EP0195257A2 - Kunststoffkabel - Google Patents

Kunststoffkabel Download PDF

Info

Publication number
EP0195257A2
EP0195257A2 EP86102070A EP86102070A EP0195257A2 EP 0195257 A2 EP0195257 A2 EP 0195257A2 EP 86102070 A EP86102070 A EP 86102070A EP 86102070 A EP86102070 A EP 86102070A EP 0195257 A2 EP0195257 A2 EP 0195257A2
Authority
EP
European Patent Office
Prior art keywords
polymer
plastic cable
cable according
polar
conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP86102070A
Other languages
English (en)
French (fr)
Other versions
EP0195257A3 (de
Inventor
Gert Dr. Dipl.-Chem. Weddigen
Hans-Joachim Dr. Dipl.-Chem. Böhme
Josef Dr. Dipl.-Chem. Flatz
Fritz Dr. Dipl.-Chem. Grieser
Robert Dr Dipl.-Phys. Huber
Hans Dr. Dipl.-Chem. Nienburg
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BBC Brown Boveri AG Germany
Original Assignee
Brown Boveri und Cie AG Germany
BBC Brown Boveri AG Germany
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Brown Boveri und Cie AG Germany, BBC Brown Boveri AG Germany filed Critical Brown Boveri und Cie AG Germany
Publication of EP0195257A2 publication Critical patent/EP0195257A2/de
Publication of EP0195257A3 publication Critical patent/EP0195257A3/de
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B9/00Power cables
    • H01B9/02Power cables with screens or conductive layers, e.g. for avoiding large potential gradients
    • H01B9/027Power cables with screens or conductive layers, e.g. for avoiding large potential gradients composed of semi-conducting layers

