EP0192584B1 - Procédé et dispositif pour la réalisation de gorges sur une paroi de révolution - Google Patents

Procédé et dispositif pour la réalisation de gorges sur une paroi de révolution Download PDF

Info

Publication number
EP0192584B1
EP0192584B1 EP86420020A EP86420020A EP0192584B1 EP 0192584 B1 EP0192584 B1 EP 0192584B1 EP 86420020 A EP86420020 A EP 86420020A EP 86420020 A EP86420020 A EP 86420020A EP 0192584 B1 EP0192584 B1 EP 0192584B1
Authority
EP
European Patent Office
Prior art keywords
axis
wheel
wall
intersection
revolving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP86420020A
Other languages
German (de)
English (en)
Other versions
EP0192584A1 (fr
Inventor
Charles Marcon
Jean Poullain
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Escofier Technologie Sa SA
Escofier Technologie SAS
Original Assignee
Escofier Technologie Sa SA
Escofier Technologie SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Escofier Technologie Sa SA, Escofier Technologie SAS filed Critical Escofier Technologie Sa SA
Priority to AT86420020T priority Critical patent/ATE48771T1/de
Publication of EP0192584A1 publication Critical patent/EP0192584A1/fr
Application granted granted Critical
Publication of EP0192584B1 publication Critical patent/EP0192584B1/fr
Expired legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C37/00Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape
    • B21C37/06Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape of tubes or metal hoses; Combined procedures for making tubes, e.g. for making multi-wall tubes
    • B21C37/15Making tubes of special shape; Making tube fittings
    • B21C37/20Making helical or similar guides in or on tubes without removing material, e.g. by drawing same over mandrels, by pushing same through dies ; Making tubes with angled walls, ribbed tubes and tubes with decorated walls
    • B21C37/205Making helical or similar guides in or on tubes without removing material, e.g. by drawing same over mandrels, by pushing same through dies ; Making tubes with angled walls, ribbed tubes and tubes with decorated walls with annular guides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D17/00Forming single grooves in sheet metal or tubular or hollow articles
    • B21D17/04Forming single grooves in sheet metal or tubular or hollow articles by rolling

