lyle Dean Johnson Three in one-HBC(hand, belly, chest) putter
US9670575B2 (en) * 2013-03-25 2017-06-06 Kobe Steel, Ltd. Laminated coating film having superior wear resistance
JP6155204B2 (en) * 2014-02-21 2017-06-28 株式会社神戸製鋼所 Hard coating and method for forming the same
WO2017159030A1 (en) * 2016-03-14 2017-09-21 株式会社神戸製鋼所 Hard coating and hard coating-covered member
AT16481U1 (en) * 2018-04-20 2019-10-15 Plansee Composite Mat Gmbh Target and method of making a target
CN112063983B (en) * 2020-07-31 2021-11-05 广东工业大学 Belt HfB2Coated cutting tool and method for producing the same
CN116837346B (en) * 2023-08-31 2023-10-31 赣州澳克泰工具技术有限公司 Cutter with TiBN coating and preparation method thereof

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3073717A (en) * 1958-12-31 1963-01-15 Robert J Pyle Coated carbon element for use in nuclear reactors and the process of making the element
DE1951362B2 (en) * 1969-10-11 1971-12-02 W.C. Heraeus Gmbh, 6450 Hanau PROCESS FOR COVERING A PEN WITH A LAYER OF HARD MATERIAL
DE1954366C2 (en) * 1969-10-29 1972-02-03 Heraeus Gmbh W C Method and device for the production of hard coatings from titanium and / or tantalum compounds
SE367217B (en) * 1973-09-17 1974-05-20 Sandvik Ab
AT328254B (en) * 1974-06-25 1976-03-10 Plansee Metallwerk HOBBING CUTTERS
AT350285B (en) * 1974-08-07 1979-05-25 Plansee Metallwerk COVERED, METAL USE ITEMS
US4060471A (en) * 1975-05-19 1977-11-29 Rca Corporation Composite sputtering method
CH621579A5 (en) * 1977-06-10 1981-02-13 Stellram Sa Hard metal wear piece, especially for tools
CH624741A5 (en) * 1977-01-21 1981-08-14 Suisse Horlogerie Rech Lab Precision rolling bearing
CH632944A5 (en) * 1978-06-22 1982-11-15 Stellram Sa HARD METAL WEAR.
US4264682A (en) * 1978-10-27 1981-04-28 Hitachi Metals, Ltd. Surface hafnium-titanium compound coated hard alloy material and method of producing the same
FR2451949A1 (en) * 1979-03-22 1980-10-17 Nl Vintage PROCESS FOR COATING OBJECTS WITH A HARD MATERIAL THAT CAN BE EXERCISED COMMERCIALLY AND OBJECTS MANUFACTURED BY THIS PROCESS
DE2917348C2 (en) * 1979-04-28 1984-07-12 Fried. Krupp Gmbh, 4300 Essen Wear-resistant composite body
JPS55154565A (en) * 1979-05-22 1980-12-02 Hitachi Metals Ltd Surface-covered sintered hard alloy member
US4403015A (en) * 1979-10-06 1983-09-06 Sumitomo Electric Industries, Ltd. Compound sintered compact for use in a tool and the method for producing the same
US4430183A (en) * 1980-10-30 1984-02-07 The United States Of America As Represented By The United States Department Of Energy Method of making coherent multilayer crystals
AU541105B2 (en) * 1981-02-23 1984-12-13 Vsesojuzny Nauchno-Issledovatelsky Instrumentalny Institut Multilayer coating for metal-cutting tool
DE3112460C2 (en) * 1981-03-28 1983-01-20 Fried. Krupp Gmbh, 4300 Essen Process for the production of a composite body and application of this process
JPS599169A (en) * 1982-07-06 1984-01-18 Ricoh Co Ltd Production of thin film

Also Published As

Publication number Publication date
JPH0580547B2 (en) 1993-11-09
DE3512986A1 (en) 1986-10-16
DE3512986C2 (en) 1988-02-04
US4835062A (en) 1989-05-30
JPS61235555A (en) 1986-10-20
ATE52815T1 (en) 1990-06-15
EP0197185A3 (en) 1988-03-30
EP0197185A2 (en) 1986-10-15

Similar Documents

Publication Publication Date Title
EP0197185B1 (en) Multilayered and highly wear-resistant protective coating of hard material for metallic surfaces or substrates subjected to a high load
DE60309992T2 (en) Precipitation hardened wear protection layer
EP0513662B1 (en) Work piece coated with a hard layer and process for coating with the layer
EP0306077B1 (en) Process for the production of multilayer coated hard metal parts
EP2408945B1 (en) Cutting tool
EP1726687B1 (en) Coated tool
EP2167705B1 (en) Coated tool
EP1365045B1 (en) TiBN coating
WO1993004015A1 (en) Tool with wear-resistant cutting edge made of cubic boron nitride or polycrystalline cubic boron nitride, a method of manufacturing the tool and its use
DE4408250A1 (en) Process for coating the surface of a substrate and coating material
EP2281072B1 (en) Tool having a metal oxide coating
EP1161573B1 (en) Tool with a molybdenum sulphide coating and method for producing the same
EP2275585A1 (en) Workpiece comprising an alcr-containing hard material layer and production method
DE602004003547T2 (en) Process for coating a cutting tool.
EP1161572A1 (en) Tool with a molybdenum sulfide containing coating and method for its production
DE102016108734B4 (en) Coated body and method of making the body
EP2171121B1 (en) Tool with multilayered metal oxide coating and method of manufacturing the coated tool
DE102012017830A1 (en) Multi-layer wear resistant coated element and method of making same
DE102014104672A1 (en) Coated cutting tool and method for its manufacture
EP3333281B1 (en) High-temperature protective layer for titanium aluminide alloys
EP0143889A2 (en) Coated hard metal body
DE3811907C1 (en)
EP1268878A1 (en) Substrate body coated with multiple layers and method for the production thereof
EP1980645A1 (en) Method for applying a multi-layer coating to workpieces and/or work materials
DE102004028112B4 (en) Tool substrate with a boron-containing layer system, consisting of a boron carbide, a B-C-N and a carbon-modified cubic boron nitride layer and method for producing such a layer system and use

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT FR GB SE

XX Miscellaneous (additional remarks)

Free format text: EIN ANTRAG NACH REGEL 88 AUF BERICHTIGUNG DER FIG. 3 LIEGT VOR.

17P Request for examination filed

Effective date: 19861017

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT FR GB SE

17Q First examination report despatched

Effective date: 19890428

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT FR GB SE

REF Corresponds to:

Ref document number: 52815

Country of ref document: AT

Date of ref document: 19900615

Kind code of ref document: T

XX Miscellaneous (additional remarks)

Free format text: EIN ANTRAG NACH REGEL 88 AUF BERICHTIGUNG DER FIG. 3 LIEGT VOR.

ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
EAL Se: european patent in force in sweden

Ref document number: 85109800.4

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20040713

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20040817

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20040826

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20040830

Year of fee payment: 20

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20050804

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

EUG Se: european patent has lapsed