Definitions

  • the invention relates to a plastic cable with at least one electrical conductor, which is surrounded by a cable sheath which, in addition to at least one insulating layer, has a plurality of electrically conductive layers of a polymeric material.
  • Such plastic cables are preferably used in high-voltage systems with nominal voltages from 10 to more than 100 kV.
  • the multilayered conductor covering of these plastic cables has, in addition to the actual insulating layer, also conductive layers or tapes. They are intended to smooth the contours of the metallic conductors used in the cable and are intended to generate a radially homogeneous electrical field in the insulation.
  • the conductive layers are made of filled polyolefins, which together with in the same operation the insulation are extruded.
  • the conductivity of these polyolefins is caused by fillers such as carbon black and graphite.
  • Polymeric material with these additives has the disadvantage that, with a small proportion of these fillers, there is still no increase in conductivity, but from a certain amount of the additive the conductivity then increases so rapidly that a defined conductivity of the plastics cannot be reliably set in the area of interest . Even with the finest possible grain size of the fillers, field-distorting inhomogeneities can occur, which in particular lead to a reduction in the electrical strength of the cable.
  • the invention is therefore based on the object of providing a cable in which the electrically conductive layers consist of a polymeric material which can be set to a defined specific electrical conductivity and whose homogeneity guarantees an interference-free transition between the insulating layer and the conductive layer.
  • At least one electrically conductive layer is made of a polymer, a copolymer or a polymer alloy which is meltable and / or soluble and whose specific electrical conductivity can be adjusted to a defined value by means of a charge transfer complex is.
  • the inner conductive layer 51 is made of a polymer or a polymer alloy, the electrical conductivity of which is formed by charge transfer complexes.
  • the electrical conductivity of the polymeric material used can be easily and reliably set to a defined value.
  • a conductivity of at least 10 -5 ⁇ -1 cm -1 in particular a conductivity in the range of 10 -3 to 10 -1 ⁇ -1 cm -1, is advantageous.
  • Higher conductivities can be represented, but are neither required electrically nor economically advantageous.
  • the polymer materials according to the invention allow the production of particularly smooth interfaces, since they contain no fillers and are constructed very homogeneously.
  • a triaromatomethane polymer is preferably used as the conductive polymer.
  • the conductive polymer can also be used in the form of a copolymer or a polymer alloy, which is correspondingly formed from at least one insulating polymer and at least one conductive polymer.
  • the polymers or polymer alloys used should be meltable or soluble so that they can be processed accordingly.
  • the conductive polymer containing the electrically conductive layers 3 and 5 of the cable is formed, for example, in the polycondensation of an aromatic aldehyde and an aromatic ring compound which has at least one functional group which increases the electron density in the aromatic ring compound and thus the electrophilic attack favored.
  • This polymer can e.g. B. by the polycondensation of bisphenol-A and 4-dimethylaminobenzaldehyde are formed.
  • the synthetic polymer with triaromatomethane units as basic building blocks can also be produced by polycondensation of bisphenol A and paraanisaldehyde.
  • the polymer can also be obtained in a catalytic reaction in which methanes substituted with double and / or triple aromatics are reacted.
  • the electrical conductivity of this polymer is caused by the formation of charge transfer complexes.
  • electron acceptors and / or donors are added to the polymer during production or later in the dissolved or molten state.
  • Iodine, sulfur trioxide, sulfuric acid and iron chloride are particularly suitable as electron acceptors.
  • Sodium is suitable as an electron donor.
  • the electrical conductivity of this polymer can also be achieved by adding a mineral acid or a Lewis acid.
  • the polymer can be dissolved in acetone or methyl ethyl ketone.
  • the conductive layers 3 and 5 of the cable can also be produced from a conductive polymer alloy.
  • the polymer alloy is formed from a polar or non-polar, insulating polymer and a polar or non-polar, conductive polymer.
  • polar insulating polymers to form the polymer alloy polyvinyl chloride, polyester, preferably polybutylene terephthalate, an epoxy resin composition, polycarbonate, a Polyurethane resin or polyamide can be used.
  • Polyethylene and its copolymers, polybutadiene, polystyrene, butadiene styrene copolymers or acrylonitryl butadiene styrene copolymers are suitable as insulating polymers.
  • the conductive component of the polymer alloy is preferably formed by polar polymers based on triaromatomethane, which are doped with electron donors and / or electron acceptors.
  • the electron donors and acceptors specified above for the formation of the conductive polymer are suitable for this.
  • Copolymers of acetylene and / or acetylene derivatives doped with electron donors and / or electron acceptors to form charge transfer complexes can be used as the non-polar conductive component.
  • the production of a small amount of this material is described below.
  • 100 g of polyvinyl chloride in granulate form are mixed with 30 g of a plasticizer, for example a diisodecyl phthalate (DIDP), with 10 g of triaromatomethane polymer in powder form.
  • a plasticizer for example a diisodecyl phthalate (DIDP)
  • DIDP diisodecyl phthalate
  • This triaromatomethane polymer forms the conductive component and is doped accordingly.
  • the mixture thus formed is then pressed into a film at 150 ° C. for 20 minutes.
  • the doping of the triaromatomethane polymer is such that the specific electrical conductivity of the finished film which can be used for layer 5A is 10 -3 (ohm ⁇ cm) -1 at room temperature.
  • the materials used to form the electrically conductive layers 3 and 5 can preferably also be produced from a polymer alloy which are produced using an ethyl vinyl acetate-polyethylene copolymer and a doped triaromatomethane polymer.
  • a polymer alloy which are produced using an ethyl vinyl acetate-polyethylene copolymer and a doped triaromatomethane polymer.
  • 1000 g of the ethyl vinyl acetate-polyethylene copolymer in the form of granules are mixed at room temperature with 20% by weight of a triaromatomethane polymer.
  • the triaromatomethane polymer is doped accordingly to achieve a defined electrical conductivity.
  • the mixture thus formed is for coextrusion with a
  • the conductivity of the triaromatomethane polymer is such that the specific electrical conductivity of the layer is 3 ⁇ 10 -3 (ohm ⁇ cm) -1 at room temperature.
  • the conductive polymer alloy according to the invention or the conductive polymer which is used to produce the conductive layers 3 and 5 is an easily processable material which, with the insulating materials used, enables the formation of a permanent and void-free composite.
  • the electrically conductive layers 3 and 5 made of the polymer or the polymer alloy have properties not only in electrical but also in mechanical and thermal terms which make the intended use in the manufacture of the cables appear advantageous.
  • the invention is not limited to the embodiment shown in the description. Rather, it can also be used to produce cables with more than one conductor and the corresponding cable sheaths.
  • a single-layer structure of the outer conductive layer with the omission of the wrapping (5A) is also possible, or a combination with a conventional carbon black paper or the like as wrapping, which is thermally advantageous.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Laminated Bodies (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Conductive Materials (AREA)