Definitions

  • the method and the device which are the subject of the invention relate to the production of grooves on the wall of revolution of a hollow body, without removal of material.
  • Figure 1 is a perspective view of a known device for forming a helical groove by wheel.
  • This figure schematically represents, in perspective, an existing device.
  • This device comprises a wheel (1) mounted free in rotation on an axis (X o ) which rolls continuously on the external wall of a tube (2) which is driven in rotation around its axis (X l ).
  • the axis (X o ) is perpendicular to the radius (3) of the tube (2) passing through the intersection zone (4) between the edge (5) of the wheel (1) and the wall of the tube (2).
  • This axis (X o ) is inclined at an angle (a1) relative to a secant line parallel to the axis (X i ).
  • the desired depth of the thread (6) is obtained by exerting sufficient pressure on the knurl (1) so that its edge (5) penetrates the wall of the tube (2) to the desired depth. This pressure depends on the dimensions of the tube (2) and the knob (1), as well as on the depth of the thread (6) to be produced.
  • This pressure depends on the dimensions of the tube (2) and the knob (1), as well as on the depth of the thread (6) to be produced.
  • tubes whose wall thickness is relatively small it can be seen that, at instead of obtaining a displacement of material limited to the intersection zone (4) and its immediate vicinity, there is an overall deformation of the tube, elastic, or even permanent, which renders the method inapplicable.
  • Patent FR-A 1 551 913 describes a process for forming metallic objects from billets or blanks (page 1, right column, lines 1 to 10) which consists in rotating a series of small working rollers continuously, one after the other in an orbit, mounting a blank so that its superficial zone intersects the orbit and is struck in turn by the rollers, in an uninterrupted succession, so that the metal of the surface area undergoes plastic deformation by following the outline of the rollers. It is essential that these rollers are supported by support rollers or fixed members in their area of action.
  • Figures 1 and 4 of this patent show a cylindrical blank around which a helical groove is formed by means of small rollers (12), mounted in rotation on axes, axes which are distributed around the periphery of a circular cage (10 ) rotary. These rollers are supported by a central roller (16) against which they are supported. It is also possible, as shown in FIG. 2, to use a hinged cage in the form of a chain (10), provided with rollers (22), which performs a closed circuit course in an elliptical orbit by bearing on a support. central (20) against which the rollers (22) bear. The working rollers (12) are also connected to the chain and resting on the rollers (22). The chain is driven by an appropriate mechanism.
  • the method and the device according to the invention make it possible to solve these problems in a particularly effective manner.
  • the method according to the invention makes it possible to form, without removing material, at least one groove, on the wall of revolution of a hollow body made of a ductile or plastic material.
  • at least one revolution wheel is used, comprising at least one forming edge, mounted to rotate freely on an axis. This axis moves parallel to itself so that its point of intersection with a perpendicular plane cyclically performs a course reserved for it along a determined closed curve, of circular or elongated shape, said course not being followed by no other wheel.
  • the envelope curve of the path of at least one forming edge of the thumbwheel comprises an area of intersection with the wall of revolution, an area which moves relatively around this wall.
  • the wheel has at least one forming edge, the largest diameter of which is greater than the length of the diagonal of the determined closed curve, the extension of which intersects the intersection zone in the middle as well as the axis of the hollow body. If the determined closed curve is a circumference, the diameter of the latter is therefore less than that of the wheel.
  • the determined closed curve has an elongated shape. It is preferably oriented so that the diagonal of this curve, the extension of which intersects the intersection zone in its middle as well as the axis of the wall of revolution of the hollow body, is substantially perpendicular to the longest diagonal of this curve. closed determined.
  • a helical groove is produced on the wall of revolution of the hollow body by a relative translational movement of this wall of revolution along its axis with respect to the intersection zone associated with a rotational movement of said wall.
  • the plane of the envelope curve of the path of the forming edge of the wheel can be oriented around an axis contained in this plane and intersecting both the axis of the wall of revolution and the intersection zone.
  • the plane of the envelope curve is oriented so that, in the intersection zone, it is parallel to a tangent to the helical groove in progress.
  • knurls are used distributed around the axis of the wall of revolution of the hollow body so that the envelope curves of their forming edges have with the wall of revolution different areas of intersection distributed around this wall. of revolution.
  • the envelope curves of their forming edges have, in their areas of intersection with this wall, different penetration depths.
  • the direction of rotation of this wall of revolution and the direction of travel of a closed curve determined by the axis of the corresponding wheel are the same.
  • a smoothing wheel whose axis is hand is used in combination with at least one forming wheel. kept at a substantially constant distance from the wall of revolution and the edge of which rolls in a groove already formed by the forming wheel, by continuously exerting pressure on the bottom and the side walls of this groove.
  • the method according to the invention applies in particular to the production of grooves, in the form of helical threads, on the end wall of metallic, cylindrical or conical tubes, in order to produce good quality screwed assemblies for example by means of of female threaded fittings.
  • the invention also relates to a device for forming grooves without removing material, on the wall of revolution of a hollow body made of a ductile or plastic material by means of at least one revolution wheel, mounted freely in rotation on an axis and provided with at least one forming edge.
  • This device comprises a support rotatable around an axis, connected to a first means for driving in rotation, and provided with gripping means making it possible to grasp a hollow body, comprising a wall of revolution, so that the axis of this wall coincides with the axis of rotation of the support.
  • This device also comprises at least one rigid wheel holder on which is mounted a single free wheel in rotation on an axis integral with this wheel holder.
  • a second drive means cyclically moves this wheel holder so that the wheel axis moves parallel to itself and its point of intersection with a perpendicular plane cyclically traverses a determined closed curve, circular or elongated shape, an adjustment means making it possible to vary the distance between the wheel holder and the wall of revolution, so that the envelope-curve of the cyclic movement of at least one forming edge of the wheel has a zone of intersection with this wall of revolution.
  • the thumbwheel has at least the forming edge, the largest diameter of which is greater than the length of a diagonal of the determined closed curve, the extension of which intersects the intersection zone in the middle as well as the axis of the wall of revolution. of the hollow body.
  • the device advantageously comprises a third drive means which allows a relative translation of the wall of revolution of the hollow body along its axis relative to at least one forming wheel mounted on the wheel holder which corresponds to it.
  • At least one wheel holder is orientable about an axis which is in the plane of the envelope curve of the path of at least one forming edge of the single wheel which corresponds to this wheel holder.
  • This axis intersects both the axis of the wall of revolution and the area of intersection between this wall of revolution and this curve-envelope.
  • the movement of the wheel holder is carried out so that the determined closed curve has an elongated shape. It is then preferably oriented in such a way that a diagonal located in its plane, the extension of which cuts the intersection zone in its middle as well as the axis of the wall of revolution of the hollow body, is substantially perpendicular to the most long diagonal of this determined closed curve.
  • the device advantageously comprises a fourth drive means which makes it possible to move at least one wheel-holder in the direction of the axis of the wall of revolution as a function of the relative translation of the wall of revolution along its axis relative to this wheel holder.
  • the device comprises several wheel holders each equipped with a single forming wheel distributed around the axis of the wall of revolution.
  • the device comprises at least one wheel which has several forming edges.
  • the device comprises at least one wheel holder equipped with a smoothing wheel whose axis does not effect cyclic movement.
  • This wheel holder comprises an adjustment means which makes it possible to press the edge of the smoothing wheel against the walls of a groove already formed on the wall of revolution of the hollow body.
  • the wall of revolution (10) of a hollow body is seen in section along a plane perpendicular to its axis (X 2 ).
  • the revolution wheel (11) is mounted to rotate freely on an axis (X 3 ) which is driven in gyration parallel to itself around the axis (X 4 ) by a drive means not shown.
  • the radius (R 1 of the forming edge of the wheel (11) is larger than the radius of gyration (R 2 ) of the axis (X 3 ) around the axis (X 4 ).
  • the radius (R 3 ) of the envelope curve (14) is greater than (R 1 ) and tends to approach it when the value of (R 2 )
  • Such an arrangement reduces the angle of incidence of the forming edge (15) of the thumbwheel when it comes into contact with the bottom of the groove (16) during formation. This results in a better state of surface of the groove walls and therefore greater precision.
  • FIG 3 shows, schematically, another embodiment of the method according to the invention.
  • the wall of revolution (20) of a hollow body with an axis (X 5 ) is shown in section, perpendicular to this axis.
  • a thumbwheel (21) is mounted, free to rotate, on an axis (X s ) perpendicular to the plane of the figure.
  • This axis in accordance with the method according to the invention, moves parallel to itself so that its point of intersection with a perpendicular plane cyclically follows a path reserved for it, according to the closed curve determined not circular (22 ). This course is carried out in the direction of the arrow (F 4 ) thanks to a rigid and mobile wheel-holder, not shown, which drives the axis (Y 6 ).
  • This curve (22) is elongated and similar in shape to an oval or an ellipse.
  • Its largest diagonal (BC) is oriented relative to the hollow body of axis (X 5 ) in such a way that it intersects at point (M), substantially at right angles, the diagonal (ED) whose extension cuts in its middle the intersection zone (25) between the curve-envelope (23) of the course of the forming edge of the wheel (21) and the wall (20) of the hollow body and also intersects the axis (X 5 ).
  • the diagonal (BC) is substantially parallel to the tangent (T) to the curve (23) in the intersection zone (25).
  • the length of the short diagonal (ED) is at least equal to the depth of penetration (el) of the edge of the wheel in the wall (20) so that there is no possible interaction between this edge and this wall during the return path of the axis (X s ) along the branch (B, E, C) of the curve (22).
  • the arrow (F 5 ) indicates the direction of rotation of the wheel in contact with the wall (20).
  • the arrow (F 6 ) indicates the direction of rotation of the wall (20) around the axis (X 5 ).
  • the direction of rotation of this wall is preferably the same as the direction of travel of the closed curve determined by the point of intersection of the axis (X s ) with this curve.
  • the oval shape of the determined closed curve (22) has the very great advantage of reducing the angle of attack of the forming edge of the wheel (21), when it comes into contact with the wall (20), this which greatly reduces the shock caused at this time.
  • the quality of the groove is also a function of the forming work carried out at each passage of the forming edge of the wheel (21) in the intersection zone (25).
  • This unit forming work is adjusted by acting on the one hand on the frequency of the travel of the envelope curve (23) by the forming edge (24) and on the other hand on the speed of rotation of the wall (20) around of its axis (X 5 ).