Abstract

Die Erfindung bezieht sich auf ein Kunststoffkabel, das wenigstens einen elektrischen Leiter (2) aufweist, der von einer Kabelumhüllung (1M) umgeben ist, die neben mindestens einer isolierenden Schicht (4) mehrere elektrisch leitende Schichten (3,5) aufweist. Der Erfindung liegt die Aufgabe zugrunde ein Kunstoffkabel aufzuzeigen, bei dem die elektrisch leitenden Schichten (3,5) aus einem polymeren Material gefertigt sind, das auf eine definierte spezifische elektrische Leitfähigkeit eingestellt werden kann, und dessen Homogenität einen störstellenfreien Übergang zwischen der isolierenden Schicht (4) und den elektrisch leitenden Schichten (3,5) ermöglicht. Erfindungsgemäß weist das Kunststoffkabel elektrisch leitende Schichten (3,5) auf, die aus einem Polymer, einem Mischpolymer oder einer Polymerlegierung gefertigt sind. Diese sind schmelzbar und/oder löslich. Ihre spezifische elektrische Leitfähigkeit ist durch einen Gehalt an Charge-Transfer-Komplexen auf einen definierten Wert einstellbar.

Description

  • Die Erfindung bezieht sich auf ein Kunststoffkabel mit wenigstens einem elektrischen Leiter, der von einer Kabelumhüllung umgeben ist, die neben mindestens einer isolierenden Schicht mehrere elektrisch leitende Schichten aus einem polymeren Material aufweist.
  • Solche Kunststoffkabel kommen vorzugsweise bei Starkstromanlagen mit Nennspannungen von 10 bis mehr als 100 kV zur Anwendung.
  • Die mehrschichtig aufgebaute Leiterumhüllung dieser Kunststoffkabel weist neben der eigentlichen Isolierschicht auch leitfähige Schichten oder Bänder auf. Sie sind zur Glättung der Konturen der im Kabel eingesetzten metallischen Leiter vorgesehen und sollen in der Isolierung ein radial-homogenes elektrisches Feld erzeugen.
  • Bei den heute bekannten Kunststoffkabeln werden die leitfähigen Schichten aus gefüllten Polyolefinen gefertigt, welche im gleichen Arbeitsgang zusammen mit der Isolierung extrudiert werden. Die Leitfähigkeit dieser Polyolefine wird durch Füllstoffe wie Ruß und Graphit bewirkt. Polymeres Material mit diesen Zusätzen weist den Nachteil auf, daß bei geringem Anteil dieser Füllstoffe noch keine Erhebung der Leitfähigkeit erfolgt, ab einer gewissen Menge des Zusatzes jedoch die Leitfähigkeit dann derart sprunghaft ansteigt, daß eine definierte Leitfähigkeit der Kunststoffe im interessierenden Bereich nicht zuverlässig einstellbar ist. Auch bei feinstmöglicher Körnung der Füllstoffe können feldverzerrende Inhomogenitäten auftreten, die insbesondere zur Verminderung der elektrischen Festigkeit des Kabels führen.
  • Der Erfindung liegt deshalb die Aufgabe zugrunde, ein Kabel zu schaffen, bei dem die elektrischen leitenden Schichten aus einem polymeren Material bestehen, das auf eine definierte spezifische elektrische Leitfähigkeit eingestellt werden kann,und dessen Homogenität einen störstellenfreien Übergang Isolierschicht/ Leitschicht garantiert.
  • Diese Aufgabe wird erfindungsgemäß dadurch gelöst, daß mindestens eine elektrisch leitende Schicht aus einem Polymer, einem Mischpolymerisat oder einer Polymerlegierung gefertigt ist, die schmelzbar und/oder löslich sindund deren spezifische elektrische Leitfähigkeit durch einen Gehalt an Charge-Transfer-Komplexen auf einen definierten Wert einstellbar ist. Weitere erfindungswesentliche Merkmale sind in den Unteransprüchen gekennzeichnet.
  • Die Erfindung wird nachfolgend anhand eines Ausführungsbeispieles näher erläutert:
    • Das in der Figur dargestellte Kunststoffkabel weist einen Kupfer- oder Aluminiumleiter 2 auf, der von einer inneren leitfähigen Schicht 3 umgeben ist. An diese schließt sich nach außen eine isolierende Schicht 4 aus einem Polymer an. Dieses-kann bevorzugt aus Polyethylen oder einem vernetzten Polyethylen bestehen. Auf diese folgt die äußere leitfähige Schicht 5. Im Falle des Beispieles ist diese durch eine innere leitfähige Schicht 51 gebildet, welche von einem leitfähigen Band 5A umgeben ist. An dieses schließt sich ein Metallschirm 6 aus Kupferdrähten oder Bändern an. Eine Trennschicht 7 ist zwischen diesem Metallschirm 6 und dem äußeren aus PVC gefertigten Außenmantel 8 angeordnet.
  • Erfindungsgemäß sind die innere leitfähige Schicht 51, ggf. einschließlich des Bandes 5A aus einem Polymer oder einer Polymerlegierung gefertigt, deren elektrische Leitfähigkeit durch Charge-Transfer-Komplexe gebildet wird. Die elektrische Leitfähigkeit des verwendeten polymeren Materials kann leicht und zuverlässig auf einen definierten Wert eingestellt werden. Vorteilhaft ist aus Sicherheitsgründen eine Leitfäigkeit von mindestens 10-5 Ω-1 cm-1, insbesondere eine Leitfähigkeit im Bereich von 10-3 bis 10-1 Ω-1 cm-1. Höhere Leitfähigkeiten sind darstellbar, aber weder elektrisch gefordert noch wirtschaftlich vorteilhaft. Weiterhin erlauben die erfindungsgemäßen Polymermaterialien die Herstellung besonders glatter Grenzflächen, da sie keine Füllstoffe enthalten und sehr homogen aufgebaut sind.
  • Die Bildung der Charge-Transfer-Komplexe wird durch die Zugabe von Elektronenakzeptoren und/oder -donatoren bewirkt. Als leitfähiges Polymer wird vorzugsweise ein Triaromatmethanpolymer verwendet. Das leitfähige Polymer kann auch in Form eines Mischpolymerisates oder einer Polymerlegierung verwendet werden, die entsprechend aus mindestens einem isolierenden Polymer und mindestens einem leitfähigen Polymer gebildet ist. Die verwendeten Polymere bzw. Polymerlegierungen sollen schmelzbar oder löslich sein, um entsprechend verarbeitet werden zu können.
  • Das leitfähige Polymer, das die elektrisch leitenden Schichten 3 und 5 des Kabels enthalten, wird beispielsweise bei der Polykondensation eines aromatischen Aldehyds und einer aromatischen Ringverbindung gebildet, die wenigstens eine funktionelle Gruppe aufweist, welche in der aromatischen Ringverbindung die Elektronendichte erhöht und damit den elektrophilen Angriff begünstigt. Dieses Polymer kann z. B. durch die Polykondensation von Bisphenol-A und 4-Dimethylaminobenzaldehyd gebildet werden. Das synthetische Polymer mit Triaromatmethaneinheiten als Grundbausteine läßt sich auch durch eine Polykondensation von Bisphenol-A und Paraanisaldehyd herstellen. Das Polymer kann auch bei einer katalytischen Reaktion gewonnen werden, bei der mit zwei- und/oder dreifachen Aromaten substituierte Methane zur Reaktion gebracht werden. Die elektrische Leitfähigkeit dieses Polymers wird durch die Bildung von Charge-Transfer-Komplexen bewirkt. Hierfür werden dem Polymer bei der Herstellung oder später im gelösten oder geschmolzenen Zustand Elektronenakzeptoren und/oder -donatoren beigemischt. Als Elektronenakzeptoren eignen sich insbesondere Jod, Schwefeltrioxid, Schwefelsäure und Eisenchlorid. Als Elektronendonator ist Natrium geeignet. Die elektrische Leitfähigkeit dieses Polymers kann auch durch die Zugabe einer Mineralsäure oder einer Lewissäure erreicht werden. Das Polymer kann in Aceton oder Methylethylketon gelöst werden.