  • This forming work must, in any case, remain below the limit which would cause unacceptable permanent deformation of the wall of the tube (20) over its entire thickness.
  • each of the wheels moves so that its point of intersection with a perpendicular plane traverses the determined closed curve which corresponds to it.
  • the curve of the course of the forming edge of each wheel has its own distinct area of intersection with the wall. It is advantageous that the determined closed curves traversed by the axes of the rollers are similar in order to balance the forces exerted on the wall, but this is not a necessity.
  • the drive of each of the wheels, so that its axis traverses the determined closed curve which corresponds to it is carried out, as has been said in the case of FIG. 3, by means of a corresponding rigid and mobile wheel-holder.
  • the rollers can be arranged so that the envelope curves of the paths of their forming edges lie in the same plane perpendicular to the axis of the wall of revolution of the hollow body. This forms an annular groove successively traversed by the knobs used.
  • This carriage can then move, in synchronism with the speed of rotation of the wall of revolution, thanks to the mother screw of the lathe.
  • the forming edges of the rollers must be offset from each other, parallel to the axis of the hollow body, so as to contribute to the formation of the same helical groove. If for example 4 knurls are distributed at 90 ° from each other around the same wall of revolution, in order to achieve a helical groove of pitch (P), the most forward knurl attacks the formation of the groove, while that the three others who continue to form this same groove must be offset by
  • FIG. 4 schematically represents half-sections of four knurls (26, 27, 28, 29) mounted free in rotation around four axes (X 7 , X 8 , Xg, X 10 ). These knobs are distributed around the wall of revolution of a hollow body and the axis of each of them traverses a determined closed curve, circular in the manner which is represented in FIG. 2. The areas of intersection of the curves- envelopes of the paths of the forming edges of each of these knurls are distributed substantially at 90 ° from one another around the wall of revolution.
  • Each of these wheels has two forming edges: (A ,, and B 1 , A 2 and B 2 , A 3 and B 3 , A 4 and B 4 ).
  • the forming edges (A ,, A 2 , A 3 , A 4 ) have respective radii (R I , R 2 , R 3 , R 4 ) increasing, which makes it possible to form in a single revolution of the wall around its axis a helical thread having the desired depth.
  • the second forming edges (B 1 , B 2 , B 3 , B 4 ) have substantially the same radius equal to (R 4 ).
  • the second forming edge (B i , B 2 , B 3 , B 4 ) is offset on each wheel (26, 27, 28, 29) relative to the first forming edge (A 1 , A 2 , A 3 , A 4 ) the desired distance for the metal to be worked at the desired location.
  • the accuracy is improved by orienting the axes of the knurls so that the lateral flanks of their forming edges are substantially parallel to a tangent to the helical thread in the intersection zone.
  • FIG. 5 shown in plan, the cylindrical wall of revolution of a hollow body (30) of axis (X 11 ) on which a groove in the form of a helical thread (31) is being formed.
  • a thumbwheel (32) is shown in the area of intersection of the envelope curve of its forming edge with the wall of the hollow body (30).
  • This wheel is rotatably mounted on an axis (X 12 ) which, itself mounted on a mobile wheel holder, cyclically travels along a determined closed curve while maintaining its orientation.
  • This axis (X 12 ) is in a plane substantially parallel to the plane tangent to the generatrix of the wall of the hollow body (30) passing through the intersection area specified above. In the case of Figure 5 this tangent plane is substantially parallel to the plane of the figure.
  • the axis (X 12 ) is inclined at an angle " ⁇ 2" relative to a parallel to the axis of revolution (X I1 ) which intersects it.
  • This angle "a2” is preferably substantially equal to the angle " ⁇ 3" of inclination of a tangent to the helical thread (31) relative to the plane perpendicular to the axis (X 11 ), the plane of which we see the trace in (33).
  • the inclination of an axis such as (X 12 ) of a wheel such as (32) is obtained by rotating the wheel holder (not shown) around an axis perpendicular to the axis (X 11 ) of the wall of revolution and passing through the intersection zone between the envelope curve of the forming edge of the thumbwheel (32) and the wall of revolution (30) of the hollow body.
  • Such a means of tilting the wheel axes can, for example, be implemented each time it is proposed to make a groove or a helical thread.
  • Figure 6 shows the wall of revolution (34) of a hollow body of axis (X l3 ) whose outer surface is conical.
  • a helical thread (35) is formed on this surface, by means of knobs such as (36), which rotate around axes such as (X 14 ).
  • knobs such as (36)
  • Each of these wheels is mounted on a corresponding wheel holder not shown.
  • the wheel axis (X, 4 ) is in a plane parallel to the axis of revolution (X 13 ), and perpendicular to a line, itself perpendicular to this axis, line which passes through the intersection zone between the envelope curve of the cyclic path of the forming edge of the thumb wheel and the wall.
  • This plane therefore makes, with a parallel (37) to the generator (38) of the conical wall, an age "a4" equal to the half-angle at the top of the cone. Under these conditions, the forming edge of each wheel does not act symmetrically on the wall. This has few drawbacks if the angle " ⁇ 4" is small. It is also possible, as has been explained in the case of FIG. 5, to orient the axes of knurls such as (X 14 ) so that the lateral flanks of the forming edges are made parallel to the helical thread (35). This orientation is achieved by rotation of the wheel holder around an axis perpendicular to the axis (X 13 ) passing through the intersection zone between curve-envelope and wall.
  • FIG. 7 describes a particular embodiment of the device according to the invention.
  • a wheel (41) is mounted for free rotation on an axis (X 16 ) secured to a movable rigid wheel holder (42).
  • This wheel-holder is mounted free in rotation on a crank pin (43) whose axis (X 17 ) rotates around the axis (X, 8 ) which drives it in rotation clockwise by a motor means not shown.
  • a link (44) articulated at (X 19 ) on the wheel holder and at (X 20 ) on a retaining ring (45) contributes to guiding the wheel holder (42).
  • the axes (X, 6 , X 17 , X 18 , X 19 and X 2o ) are parallel. It follows that when the axis (X 17 ) of the crankpin is driven around the axis (X 18 ) in a clockwise direction by the drive means, the wheel axis (X 16 ) follows cyclically the determined closed curve (46) in the direction of the arrow (F 7 ).
  • the envelope curve (47) of the course of the forming edge of the thumbwheel has an intersection zone (48) with the wall (40).
  • the determined closed curve (46) has a larger diagonal (X 21 ), which is also the large diagonal of the envelope curve (47).
  • Such an arrangement makes it possible to obtain a small angle of incidence of the forming edge of the wheel when, at each cycle, it engages in the intersection zone. It is also possible, by rotating the ring (45) around its axis in a suitable direction, to move the envelope-curve (47) closer or further away from the wall of revolution (40) and therefore to adjust the penetration depth of the wheel edge, or even to follow a cone. It is therefore possible thus, to produce on a conical wall a helical thread (50) of constant depth.
  • the wheel axis (X 16 ) runs along the determined closed curve (46) clockwise (arrow direction (F l ). This direction is the same as the direction of rotation of the wall (40) indicated by the arrow (F a ).
  • the wheel rolls in the direction of the arrow (Fg). It is possible, by means not shown, to rotate the plane of the envelope curve (47) around 'an axis such as the straight line (49) so as to orient it parallel to a tangent to a helical thread passing through the intersection zone (48).
  • Figure 8 and the detail figure 9 show in perspective, partially, another embodiment of the device according to the invention.
  • 4 knurls each mounted on a knurl holder are used, distributed at 90 ° from one another around the axis (X 22 ) of a hollow body (59) on the wall of revolution (60) from which it is proposed to produce a helical thread.
  • a drive means rotates this wall (60) about its axis (X 22 ) in the direction of the flece (F lo ).
  • only two rollers (61 and 62), each mounted on a roll holder support (63, 64) and distributed at 180 ° around the axis (X 22 ) have been shown.
  • Figure 9 shows clearly that the wheel (65) is an annular part mounted free in rotation by means of a rolling ring (66) on a part (67) having a cylindrical bearing axis (X 33 ) which constitutes the axis of the wheel.
  • a drive means in rotation not shown rotates a shaft (68) of axis (X 24 ) which drives around it the axis (X 23 ) which is parallel to it, so that the point of intersection of this axis (X 23 ) with a perpendicular plane describes in a cyclic way a path following a determined closed curve.
  • the part (67) is therefore the rigid and mobile wheel holder on which the wheel (65) is mounted.
  • this determined closed curve is a circumference whose radius is equal to the distance between the axes (X 23 ) and X 24 ).
  • the forming edge (69) of the wheel (65) describes an envelope curve (70).
  • each of the wheel holder supports (63, 64) can rotate around an axis (X 25 ) perpendicular to the axis (X 22 ) and which crosses the intersection zones of the envelope curves paths of the forming edges of the rollers (61, 62) with the wall of revolution (60).
  • each wheel holder support is rotatably mounted about this axis (X 25 ) on the carriage (71, 72) which carries it.
  • Verniers (73, 74) make it possible to adjust the inclination of the support (63, 64) and therefore of the corresponding wheel holder so that the envelope curve of the course of the forming edge of the wheel is parallel to the tangent to the thread helical to perform in the intersection area.
  • Each of the carriages (71, 72) can slide radially in one direction or the other according to the arrows (F 11 , F 12 ) relative to the axis (X22) in slides such as (75,76) formed in fixed support parts (77,78).
  • the radial movement of all of the carriages is controlled by means of a crown (79) which can be rotated in one direction or the other, according to the arrow (FI3) around its axis, which is practically coincident with the axis (X22).
  • the crown (79) carries rollers (80, 81) engaged in inclined notches (82, 83) formed at the ends of the carriages (71, 72).
  • rollers (80, 81) engaged in inclined notches (82, 83) formed at the ends of the carriages (71, 72).
  • the fourth wheel holder will be equipped with a smoothing wheel whose axis distance with the wall of revolution will be set to a fixed value so that the wheel rolls continuously in the bottom of the already formed net, equalizing its walls.
  • the profile of this smoothing wheel will correspond to the final profile that we propose to give to the helical thread.
  • one can distribute around the axis of the wall of revolution for example, 6 wheel holder supports instead of 4, and equip 2 of these supports with smoothing wheels to fixed axis which roll continuously at the bottom of the net, equalizing the profile.
  • the wheel holder supports are inclined, as just described, so that the envelope curve of the path of the forming edge of each of the first three knobs is parallel to the tangent to the helical thread to be produced.
  • the same inclination is given to the wheel holder support on which the fourth wheel with fixed axis is mounted. It can be seen that the helical thread thus produced has excellent precision and an excellent surface condition and that the internal dimensions of the tube have not been substantially modified in the area in which the external thread is produced.
  • knobs can be made, for their implementation, to the method and to the device, for their implementation, which have just been described without departing from the scope of the invention. It is in particular possible to adapt the knobs to the production of any groove profile that it is proposed to produce. In the case where the groove which it is proposed to produce is a helical thread, the profile of the latter can be given the optimal shape in order to obtain, for example, the qualities of tightness and tightness expected from 'a screwed junction.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Forging (AREA)
  • Magnetic Heads (AREA)
  • Braiding, Manufacturing Of Bobbin-Net Or Lace, And Manufacturing Of Nets By Knotting (AREA)
  • Toys (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
  • Shaping Of Tube Ends By Bending Or Straightening (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)