  • Die leitfähigen Schichten 3 und 5 des Kabels können erfindungsgemäß auch aus einer leitfähigen Polymerlegierung hergestellt werden. Die Polymerlegierung wird aus einem polaren oder nichtpolaren, isolierenden Polymer und einem polaren oder nichtpolaren, leitenden Polymer gebildet. Insbesondere können als polare isolierende Polymere zur Bildung der Polymerlegierung Polyvinylchlorid, Polyester vorzugsweise Polybutylenterephtalat, eine Epoxidharzmasse, Polycarbonat, eine Polyurethanharzmasse oder Polyamid verwendet werden. Als isolierende Polymere sind Polyethylen und seine Copolymere,Polybutadien, Polystyrol, Butadienstyrolcopolymere oder Acrylnitryl-Butadien-Styrol-Copolymere geeignet. Die leitfähige Komponente der Polymerlegierung wird bevorzugt durch polare Polymere auf der Basis von Triaromatmethan gebildet, die mit Elektronendonatoren und/oder Elektronenakzeptoren dotiert sind. Hierfür eignen sich die Elektronendonatoren und -akzeptoren, die oben für die Bildung des leitfähigen Polymers angegeben sind. Als nichtpolare leitfähige Komponente können Copolymere aus Acetylen und/oder Acetylenderivaten, die mit Elektronendonatoren und/ oder Elektronenakzeptoren zur Bildung von Charge-Transfer-Komplexen dotiert sind, verwendet werden.
  • Für Folien aus einer leitfähigen Polymerlegierung, die als isolierendes Polymer Polyvinylchlorid enthalten, wird nachfolgend die Herstellung einer kleinen Menge dieses Materials beschrieben. Hierfür werden 100 g Polyvinylchlorid in Granulatform mit 30 g eines Weichmachers, beispielsweise eines Diisodecylphtalats (DIDP), mit 10 g Triaromatmethanpolymer in Pulverform vermischt. Dieses Triaromatmethanpolymer bildet die leitfähige Komponente und ist ensprechend dotiert. Die so gebildete Mischung wird anschließend 20 Minuten lang bei 150 °C zu einer Folie verpreßt. Die Dotierung des Triaromatmethanpolymers ist im Falle des Ausführungsbeispieles so bemessen, daß die spezifische elektrische Leitfähigkeit der fertiggestellten für die Schicht 5A verwendbaren Folie bei Raumtemperatur 10-3 (Ohm x cm)-1 beträgt.
  • Die zur Ausbildung der elektrisch leitenden Schichten 3 und 5 verwendeten Materialien können vorzugsweise auch aus einer Polymerlegierung gefertigt werden, die unter.Verwendung eines Ethylvinylacetat-Polyethylen-Copolymers und eines dotierten Triaromatmethanpolymers gefertigt sind. Zur"Herstellung einer Probemenge werden 1000 g des Ethylvinylacetat-Polyethylen-Copolymers in Form von Granulat bei Raumtemperatur mit 20 Gew. % eines Triaromatmethanpolymers vermischt. Das Triaromatmethanpolymer ist zur Erzielung einer definierten elektrischen Leitfähigkeit entsprechend dotiert. Die so gebildete Mischung ist zur Coextrusion mit einer normalen Polyethylen-Isolierschicht geeignet. Die Leitfähigkeit des Triaromatmethanpolymers ist so bemessen, daß die spezifische elektrische Leitfähigkeit der Schicht bei Raumtemperatur 3 x 10-3 (Ohm x cm)-1 beträgt.
  • Die erfindungsgemäße leitfähige Polymerlegierung bzw. das leitfähige Polymer, das zur Herstellung der leitfähigen Schichten 3 und 5 verwendet wird, ist ein leicht verarbeitbarer Werkstoff, der mit den eingesetzten Isoliermaterialien die Bildung eines dauerhaften und hohlraumfreien Verbunds ermöglicht. Die aus dem Polymer bzw. der'Polymerlegierung gefertigten elektrisch leitenden Schichten 3 und 5 weisen nicht nur in elektrischer, sondern auch in mechanischer und thermischer Hinsicht Eigenschaften auf, die den bestimmungsgemäßen Einsatz bei der Fertigung der Kabel vorteilhaft erscheinen lassen.
  • Die Erfindung beschränkt sich nicht nur auf die in der Beschreibung dargestellte Ausführungsform. Vielmehr können hiermit auch Kabel mit mehr als einem Leiter und den entsprechenden Kabelumhüllungen hergestellt werden. Insbesondere ist auch ein einschichtiger Aufbau der äußeren Leitschicht unter Wegfall der Bewicklung (5A) möglich bzw. eine Kombination mit einem herkömmlichen Rußpapier oder dergleichen als Bewicklung, was thermisch gesehen vorteilhaft ist.