Description

  • Le procédé et le dispositif qui font l'objet de l'invention concernent la réalisation de gorges sur paroi de révolution d'un corps creux, sans enlèvement de matière.
  • Ils concernent plus particulièrement la réalisation de gorges en forme de filets hélicoïdaux sur la paroi de révolution de tubes en matériaux ductiles tels que des métaux ou alliages.
  • On indique ci-après des moyens connus permettant de réaliser de telles gorges ou filets hélicoïdaux.
  • La figure 1 est une vue en perspective d'un dispositif connu de formage par molette d'une gorge hélicoïdale.
  • Cette figure représente de façon schématique, en perspective, un dispositif existant.
  • Ce dispositif comporte une molette (1) montée libre en rotation sur un axe (Xo) qui roule de façon continue sur la paroi extérieure d'un tube (2) lequel est entraîné en rotation autour de son axe (Xl). L'axe (Xo) est perpendiculaire au rayon (3) du tube (2) passant par la zone d'intersection (4) entre le bord (5) de la molette (1) et la paroi du tube (2). Cet axe (Xo) est incliné d'un angle (a1) par rapport à une droite sécante parallèle à l'axe (Xi). Il est ainsi possible de réaliser sur la paroi de révolution du tube (2) un filet hélicoïdal (6) par un mouvement relatif de translation de ce tube (2) le long de son axe (X1) par rapport à la molette (1), combiné avec son mouvement de rotation autour de ce même axe.
  • La profondeur voulue du filet (6) est obtenue en exerçant sur la molettte (1) une pression suffisante pour que son bord (5) pénètre dans la paroi du tube (2) à la profondeur désirée. Cette pression dépend des dimensions du tube (2) et de la molette (1), ainsi que de la profondeur du filet (6) à réaliser- Dans le cas de tubes dont l'épaisseur de paroi est relativement faible on constate que, au lieu d'obtenir un déplacement de matière limité à la zone d'intersection (4) et à son voisinage immédiat, il se produit une déformation d'ensemble du tube, élastique, ou même permanente qui rend inapplicable le procédé.
  • Afin de réduire la pression exercée localement sur le tube on peut utiliser plusieurs molettes qui roulent de façon continue sur le tube, en parcourant une même gorge, ou filet hélicoïdal, et sont réparties également autour de la périphérie du tube. En exerçant sur chacune de ces molettes, par l'intermédiaire de son axe, une pression relativement limitée, on peut obtenir, sans déformation notable de la paroi du tube, la formation d'une gorge ou d'un filet de profondeur supérieure à ce qu'il aurait été possible de réaliser en appliquant la même pression sur une seule molette. Le sillon creusé par la première molette est approfondi au passage de chacune des molettes suivantes. De plus la répartition des molettes autour du tube permet d'équilibrer les efforts.
  • Cependant dans un grand nombre de cas un tel procédé ne peut être appliqué car les tubes sont trop minces pour supporter sans déformation importante la pression des molettes.
  • L'utilisation d'un mandrin intérieur ne permet pas non plus de résoudre le problème car on observe alors un gonflement du tube qui modifie ses dimensions et en particulier celles du filet ou de la gorge qu'on se propose de réaliser.
  • Les caractéristiques contenues dans le préambule des revendications et Il sont connues du document FR-A 1551913.
  • Le brevet FR-A 1 551 913 décrit un procédé de formage d'objets métalliques à partir de billettes ou d'ébauches (page 1, colonne de droite, lignes 1 à 10) qui consiste à faire tourner une série de petits galets de travail en continu, l'un après l'autre suivant une orbite, à monter une ébauche de manière que sa zone superficielle coupe l'orbite et soit frappée à tour de rôle par les galets, dans une succession ininterrompue, pour que le métal de la zone superficielle subisse une déformation plastique en épousant le contour des galets. Il est essentiel que ces galets soient supportés par des galets d'appui ou organes fixes dans leur zone d'action. Les figures 1 et 4 de ce brevet représentent une ébauche cylindrique autour de laquelle on forme une rainure hélicoïdale au moyen de petits galets (12), montés en rotation sur des axes, axes qui sont répartis sur le pourtour d'une cage circulaire (10) rotative. Ces galets sont supportés par un galet central (16) contre leuquel ils prennent appui. On peut aussi, comme le montre la figure 2 faire appel à une cage articulée sous forme d'une chaîne (10), munie de galets (22), qui effectue un parcours en circuit fermé suivant une orbite elliptique en prenant appui sur un support central (20) contre lequel les galets (22) prennent appui. Les galets de travail (12) sont eux aussi reliés à la chaîne et en appui sur les galets (22). La chaîne est entraînée par un mécanisme approprié. On peut ainsi réaliser des rainures rectilignes sur une certaine longueur comme le montre la figure 2 selon laquelle le support central comporte deux grandes faces rectilignes raccordées par des petits côtés arrondis. On peut ainsi former une denture sur le pourtour d'une roue. Bien que ce document ne décrive que le formage de pièces pleines, la possibilité de former également des ébauches creuses est indiquée sans autres détails.
  • Des essais ont montré qu'il est possible d'utiliser de petits galets de formage, analogues à ceux qui viennent d'être décrits, pour former des gorges annulaires ou hélicoïdales sur la paroi cylindrique de révolution de corps creux, tels que des tubes, en montant ces galets sur au moins une cage rotative qui les entraîne en rotation autour de son axe. Ces galets frappent successivement la paroi du corps creux qui est elle-même entraînée en rotation autour de son axe. On réalise ainsi une gorge annulaire. En déplaçant simultanément le corps creux le long de son axe on ob- teint une gorge hélicoïdale.
  • On a cependant constaté au cours d'essais que l'utilisation d'une série de petits galets ou molettes de travail, suivant l'enseignement du FR-A-1 551 913, présentant un faible diamètre par rapport aux dimensions de l'orbite ou parcours fermé suivant lequel ils se déplacent, présente de sérieux inconvénients. En effet si le faible diamètre des galets réduit la contrainte exercée sur la paroi du corps creux, il nuit à la précision des gorges et des flancs de celles-ci. On constate aussi que la trajectoire circulaire parcourue par des molettes de petites dimensions par rapport au diamètre de cette trajectoire, telles que celles représentées à la figure 6 de la demande prioritaire, a l'inconvénient d'être cause d'une succession de chocs exercés par chaque molette à l'instant où elle entre en contact avec la paroi du corps creux. Ces chocs créent des défauts locaux et en particulier des arrachements et des replis qu'il est, dans bien des cas, impossible d'éliminer ou d'atténuer. Ils sont aussi une cause de vibrations, lesquelles nuisent aussi à la qualité et à la précision du profil des gorges réalisées.
  • Les essais ont en particulier montré que le procédé et le dispositif décrits dans le FR-A-1 551 913 ne permettent pas de réaliser sur la paroi de révolution d'un corps creux des gorges ou filets hélicoïdaux d'une qualité suffisante pour permettre l'assemblage dans de bonnes conditions de tubes ainsi filetés à leurs extrémités.
  • Ces essais ont montré aussi qu'il n'est pas possible de réaliser de telles gorges ou de tels filets sur des parois de révolution non cylindrique de corps creux.
  • On a recherché la possibilité de mettre au point un procédé et un dispositif pour sa mise en oeuvre qui permettent de réaliser des gorges annulaires ou hélicoïdales de grande précision, exemptes de défauts locaux. On a recherché aussi la possibilité de réaliser de telles gorges dans des parois de corps creux relativement minces sans déformation notable en dehors de la région à proximité immédiate de la gorge. On a recherché enfin la possibilité de développer un procédé permettant de réaliser de telles gorges ou de tels filets sur la paroi de révolution de corps creux de forme non cylindrique, afin de pouvoir en particulier adapter le procédé à la réalisation de filets hélicoïdaux sur des extrémités coniques de tubes en vue d'obtenir des assemblages vissés à filetages coniques de qualité satisfaisante.
  • Le procédé et le dispositif suivant l'invention permettent de résoudre ces problèmes de façon particulièrement efficace.
  • Le procédé suivant l'invention permet de former, sans enlèvement de matière, au moins une gorge, sur la paroi de révolution d'un corps creux constitué d'un matériau ductile ou plastique. Dans ce procédé on met en oeuvre au moins une molette de révolution, comportant au moins un bord de formage, montée libre en rotation sur un axe. Cet axe se déplace parallèlement à lui-même de façon que son point d'intersection avec un plan perpendiculaire effectue de façon cyclique un parcours qui lui est réservé suivant une courbe fermée déterminée, de forme circulaire ou allongée, ledit parcours n'étant suivi par aucune autre molette. La courbe-enveloppe du parcours d'au moins un bord de formage de la molette comporte une zone d'intersection avec la paroi de révolution, zone qui se déplace de façon relative autour de cette paroi.
  • La molette comporte au moins un bord de formage dont le plus grand diamètre est supérieur à la longueur de la diagonale de la courbe fermée déterminée dont le prolongement coupe la zone d'intersection en son milieu ainsi que l'axe du corps creux. Si la courbe fermée déterminée est une circonférence le diamètre de celle-ci est donc inférieur à celui de la molette. De façon avantageuse la courbe fermée déterminée a une forme allongée. Elle est de préférence orientée de façon que la diagonale de cette courbe dont le prolongement coupe la zone d'intersection en son milieu ainsi que l'axe de la paroi de révolution du corps creux, soit sensiblement perpendiculaire à la plus longue diagonale de cette courbe fermée déterminée.
  • On réalise une gorge hélicoïdale sur la paroi de révolution du corps creux par un mouvement relatif de translation de cette paroi de révolution le long de son axe par rapport à la zone d'intersection associé à un mouvement de rotation de ladite paroi.
  • Avantageusement le plan de la courbe-enveloppe du parcours du bord de formage de la molette peut être orienté autour d'un axe contenu dans ce plan et coupant à la fois l'axe de la paroi de révolution et la zone d'intersection.
  • De préférence, lorsqu'on forme une gorge hélicoïdale on oriente le plan de la courbe-enveloppe de façon que, dans la zone d'intersection il soit parallèle à une tangente à la gorge hélicoïdale en cours de réalisation.
  • Avantageusement on met en oeuvre plusieurs molettes réparties autour de l'axe de la paroi de révolution du corps creux de façon que les courbes-enveloppes de leurs bords de formage présentent avec la paroi de révolution des zones d'intersection différentes réparties autour de cette paroi de révolution. Avantageusement également lorsqu'au moins deux molettes sont mises en oeuvre pour réaliser une même gorge dans une paroi de révolution, les courbes-enveloppes de leurs bords de formage présentent, dans leurs zones d'intersection avec cette paroi, des profondeurs de pénétration différentes.
  • Lorsqu'on réalise une gorge hélicoïdale sur une paroi de révolution non cylindrique d'un corps creux, on fait varier la distance entre l'axe de cette paroi de révolution et au moins une courbe-enveloppe correspondant au parcours du bord de formage d'une molette de façon à contrôler la profondeur de la zone d'intersection.
  • De préférence pour un observateur placé dans le prolongement de l'axe de la paroi de révolution du corps creux le sens de rotation de cette paroi de révolution et le sens de parcours d'une courbe fermée déterminée par l'axe de la molette correspondante sont les même.
  • De façon avantageuse on met en oeuvre, en combinaison avec au moins une molette de formage, une molette de lissage dont l'axe est maintenu à distance sensiblement constante de la paroi de révolution et dont le bord roule dans une gorge déjà formée par la molette de formage, en exerçant de façon continue une pression sur le fond et les parois latérales de cette gorge.
  • Le procédé suivant l'invention s'applique en particulier à la réalisation de gorges, en forme de filets hélicoïdaux, sur la paroi d'extrémité de tubes métalliques, cylindriques ou coniques, afin de réaliser des assemblages vissés de bonne qualité par exemple au moyen de raccords filetés femelles.
  • L'invention concerne aussi un dispositif de formage de gorges sans enlèvement de matière, sur la paroi de révolution d'un corps creux en un matériau ductile ou plastique au moyen d'au moins une molette de révolution, montée libre en rotation sur un axe et pourvue d'au moins un bord de formage. Ce dispositif comporte un support rotatif autour d'un axe, relié à un premier moyen d'entraînement en rotation, et muni de moyens de préhension permettant de saisir un corps creux, comportant une paroi de révolution, de façon que l'axe de cette paroi coïncide avec l'axe de rotation du support. Ce dispositif comporte également au moins un porte-molette rigide sur lequel est montée une seule molette libre en rotation sur un axe solidaire de ce porte-molette. Un deuxième moyen d'entraînement déplace de façon cyclique ce porte-molette de façon que l'axe de molette se déplace parallèlement à lui-même et que son point d'intersection avec un plan perpendiculaire parcoure de façon cyclique une courbe fermée déterminée, de forme circulaire ou allongée, un moyen de réglage permettant de faire varier la distance entre porte-molette et paroi de révolution, de façon que la courbe-enveloppe du déplacement cyclique d'au moins un bord de formage de la molette comporte une zone d'intersection avec cette paroi de révolution.
  • La molette comporte au moins du bord de formage dont le plus grand diamètre est supérieur à la longueur d'une diagonale de la courbe fermée déterminée dont le prolongement coupe la zone d'intersection en son milieu ainsi que l'axe de la paroi de révolution du corps creux.