Claims (16)

1. Kunststoffkabel mit wenigstens einem elektrischen Leiter (2), der von einer Kabelumhüllung (1M) umgeben ist, die neben einer isolierenden Schicht (4) mehrere elektrisch leitende Schichten (3,5) aus einem polymeren Material aufweist, dadurch gekennzeichnet, daß mindestens eine elektrisch leitende Schicht (3,5) aus einem Polymer, einem Mischpolymerisat oder einer Polymerlegierung gefertigt ist, die schmelzbar und/oder löslich sind, und deren spezifische elektrische Leitfähigkeit durch einen Gehalt an Charge-Transfer-Komplexen auf einen definierten Wert einstellbar ist.
2. Kunststoffkabel nach Anspruch 1, dadurch gekennzeichnet, daß die leitfähigen elektrischen Schichten (3,5) ein Polymer auf der Basis von überlappenden und nicht- überlappenden Triaromatmethaneinheiten enthalten.
3. Kunstoffkabel nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, daß dem polymeren Material Jod, Schwefeltrioxid, Schwefelsäure oder Eisenchlorid als Elektronenakzeptor zur Bildung von Charge-Transfer-Komplexen beigemischt ist.
4. Kunststoffkabel nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, daß dem polymeren Material Natrium oder ein anderes Alkalimetall als Elektronendonator zur Bildung von Charge-Transfer-Komplexen beigemischt ist.
5. Kunststoffkabel nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, daß dem polymeren Material zur Einstellung einer definierten spezifischen elektrischen Leitfähigkeit eine Mineralsäure oder eine Lewissäure beigemischt ist.
6. Kunststoffkabel nach Anspruch 1, dadurch gekennzeichnet, daß die für die Bildung der leitfähigen Schichten (3,5). verwendete Polymerlegierung wenigstens aus einem isolierenden Polymer und einem leitfähigen Polymer gebildet ist, und die Polymerlegierung eine homogene Verteilung der beiden Polymerkomponenten aufweist.
7. Kunststoffkabel nach Anspruch 6, dadurch gekennzeichnet, daß die Polymerlegierung aus einem polaren oder nichtpolaren isolierenden Polymer und einem polaren oder nichtpolaren, leitfähigen Polymer gebildet ist.
8. Kunststoffkabel nach Anspruch 6 oder 7, dadurch gekennzeichnet, daß die Polymerlegierung ein Polyvinylchlorid, ein Polyester einen Nitrilkautschuk, eine Epoxidharzmasse, Polycarbonat, eine Polyurethanharzmasse oder ein Polyamid als polares, isolierendes Polymer enthält.
9. Kunstoffkabel nach einem der Ansprüche 6 oder 7, dadurch gekennzeichnet, daß die Polymerlegierung als nichtpolares, isolierendes Polymer Polyethylen, Polybutadien, Polystyrol oder Buthadienstyrolcopolymere, oder als polares, isolierendes Polymer Polyethylen-Copolymerisat, insbesondere Ethylvinylacetat-Polyethylen-Copolymer oder Acrylnitrilbuthadien-Styrol-Copolymer enthält.
10. Kunststoffkabel nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß zur Bildung der leitfähigen Polymerlegierung polare leitfähige Triaromatmethanpolymere oder leitfähige nichtpolare Copolymere aus Acetylen und/oder Acetylenderivaten vorgesehen sind.
11. Kunststoffkabel nach einem der Ansprüche 1 bis 10 dadurch gekennzeichnet, daß eine der elektrisch leitenden Schichten als sogenannte innere Leitschicht (3) unmittelbar auf dem Leiter aufgebracht ist,und eine zweite Leit- schicht unmittelbar auf die Isolierschicht (4) als sogenannte äußere Leitschicht (51) aufgebracht ist.
12. Kunststoffkabel nach Anspruch 11, dadurch gekennzeichnet, daß das Polymer oder die Polymerlegierung schmelzbar und zusammen mit der Isolierschicht (4) als innere und äußere Leitschicht (3, 51) durch Coextrusion auf den Leiter (2) aufgebracht sind.
13. Kunststoffkabel nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, daß mindestens eine der elektrisch leitenden Schichten (3,5I) aus einem löslichen Polymer oder einer löslichen Polymerlegierung gefertigt und in Form eines Lackes oder einer Paste aufgebracht sind.
14. Kunststoffkabel nach Anspruch 11 oder 12, dadurch gekennzeichnet, daß die Schichtdicke der elektrisch leitenden Schichten (3,51) 0,2 bis 2 mm, bevorzugt 0,3 bis 1 mm beträgt.
15. Kunststoffkabel nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß die spezifische elektrische Leitfähigkeit der elektrisch leitenden Schichten (3, 5) auf mindestens 10-5, vorzugsweise 10-3 bis 10-1 Ohm-1 cm-1 eingestellt ist.
16. Kunststoffkabel nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß die äußere Leitschicht (5) sich aus einer coextrudierten Schicht (51) aus einem leitfähigen schmelzbaren polymeren Material und einer darauf befindlichen Bewicklung (5A) aus herkömmlichem rußhaltigen Papier- oder Gewebeband zusammensetzt.
EP86102070A 1985-03-14 1986-02-18 Kunststoffkabel Withdrawn EP0195257A3 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19853509168 DE3509168A1 (de) 1985-03-14 1985-03-14 Kabel
DE3509168 1985-03-14

Publications (2)

Publication Number Publication Date
EP0195257A2 true EP0195257A2 (de) 1986-09-24
EP0195257A3 EP0195257A3 (de) 1989-07-26

Family

ID=6265208

Family Applications (1)

Application Number Title Priority Date Filing Date
EP86102070A Withdrawn EP0195257A3 (de) 1985-03-14 1986-02-18 Kunststoffkabel

Country Status (3)

Country Link
US (1) US4691082A (de)
EP (1) EP0195257A3 (de)
DE (1) DE3509168A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0645781B2 (de) 1993-09-17 2000-06-07 Alcatel Cable Energiekabel mit verbesserter dielektrischen Festigkeit

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3929450A1 (de) * 1989-09-05 1991-03-07 Kabel & Draht Gmbh Elektrofilterkabel
DE4138889A1 (de) * 1991-01-30 1992-08-13 Felten & Guilleaume Energie Roentgenleitung
US6127632A (en) * 1997-06-24 2000-10-03 Camco International, Inc. Non-metallic armor for electrical cable
US6417454B1 (en) 2000-06-21 2002-07-09 Commscope, Inc. Coaxial cable having bimetallic outer conductor
KR20120105843A (ko) * 2011-03-16 2012-09-26 엘에스전선 주식회사 고주파수용 전력 케이블

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2091030A (en) * 1981-01-14 1982-07-21 Pirelli Cavi Spa High voltage dc electric cable
EP0112522A2 (de) * 1982-12-24 1984-07-04 Asea Brown Boveri Aktiengesellschaft Verfahren zur Herstellung eines Polymers

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3878319A (en) * 1974-07-08 1975-04-15 Gen Electric Corona-resistant ethylene-propylene rubber insulated power cable
US4440669A (en) * 1979-03-20 1984-04-03 Allied Corporation Electrically conducting compositions of doped polyphenylenes and shaped articles comprising the same
IT1165292B (it) * 1979-08-30 1987-04-22 Pirelli Cavo elettrico perfezionato per medie tensioni
US4419277A (en) * 1981-03-23 1983-12-06 Rohm And Haas Company Treated polyacetylene
US4486721A (en) * 1981-12-07 1984-12-04 Raychem Corporation High frequency attenuation core and cable
US4452727A (en) * 1982-06-28 1984-06-05 Allied Corporation Solution of a chalcogen-containing polymer and process of forming conducting polymer articles therefrom
US4487996A (en) * 1982-12-02 1984-12-11 Electric Power Research Institute, Inc. Shielded electrical cable
GB8309362D0 (en) * 1983-04-06 1983-05-11 Ici Plc Conducting polymers
US4510076A (en) * 1983-11-23 1985-04-09 Gte Laboratories, Inc. Electrically conductive polymer blends of an acetylene polymer and a triblock thermoplastic elastomer