  • Le dispositif comporte avantageusement un troisième moyen d'entraînement qui permet une translation relative de la paroi de révolution du corps creux le long de son axe par rapport à au moins une molette de formage montée sur le porte-molette qui lui correspond.
  • Avantageusement au moins un porte-molette est orientable autour d'un axe qui se trouve dans le plan de la courbe-enveloppe du parcours d'au moins un bord de formage de la molette unique qui correspond à ce porte-molette. Cet axe coupe à la fois l'axe de la paroi de révolution et la zone d'intersection entre cette paroi de révolution et cette courbe-enveloppe.
  • De façon avantageuse le déplacement du porte-molette est réalisé de façon que la courbe fermée déterminée ait une forme allongée. Elle est alors de préférence orientée de façon telle qu'une diagonale située dans son plan, dont le prolongement coupe la zone d'intersection en son milieu ainsi que l'axe de la paroi de révolution du corps creux, soit sensiblement perpendiculaire à la plus longue diagonale de cette courbe fermée déterminée.
  • Le dispositif comporte avantageusement un quatrième moyen d'entraînement qui permet de déplacer au moins un porte-molette en direction de l'axe de la paroi de révolution en fonction de la translation relative de la paroi de révolution le long de son axe par rapport à ce porte-molette.
  • De préférence le dispositif comporte plusieurs porte-molette équipés chacun d'une seule molette de formage répartis autour de l'axe de la paroi de révolution.
  • Avantageusement le dispositif comporte au moins une molette qui comporte plusieurs bords de formage.
  • Avantageusement également le dispositif comporte au moins un porte-molette équipé d'une molette de lissage dont l'axe n'effectue pas de déplacement cyclique. Ce porte-molette comporte un moyen de réglage qui permet de mettre en appui le bord de la molette de lissage contre les parois d'une gorge déjà formée sur la paroi de révolution du corps creux.
  • Des modes de mise en oeuvre avantageux du procédé et du dispositif suivant l'invention sont décrits ci-après, de façon non limitative.
    • Les figures dont la liste suit illustrent ces modes de mise en oeuvre.
    • La figure 2 est une vue en coupe schématique d'un premier mode de mise en oeuvre de l'invention.
    • La figure 3 est une vue en coupe schématique d'un deuxième mode de mise en oeuvre de l'invention.
    • La figure 4 est une vue en coupe partielle d'un jeu de molettes à deux bords de formage.
    • La figure 5 est une vue schématique du formage d'un filet hélicoïdal sur la paroi cylindrique de révolution d'un corps creux au moyen d'une molette par un mode de mise en oeuvre de l'invention.
    • La figure 6 est une vue schématique du formage d'un filet hélicoïdal sur la paroi conique de révolution d'un corps creux par un mode de mise en oeuvre de l'invention.
    • La figure 7 est une vue d'un mode de réalisation du dispositif suivant l'invention dans lequel l'axe de molette effectue un parcours suivant une courbe fermée déterminée non circulaire.
    • La figure 8 est une vue d'un autre mode de réalisation du dispositif suivant l'invention comportant des porte-molette orientables.
    • La figure 9 est un détail d'une molette de la figure 8.
    • La figure 2 représente, de façon schématique, un premier mode de réalisation du procédé suivant l'invention.
  • La paroi de révolution (10) d'un corps creux est vue en coupe suivant un plan perpendiculaire à son axe (X2). La molette de révolution (11) est montée libre en rotation sur un axe (X3) qui est entraîné en giration parallèlement à lui-même autour de l'axe (X4) par un moyen d'entraînement non représenté. On voit que le rayon (R1 du bord de formage de la molette (11) est plus grand que le rayon de giration (R2) de l'axe (X3) autour de l'axe (X4). Le diamètre du bord de formage de la molette est donc supérieur à celui de toute diagonale de la courbe fermée déterminée (12) et donc, à fortiori, supérieur à celui de la diagonale dont le prolongement coupe la zone d'intersection (13) en son milieu ainsi que l'axe (X2). Il en résulte que le rayon (R3) de la courbe-enveloppe (14) est supérieur à (R1) et tend à s'en rapprocher quand la valeur de (R2) diminue. Une telle disposition réduit l'angle d'incidence du bord de formage (15) de la molette au moment de la prise de contact avec le fond de la gorge (16) en cours de formation. Il en résulte un meilleur état de surface des parois de la gorge et donc une plus grande précision. On remarque par ailleurs que les sens de rotation de la paroi de révolution (10) et de giration de l'axe (X3) autour de l'axe (X4) indiqués par les flèches (F1) et (F2) sont les mêmes. On constate que c'est ainsi que les meilleurs résultats sont obtenus: la flèche (F3) indique le sens de roulement de la molette (11). Comme on le voit plus loin les résultats sont particulièrement favorables dans le cas de la réalisation de filets hélicoïdaux sur la paroi de révolution de corps creux.
  • La figure 3 représente, de façon schématique, un autre mode de réalisation du procédé suivant l'invention. La paroi de révolution (20) d'un corps creux d'axe (X5) est représentée en coupe, perpendiculairement à cet axe. Une molette (21) est montée, libre en rotation, sur un axe (Xs) perpendiculaire au plan de la figure. Cet axe, conformément au procédé suivant l'invention, se déplace parallèlement à lui-même de façon que son point d'intersection avec un plan perpendiculaire effectue de façon cyclique un parcours qui lui est réservé, suivant la courbe fermée déterminée non circulaire (22). Ce parcours est effectué dans le sens de la flèche (F4) grâce à un porte-molette rigide et mobile, non représenté, qui entraîne l'axe (Y6). Cette courbe (22) est allongée et voisine par sa forme d'un ovale ou d'une ellipse. Sa plus grande diagonale (BC) est orientée par rapport au corps creux d'axe (X5) de façon telle qu'elle coupe au point (M), sensiblement à angle droit, la diagonale (ED) dont le prolongement coupe en son milieu la zone d'intersection (25) entre la courbe-enveloppe (23) du parcours du bord de formage de la molette (21) et la paroi (20) du corps creux et coupe aussi l'axe (X5). Dans le cas de cette figure la diagonale (BC) est sensiblement parallèle à la tangente (T) à la courbe (23) dans la zone d'intersection (25). On constate qu'il suffit que la longueur de la diagonale courte (E-D) soit au moins égale à la profondeur de pénétration (el) du bord de la molette dans la paroi (20) pour qu'il n'y ait pas d'interaction possible entre ce bord et cette paroi pendant le parcours en retour de l'axe (Xs) suivant la branche (B, E, C) de la courbe (22). La flèche (F5) indique le sens de rotation de la molette au contact de la paroi (20). La flèche (F6) indique le sens de rotation de la paroi (20) autour de l'axe (X5). L'expérience a montré que le sens de rotation de cette paroi est de préférence le même que le sens de parcours de la courbe fermée déterminée par le point d'intersection de l'axe (Xs) avec cette courbe.
  • L'observateur qui regarde la figure 3 et se trouve donc dans le prolongement de l'axe (X5) voit que le sens des flèches (F4) et (Fe) est celui des aiguilles d'une montre. La forme ovalisée de la courbe fermée déterminée (22) présente le très grand avantage de réduire l'angle d'attaque du bord de formage de la molette (21), au moment où il entre en contact avec la paroi (20), ce qui réduit considérablement le choc provoqué à cet instant. Le diamètre accru de la molette (21), qui est rendu possible par l'utilisation d'une seule molette, guidée suivant le parcours de la courbe fermée (22), agit, de façon essentielle, dans le sens d'une action progressive du bord de formage (24) sur la paroi (20). On obtient ainsi une gorge pratiquement exempte des défauts qu'on observe dans le cas des molettes ou galets multiples de petit diamètre montés sur un seul porte-molette et décrivant une trajectoire circulaire de grand diamètre par rapport à celui des galets ou molettes.
  • La qualité de la gorge est également fonction du travail de formage effectué à chaque passage du bord de formage de la molette (21) dans la zone d'intersection (25). On ajuste ce travail de formage unitaire en agissant d'une part sur la fréquence du parcours de la courbe enveloppe (23) par le bord de formage (24) et d'autre part sur la vitesse de rotation de la paroi (20) autour de son axe (X5). Ce travail de formage doit, de toutes façons, rester au-dessous de la limite qui entraînerait une déformation permanente inacceptable de la paroi du tube (20) sur toute son épaisseur.
  • Dans la plupart des cas il est avantageux d'utiliser plusieurs molettes.
  • Celles-ci sont réparties autour de la paroi de révolution du corps creux et l'axe de chacune d'elles se déplace de façon que son point d'intersection avec un plan perpendiculaire parcoure la courbe fermée déterminée qui lui correspond. La courbe du parcours du bord de formage de chaque molette présente sa propre zone distincte d'intersection avec la paroi. Il est avantageux que les courbes fermées déterminées parcourues par les axes des molettes soient semblables afin d'équilibrer les efforts exercés sur la paroi, mais ce n'est pas un nécessité. L'entraînement de chacune des molettes, de façon que son axe parcoure la courbe fermée déterminée qui lui correspond, est effectué, comme cela a été dit dans le cas de la figure 3, grâce à un port-molette correspondant rigide et mobile. Les molettes peuvent être disposées de façon que les courbes-enveloppes des parcours de leurs bords de formage se trouvent dans un même plan perpendiculaire à l'axe de la paroi de révolution du corps creux. On forme ainsi une gorge annulaire parcourue successivement par les molettes mises en oeuvre.
  • On peut aussi former une gorge hélicoïdale en déplaçant le long de son axe la paroi de révolution à une vitesse synchronisée avec la vitesse de rotation de la paroi de révolution afin de définir avec précision le pas de l'hélice. On préfère souvent faire le contraire c'est-à-dire se contenter d'entraîner en rotation la paroi de révolution du corps creux, par exemple au moyen d'un plateau de tour auquel elle est fixée. On solidarise alors un bâti, sur lequel sont montés les porte-molette qui entraînent les molettes, avec le chariot du tour.
  • Ce chariot peut alors se déplacer, en synchronisme avec la vitesse de rotation de la paroi de révolution, grâce à la vis mère du tour. Les bords de formage des molettes doivent être décalés les uns par rapport aux autres, parallèlement à l'axe du corps creux, de façon à contribuer au formage d'une même gorge hélicoïdale. Si par exemple 4 molettes sont réparties à 90° les unes des autres autour d'une même paroi de révolution, en vue de réaliser une gorge hélicoïdale de pas (P), la molette la plus en avant attaque la formation de la gorge, tandis que les trois autres qui poursuivent la formation de cette même gorge doivent être décalées respectivement de
  • Figure imgb0001
  • le long de l'axe.
  • Il est possible de former progressivement les gorges en utilisant des molettes de diamètres différents afin de faire varier la profondeur de pénétration. Les profils des bords de formage peuvent aussi varier d'une molette à l'autre afin de réaliser de façon progressive le profil de la gorge qui doit être obtenu. Au lieu de faire varier les diamètres des molettes on peut aussi faire varier la profondeur de la zone d'intersection entre la courbe-enveloppe du parcours du bord de formage et la paroi de révolution du corps creux.
  • Il est avantageux, dans certains cas, d'utiliser des molettes multiples, c'est-à-dire comportant plusieurs bords de formage; cela permet plusieurs passages sur la même gorge hélicoïdale. De telles molettes multiples peuvent permettre aussi de réaliser des filetages comportant plusieurs filets hélicoïdaux parallèles.
  • La figure 4 représente, de façon schématique des demi-coupes de quatre molettes (26, 27, 28, 29) montées libres en rotation autour de quatre axes (X7, X8, Xg, X10). Ces molettes sont réparties autour de la paroi de révolution d'un corps creux et l'axe de chacune d'elles parcourt une courbe fermée déterminée, circulaire de la façon qui est représentée à la figure 2. Les zones d'intersection des courbes-enveloppes des parcours des bords de formage de chacune de ces moletttes sont réparties sensiblement à 90° les unes des autres autour de la paroi de révolution. De plus, comme cela a été dit plus haut, comme on se propose de réaliser un filet hélicoïdal de pas P, la première molette (26) qui attaque la formation du filet, est suivie par les trois autres (27, 28, 29) qui sont décalées respectivement parallèlement à l'axe du corps creux, de
  • Figure imgb0002
  • Chacune de ces molettes comporte deux bords de formage: (A,, et B1, A2 et B2, A3 et B3, A4 et B4). Les bords de formage (A,, A2, A3, A4) ont des rayons respectifs (RI, R2, R3, R4) croissants, ce qui permet de former en une seule révolution de la paroi autour de son axe un filet hélicoïdal ayant la profondeur visée. Les deuxièmes bords de formage (B1, B2, B3, B4) ont sensiblement le même rayon égal à (R4). Leur passage au cours d'une deuxième révolution de la paroi, dans le filet déjà formé par les premiers bords de formage, égalise le filet en éliminant certaines inégalités et en accroissant éventuellement l'écrouissage superficiel. Bien entendu le deuxième bord de formage (Bi, B2, B3, B4) est décalé sur chaque molette (26, 27, 28, 29) par rapport au premier bord de formage (A1, A2, A3, A4) de la distance voulue pour que le métal soit travaillé à l'emplacement voulu.
  • Lorsqu'on réalise une gorge sous forme de filet hélicoïdal, on améliore la précision en orientant les axes des molettes de façon que les flancs latéraux de leurs bords de formage soient sensiblement parallèles à une tangente au filet hélicoïdal dans la zone d'intersection.