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2091030A (en) * 1981-01-14 1982-07-21 Pirelli Cavi Spa High voltage dc electric cable
EP0112522A2 (de) * 1982-12-24 1984-07-04 Asea Brown Boveri Aktiengesellschaft Verfahren zur Herstellung eines Polymers

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0645781B2 (de) 1993-09-17 2000-06-07 Alcatel Cable Energiekabel mit verbesserter dielektrischen Festigkeit

Also Published As

Publication number Publication date
EP0195257A3 (de) 1989-07-26
US4691082A (en) 1987-09-01
DE3509168A1 (de) 1986-09-18

Similar Documents

Publication Publication Date Title
DE2344052C2 (de) Wärmerückstellfähiger, polymerer Gegenstand für die Hochspannungstechnik und dessen Verwendung zum Einschließen einer Hochspannungskomponente
DE69812632T2 (de) Optisches kabel mit hohen zugwiderstand
DD240798A5 (de) Geschichtete konstruktion mit abstreifbaren schichten
DE69607027T2 (de) Polymermassen
DE69415344T2 (de) Isoliertes kabel und verfahren zu seiner herstellung
DE2405012A1 (de) Abziehbarer verbundstoff aus polymeren materialien
DE2457402A1 (de) Ausziehbarer verbundstoff aus polymeren materialien zum gebrauch bei isolierten elektrischen leitern sowie verfahren zu dessen herstellung
EP0806048A1 (de) Mehradriges, kunststoffisoliertes niederspannungs-starkstromkabel
EP0195257A2 (de) Kunststoffkabel
DE69415583T2 (de) Ein elektrisches Koaxialkabel
DE2615158A1 (de) In laengsrichtung wirkende feuchtigkeitssperre fuer elektrische stromleitungskabel
DE2422914A1 (de) Elektrisches kabel, insbesondere hochoder hoechstspannungskabel, sowie verfahren zu seiner herstellung
DE3813200C2 (de) Thermoplastisch verarbeitbare Kunststoffmischung
US4959266A (en) Urethane-resin coated electrical wire having an intermediate layer
DE2530891B2 (de) Elektrisches Kabel und Verfahren zu dessen Herstellung
DE2659541A1 (de) Feuerhemmendes elektrokabel
WO2003098643A1 (de) Strangförmiges produkt mit anschluss- und/oder befestigungsmitteln
DE2620105A1 (de) Halbleitende isolationszusammensetzungen und diese enthaltende elektrische leiter
DE2923245A1 (de) Extrudierbare, elektrisch leitfaehige polymermischung
DE1665329B2 (de) Abgeschirmtes elektrisches kabel
DE1590802B1 (de) Verfahren zur herstellung eines zusammengesetzten elektrischen leiters
DE3022445A1 (de) Kunststoffisoliertes elektrisches kabel mit durch kompaktierung verdichteter isolierung
DE3533510A1 (de) Elektrisches niederspannungskabel oder elektrische leitung
DE2600249A1 (de) Elektrisches kabel
DE1719251B2 (de) Wärmevernetzbare Formmasse zur Herstellung von Halbleiterformkörpern Ausscheidung aus: 1219674

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): BE CH DE FR GB IT LI NL SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): BE CH DE FR GB IT LI NL SE

17P Request for examination filed

Effective date: 19900103

17Q First examination report despatched

Effective date: 19900703

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 19910619

RIN1 Information on inventor provided before grant (corrected)

Inventor name: HUBER, ROBERT, DR, DIPL.-PHYS.

Inventor name: WEDDIGEN, GERT, DR. DIPL.-CHEM.

Inventor name: NIENBURG, HANS, DR. DIPL.-CHEM.

Inventor name: BOEHME, HANS-JOACHIM, DR. DIPL.-CHEM.

Inventor name: FLATZ, JOSEF, DR. DIPL.-CHEM.

Inventor name: GRIESER, FRITZ, DR. DIPL.-CHEM.