  • On voit figure 5, représentée en plan, la paroi cylindrique de révolution d'un corps creux (30) d'axe (X11) sur laquelle une gorge en forme de filet hélicoïdal (31) est en cours de formage. Une molette (32) est représentée dans la zone d'intersection de la courbe enveloppe de son bord de formage avec la paroi du corps creux (30). Cette molette est montée en rotation sur un axe (X12) qui, lui-même monté sur un porte-molette mobile, effectue de façon cyclique un parcours suivant une courbe fermée déterminée en conservant son orientation. Cet axe (X12) est dans un plan sensiblement parallèle au plan tangent à la génératrice de la paroi du corps creux (30) passant par la zone d'intersection précisée plus haut. Dans le cas de la figure 5 ce plan tangent est sensiblement parallèle au plan de la figure. On voit que l'axe (X12) est incliné d'un angle «α2» par rapport à une parallèle à l'axe de révolution (XI1) qui l'intersecte. Cet angle «a2» est de préférence, sensiblement égal à l'angle «α3» d'inclinaison d'une tangente au filet hélicoïdal (31) par rapport au plan perpendiculaire à l'axe (X11), plan dont on voit la trace en (33). L'inclinaison d'un axe tel que (X12) d'une molette telle que (32) est obtenue en faisant tourner le porte-molette non représenté autour d'un axe perpendiculaire à l'axe (X11) de la paroi de révolution et passant par la zone d'intersection entre la courbe enveloppe du bord de formage de la molette (32) et la paroi de révolution (30) du corps creux. Un tel moyen d'inclinaison des axes de molettes peut, par exemple, être mis en oeuvre chaque fois qu'on se propose de réaliser une gorge ou un filet hélicoïdal.
  • La figure 6 représente la paroi de révolution (34) d'un corps creux d'axe (Xl3) dont la surface extérieure est conique. On forme sur cette surface un filet hélicoïdal (35), au moyen de molettes telles que (36), qui tournent autour d'axes tels que (X14). Chacune de ces molettes est montée sur un porte-molette correspondant non représenté. Dans le cas de cette figure, l'axe de molette (X,4) se trouve dans un plan parallèle à l'axe de révolution (X13), et perpendiculaire à une droite, elle-même perpendiculaire à cet axe, droite qui passe par la zone d'intersection entre la courbe-enveloppe du parcours cyclique du bord de formage de la molette et la paroi. Ce plan fait donc avec une parallèle (37) à la génératrice (38) de la paroi conique un age «a4» égal au demi-angle au sommet du cône. Dans ces conditions, le bord de formage de chaque molette n'agit pas de façon symétrique sur la paroi. Ceci a peu d'inconvénients si l'angle «α4» est petit. On peut par ailleurs, comme cela a été expliqué dans le cas de la figure 5 orienter les axes de molettes tels que (Xl4) de façon que les flancs latéraux des bords de formage soient rendus parallèles au filet hélicoïdal (35). Cette orientation est réalisée par rotation du porte-molette autour d'un axe perpendiculaire à l'axe (X13) passant par la zone d'intersection entre courbe-enveloppe et paroi.
  • Au cours de la translation relative de la paroi de révolution (34) suivant son axe (X,3) par rapport à la molette (36) on fait varier de façon continue la distance entre le porte-molette et l'axe (X,3) de façon que la courbe-enveloppe du parcours du bord de formage de la molette (36) intersecte constamment la paroi de révolution avec une pénétration sensiblement constante. On utilise pour cela un moyen connu de suivi de cône.
  • La figure 7 décrit un mode particulier de réalisation du dispositif suivant l'invention.
  • On voit une paroi de révolution (40) en coupe, d'axe (X,5) perpendiculaire au plan de la feuille. Une molette (41) est montée libre en rotation sur un axe (X16) solidaire d'un porte-molette rigide mobile (42). Ce porte-molette est monté libre en rotation sur un maneton (43) dont l'axe (X17) tourne autour de l'axe (X,8) qui l'entraîne en rotation dans le sens des aiguilles d'une montre par un moyen moteur non représenté. Une biellette (44) articulée en (X19) sur le porte-molette et en (X20) sur un anneau de maintien (45) contribue au guidage du porte-molette (42). Les axes (X,6, X17, X18, X19 et X2o) sont parallèles. Il en résulte que lorsque l'axe (X17) du maneton est entraîné autour de l'axe (X18) dans le sens des aiguilles d'une montre par le moyen moteur, l'axe de molette (X16) suit de façon cyclique la courbe fermée déterminée (46) dans le sens de la flèche (F7). La courbe-enveloppe (47) du parcours du bord de formage de la molette présente une zone d'intersection (48) avec la paroi (40). La courbe fermée déterminée (46) présente une plus grande diagonale (X21), qui est aussi la grande diagonale de la courbe-enveloppe (47). La droite (49) issue de l'axe (X16) et passant par le milieu de la zone d'intersection (48) coupe (X21) sensiblement à angle droit. Une telle disposition permet d'obtenir un faible angle d'incidence du bord de formage de la molette lorsqu'à chaque cycle il s'engage dans la zone d'intersection. Il est possible par ailleurs, en faisant tourner l'anneau (45) autour de son axe dans un sens convenable, de rapprocher ou d'éloigner la courbe-enveloppe (47) de la paroi de révolution (40) et donc de régler la profondeur de pénétration du bord de molette, ou encore d'effectuer un suivi de cône. Il est donc possible ainsi, de réaliser sur une paroi conique un filet hélicoïdal (50) de profondeur constante. On remarque que l'axe de molette (X16) parcourt la courbe fermée déterminée (46) dans le sens des aiguilles d'une montre (sens de la flèche (Fl). Ce sens est le même que le sens de rotation de la paroi (40) indiqué par la flèche (Fa). La molette roule dans le sens de la flèche (Fg). On peut, par des moyens non représentés, faire tourner le plan de la courbe-enveloppe (47) autour d'un axe tel que la droite (49) de façon à l'orienter parallèlement à une tangente à un filet hélicoïdal passant par la zone d'intersection (48).
  • La figure 8 ainsi que la figure de détail 9 représentent en perspective, de façon partielle, un autre mode de réalisation du dispositif suivant l'invention. On utilise, dans le cas du dispositif ainsi représenté, 4 molettes montées chacune sur un porte-molette, réparties à 90° les unes des autres autour de l'axe (X22) d'un corps creux (59) sur la paroi de révolution (60) duquel on se propose de réaliser un filet hélicoïdal. Un moyen d'entraînement fait tourner cette paroi (60) autour de son axe (X22) dans les sens de la flèce (Flo). Afin de simplifier la figure 8 seulement deux molettes (61 et 62), montées chacune sur un support de porte-molette (63, 64) et réparties à 180° autour de l'axe (X22) ont été représentées.
  • La figure 9 montre de façon claire que la molette (65) est une pièce annulaire montée libre en rotation par l'intermédiaire d'une bague de roulement (66) sur une pièce (67) comportant une portée cylindrique d'axe (X33) qui constitue l'axe de la molette. Un moyen d'entraînement en rotation non représenté fait tourner un arbre (68) d'axe (X24) qui entraîne autour de lui l'axe (X23) qui lui est parallèle, de façon que le point d'intersection de cet axe (X23) avec un plan perpendiculaire décrive de façon cyclique un parcours suivant une courbe fermée déterminée. La pièce (67) est donc le porte-molette rigide et mobile sur lequel est montée la molette (65). Dans le cas de la figure 9 cette courbe fermée déterminée est une circonférence dont le rayon est égal à la distance entre les axes (X23) et X24). Pendant son parcours cyclique le bord de formage (69) de la molette (65) décrit une courbe-enveloppe (70).
  • Comme le montre la figure 8 chacun des supports de porte-molette (63, 64) peut tourner autour d'un axe (X25) perpendiculaire à l'axe (X22) et qui traverse les zones d'intersection des courbes-enveloppes des parcours des bords de formage des molettes (61, 62) avec la paroi de révolution (60). Pour cela chaque support de porte-molette est monté en rotation autour de cet axe (X25) sur le chariot (71, 72) qui le porte. Des verniers (73, 74) permettent de régler l'inclinaison du support (63, 64) et donc du porte-molette correspondant de façon que la courbe-enveloppe du parcours du bord de formage de la molette soit parallèle à la tangente au filet hélicoïdal à réaliser dans la zone d'intersection. Chacun des chariots (71, 72) peut coulisser radialement dans un sens ou dans l'autre suivant les flèches (F11, F12) par rapport à l'axe (X22) dans des glissières telles que (75,76) ménagées dans des pièces supports fixes (77,78).
  • Le déplacement radial de l'ensemble des chariots est commandé au moyen d'une couronne (79) qui peut être déplacée en rotation dans un sens ou dans l'autre, suivant la flèche (FI3) autour de son axe, qui est pratiquement confondu avec l'axe (X22). La couronne (79) porte des galets (80, 81) engagés dans des encoches inclinées (82, 83) formées aux extrémités des chariots (71, 72). Ainsi il est possible, grâce à un moyen de commande approprié, de déplacer simultanément les supports de molette de façon radiale. Ceci permet en particulier le suivi de cône. Comme dans les cas d'exemple déjà cités, on réalise des filets hélicoïdaux en déplaçant de façon relative en translation le corps creux (59) de long de son axe (X22) par rapport aux molettes. Dans le cas de la réalisation d'un filet hélicoïdal sur une paroi conique, on synchronise le mouvement de translation du corps creux (59) le long de l'axe (X22), par des moyens connus, avec le déplacement radial simultané des porte-molettes par l'action de la couronne (79).
  • Comme cela a déjà été indiqué il est possible d'égaliser la profondeur d'une gorge, en particulier dans le cas où celle-ci est un filet hélicoïdal. en faisant rouler à pression constante une molette de lissage dont l'axe est maintenu à distance sensiblement constante de la paroi de révolution. Dans le cas du mode de réalisation du dispositif suivant l'invention on peut en particulier remplacer sur l'un des supports de porte-molette le dispositif d'entraînement cyclique du porte-molette par un dispositif dans lequel l'axe de molette est fixe par rapport au support de porte-molette. On pourra alors disposer dans le sens d'avance du filet hélicoïdal 3 molettes de formage à action cyclique, de façon à former progressivement le filet jusqu'à la profondeur souhaitée. Le quatrième support de porte-molette sera équipé d'une molette de lissage dont la distance d'axe avec la paroi de révolution sera réglée à une valeur fixe de façon que la molette roule de façon continue dans le fond du filet déjà formé en égalisant ses parois. Le profil de cette molette de lissage correspondra au profil définitif qu'on se propose de donner au filet hélicoïdal. Afin d'améliorer encore le profil du filet, on peut répartir autour de l'axe de la paroi de révolution, par exemple, 6 supports de porte-molette au lieu de 4, et équiper 2 de ces supports avec des molettes de lissage à axe fixe qui roulent de façon continue à fond de filet en égalisant le profil.
  • A titre d'exemple numérique, on met en oeuvre un dispositif correspondant à celui des figures 8 et 9 pour la réalisation d'un filet hélicoïdal sur la paroi extérieure d'un tube d'acier de 3½ pouces de diamètre extérieur et de 6 mm d'épaisseur de paroi. On entraîne ce tube en rotation autour de son axe à la vitesse de 9 tours/min. et on déplace en translation le tube le long de son axe, de façon relative par rapport aux molettes à une vitesse de 38,1 mm/min. Les quatre supports de porte-molette, disposés à 90° les uns des autres sont équipés chacun d'une molette de 61 mm de diamètre pourvue d'un bord de formage unique. Trois de ces molettes sont montées libres en rotation de la façon représentée à la figure 9, c'est-à-dire que leur axe se déplace de façon cyclique parallèlement à lui-même en suivant une circonférence située dans un plan qui lui est perpendiculaire sous l'action d'un moyen d'entraînement non représenté. Le rayon de cette circonférence est de 0,4 mm et le nombre de cycles est de 2000 à 3000/min. suivant le matériau à former. La quatrième molette est une molette de lissage montée libre en rotation sur un axe fixe. Les supports de porte-molette sont ajustés en distance radiale par rapport à la paroi du tube de façon que la profondeur maximale de pénétration totale de chacun des bords de formage des molettes soit de:
    • 1 ère molette: 0,4 mm
    • 2ème molette: 0,8 mm
    • 3ème molette: 1,2 mm
    • 4ème molette: 1,2 mm
  • On voit que les 3 premières molettes forment progressivement le filet en effectuant chacune une pénétration propre de 0,4 mm. La quatrième molette travaille à la profondeur atteinte par la troisième, mais à profondeur constante, en égalisant ainsi le filet.
  • Les supports de porte-molette sont inclinés, de la façon qui vient d'être décrite, afin que la courbe-enveloppe du parcours du bord de formage de chacune des trois premières molettes soit parallèle à la tangente au filet hélicoïdal à réaliser. On donne la même inclinaison au support de porte-molette sur lequel est montée la quatrième molette à axe fixe. On constate que le filet hélicoïdal ainsi réalisé présente une excellente précision et un excellent état de surface et que les cotes intérieures du tube n'ont pas été sensiblement modifiées dans la zone dans laquelle le filetage extérieur est réalisé.
  • De très nombreuses modifications peuvent être apportées, pour leur mise en oeuvre, au procédé et au dispositif, pour leur mise en oeuvre, qui viennent d'être décrits sans sortir du domaine de l'invention. On peut en particulier adapter les molettes à la réalisation du tout profil de gorge qu'on se propose de réaliser. Dans le cas où la gorge qu'on se propose de réaliser est un filet hélicoïdal, on peut donner au profil de celui-ci la forme optimale pour obtenir par exemple les qualités d'aptitude au serrage et d'étanchéité qu'on attend d'une jonction vissée.

Claims (20)

1. Procédé de formage, sans enlèvement de matière, de gorges sur des parois de révolution de corps creux en matériau ductile ou plastique, dans lequel on met en oeuvre au moins une molette de révolution (11,21) montée en rotation sur un axe qui se déplace parallèlement à lui-même, de façon que son point d'intersection avec un plan perpendiculaire effectue de façon cyclique un parcours suivant une courbe fermée déterminée (12, 22), laquelle a une forme circulaire ou allongée, cette molette comportant au moins un bord de formage (15,24) dont la courbe-enveloppe du parcours cyclique comporte une zone d'intersection (13, 25) avec la paroi de révolution, zone qui se déplacé de façon relative autour de cette paroi, caractérisé en ce que la courbe fermée déterminée (12, 22) n'est pas parcourue par le point d'intersection de l'axe d'une autre molette et en ce que le plus grand diamètre du bord de formage (15, 24) de cette molette est supérieur à la longueur d'une diagonale (E-D) de la courbe fermée déterminée dont le prolongement coupe la zone d'intersection (13, 25) ainsi que l'axe (X2, X5) du corps creux.
2. Procédé suivant revendication 1, caractérisé en ce que lorsque la courbe fermée déterminée (22) a une forme allongée elle est orientée de façon qu'une de ses diagonales (E-D) dont le prolongement coupe la zone d'intersection (25) et coupe aussi l'axe (X5) de la paroi de révolution du corps creux, soit sensiblement perpendiculaire à la plus longue diagonale (B-C) de cette courbe fermée déterminée.
3. Procédé suivant revendication 1 ou 2 caractérisé en ce qu'on réalise une gorge hélicoïdale (31, 35) sur la paroi de révolution du corps creux (30, 34) par translation relative de cette paroi le long de son axe par rapport à la zone d'intersection associée à un mouvement de rotation de ladite paroi.
4. Procédé suivant l'une des revendications 1 à 3, caractérisé en ce que le plan de la courbe-enveloppe du parcours du bord de formage de la molette (61, 62) est orientable autour d'un axe (X25) contenu dans ce plan qui coupe à la fois la zone d'intersection et l'axe (X22) de la paroi de révolution du corps creux.
5. Procédé suivant revendication 4, caractérisé en ce qu'on oriente le plan de la courbe-enveloppe de façon qu'il soit parallèle à une tangente à la gorge hélicoïdale (31) en cours de réalisation dans la zone d'intersection.
6. Procédé suivant l'une des revendications 1 à 5, caractérisé en ce qu'on met en oeuvre plusieurs molettes (61, 62) réparties de façon que les courbes-enveloppes correspondant aux parcours des bords de formage de chacune d'elle présentent avec la paroi de révolution (60) des zones d'intersection différentes réparties autour de cette paroi de révolution.
7. Procédé suivant l'une des revendications 1 à 6, caractérisé en ce que afin de réaliser une gorge hélicoïdale sur une paroi de révolution (34) non cylindrique d'un corps creux on fait varier la distance entre l'axe de cette paroi de révolution et au moins une courbe-enveloppe correspondant au parcours du bord de formage d'une molette (36) de façon à contrôler la profondeur de la zone d'intersection.
8. Procédé suivant l'une des revendications 1 à 7, caractérisé en ce que pour un observateur placé dans le prolongement de l'axe de la paroi de révolution, le sens de rotation (F1, F6) de cette paroi (10, 20) et le sens de parcours (F2, F4) d'une courbe fermée déterminée (12, 22) par le point d'intersection de l'axe de la molette correspondante sont les mêmes.
9. Procédé suivant l'une des revendications 1 à 8, caractérisé en ce qu'on met en oeuvre, en combinaison avec au moins une molette de formage, une molette de lissage dont l'axe est maintenu à distance sensiblement constante de la paroi de révolution et dont le bord roule dans une gorge déjà formée en amontde cette molette de formage.
10. Application du procédé suivant l'une des revendications 1 à 9 à la réalisation de gorges en forme de filets hélicoïdaux sur la paroi d'extgré- mité cylindrique ou conique de tubes métalliques en vue de réaliser des assemblages vissés.
11. Dispositif permettant le formage de gorges sans enlèvement de matière sur des parois de révolution de corps creux en matériau ductile ou plastique, comportant un support autour d'un axe, relié à un premier moyen d'entraînement en rotation, et muni de moyens de préhension permettant de saisir un corps creux comportant une paroi de révolution, de façon que l'axe de cette paroi coïncide avec l'axe de rotation du support, et comportant au moins une molette de révolution, montée en rotation sur un axe qui se déplace parllèlement à lui-même de façon que son point d'intersection avec un plan perpendiculaire effectue de façon cyclique un parcours suivant une courbe fermée déterminée, laquelle a une forme circulaire ou allongée, cette molette comportant au moins un bord de formage dont la courbe enveloppe du parcours cyclique comporte une zone d'intersection avec la paroi de révolution, zone qui se déplace de façon relative autour de cette paroi, caractérisé en ce qu'il comporte au moins un porte-molette rigide (42, 67) sur lequel est montée une seule molette (41, 65) libre en rotation sur un axe (X,,, X23) solidaire de ce porte-molette, un deuxième moyen d'entraînement (43, X24) déplaçant de façon cyclique ce porte-molette de façon que le point d'intersection de l'axe de molette avec un plan perpendiculaire effectue de façon cyclique un parcours suivant une courbe fermée déterminée circulaire ou allongée, la molette montée sur cet axe comportant au moins du bord de formage dont le plus grand diamètre est supérieur à la longueur d'une diagonale (E-D) de la courbe fermée déterminée (46) et dont le prolongement coupe la zone d'intersection (48) ainsi que l'axe (XI5) de la paroi de révolution (40) du corps creux et en qu'il comporte un moyen de réglage (44,71) permettant de faire varier la distance entre porte-molette et paroi de révolution afin de régler la profondeur de pénétration du bord de molette dans la paroi de révolution.
12. Dispositif suivant revendication 11, caractérisé en ce qu'un moyen de translation permet de déplacer le corps creux (59) de long de son axe (X22), de façon relative par rapport aux molettes et en synchronisme avec son mouvement de révolution autour de ce même axe (X22) de façon à former une gorge hélicoïale.
13. Dispositif suivant revendications 11 ou 12, caractérisé en ce que la courbe fermée déterminée (46) est allongée, sa plus grande diagonale (X21) est sensiblement perpendiculaire à une diagonale dont le prolongement (49) coupe la zone d'intersection (48) ainsi que l'axe (X15) de la paroi de révolution.
14. Dispositif suivant l'une des revendications 11 à 13, caractérisé en ce qu'au moins un porte-molette (67) est orientable autour d'un axe (X25) qui se trouve dans le plan de la courbe-enveloppe du parcours d'au moins du bord de formage de la molette qui correspond à ce porte-molette, cet axe coupant à la fois la zone d'intersectionet l'axe (X22) de la paroi de révolution.
15. Dispositif suivant l'une des revendications 11 à 14, caractérisé en ce qu'un moyen d'entraînement (79) permet de déplacer au moins un porte-molette en direction de l'axe (X22) de la paroi de révolution (60) en fonction de la translation relative de cette paroi le long de cet axe par rapport à ce porte-molette.
16. Dispositif suivant l'une des revendications 11 à 15, caractérisé en ce qu'il comporte plusieurs porte-molette équipés chacun d'une seule molette de formage (61,62) répartis autour de l'axe de la paroi de révolution.
17. Dispositif suivant l'une des revendications 11 à 16, caractérisé en ce qu'au moins une molette (26, 27, 28, 29) comporte plusieurs bords de formage (A1-B1, A2-82, A3-B3, A4-B4).
18. Dispositif suivant l'une des revendications 11 à 17, caractérisé en ce qu'au moins un porte-molette est équipé d'une molette de lissage dont l'axe n'effectue pas de déplacement cyclique, le dispositif comportant également au moins un porte-molette équipé d'une molette de formage qui est disposée de façon à former une gorge à l'intérieur de laquelle la molette de lissage, située en amont, roule de façon continue.
19. Dispositif suivant la revendication 16, caractérisé en ce que lorsque plusieurs molettes de formage (26, 27, 28, 29) parcourent la même gorge ou filet elles sont disposées de façon que la profondeur de la zone d'intersection de la courbe-enveloppe du parcours d'un bord de formage d'au moins l'une d'entre elles soit différente de la profondeur d'intersection de la courbe-enveloppe correspondant à un bord d'au moins une autre molette.
20. Dispositif suivant l'une des revendications 11 à 19, caractérisé en ce que lorsque la courbe fermée déterminée (22) est allongée la longueur de la diagonale courte (E-D) est au moins égale à la profondeur de pénétration (e,) du bord de la molette dans la paroi de révolution (20).
EP86420020A 1985-01-23 1986-01-22 Procédé et dispositif pour la réalisation de gorges sur une paroi de révolution Expired EP0192584B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT86420020T ATE48771T1 (de) 1985-01-23 1986-01-22 Verfahren und vorrichtung zum herstellen von rillen auf einer abwicklungswand.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8501330A FR2576228B1 (fr) 1985-01-23 1985-01-23 Procede et dispositif pour la realisation de gorges sur une paroi de revolution
FR8501330 1985-01-23

Publications (2)

Publication Number Publication Date
EP0192584A1 EP0192584A1 (fr) 1986-08-27
EP0192584B1 true EP0192584B1 (fr) 1989-12-20

Family

ID=9315803

Family Applications (1)

Application Number Title Priority Date Filing Date
EP86420020A Expired EP0192584B1 (fr) 1985-01-23 1986-01-22 Procédé et dispositif pour la réalisation de gorges sur une paroi de révolution

Country Status (9)

Country Link
US (1) US4838066A (fr)
EP (1) EP0192584B1 (fr)
JP (1) JPS62501488A (fr)
AT (1) ATE48771T1 (fr)
CA (1) CA1293845C (fr)
DE (1) DE3667618D1 (fr)
FR (1) FR2576228B1 (fr)
SU (1) SU1729282A3 (fr)
WO (1) WO1986004274A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2532614C1 (ru) * 2013-04-15 2014-11-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Орловский государственный аграрный университет" (ФГБОУ ВПО Орел ГАУ) Устройство для накатывания

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0435059U (fr) * 1990-07-18 1992-03-24
US5765419A (en) * 1994-06-25 1998-06-16 Ernst Grob Ag Method and apparatus for a rolling of hollow articles
AUPS169302A0 (en) * 2002-04-11 2002-05-16 Bishop Steering Technology Limited Method for manufacturing a directionally dependent reflective surface
DE102006028272A1 (de) * 2006-06-20 2007-12-27 Ks Gleitlager Gmbh Gerollte Gleitlagerbuchse
DE102008001046B3 (de) 2008-04-08 2009-06-18 Zf Friedrichshafen Ag Rohreinheit, ein Verfahren zur Herstellung einer derartigen Rohreinheit und Schwingungsdämpfer
JP5381797B2 (ja) * 2010-02-23 2014-01-08 日本精工株式会社 トロイダル型無段変速機の製造方法
RU2554261C1 (ru) * 2014-03-25 2015-06-27 Открытое акционерное общество "Российский научно-исследовательский институт трубной промышленности" (ОАО "РосНИТИ") Устройство для изготовления труб с внутренним винтообразным оребрением
AU2016362959B2 (en) 2015-11-30 2019-05-23 Victaulic Company Cam grooving machine
US11898628B2 (en) 2015-11-30 2024-02-13 Victaulic Company Cam grooving machine
US10525516B2 (en) 2017-05-03 2020-01-07 Victaulic Company Cam grooving machine with cam stop surfaces
CN107755497B (zh) * 2017-10-24 2020-02-18 江金玉 一种金属护套轧纹机
US10960450B2 (en) * 2017-12-19 2021-03-30 Victaulic Company Pipe grooving device
KR20220028006A (ko) 2019-08-21 2022-03-08 빅톨릭 컴패니 플레어 컵을 가지는 파이프 홈 가공 장치
CN111250636B (zh) * 2020-04-30 2020-07-28 宁波市沃瑞斯机械科技有限公司 一种用于螺纹筋成型的波动调压系统
US11759839B2 (en) 2020-09-24 2023-09-19 Victaulic Company Pipe grooving device
CN113680934B (zh) * 2021-08-26 2023-11-24 自贡中粮金属包装有限公司 一种金属罐包装罐口滚纹机及其生产工艺

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2715846A (en) * 1951-05-16 1955-08-23 Grob Inc Method of groove forming
NL239262A (fr) * 1958-05-16
FR1306295A (fr) * 1961-11-09 1962-10-13 Procédé pour la fabrication d'un tuyau flexible
US3492849A (en) * 1966-08-22 1970-02-03 Rotary Profile Anstalt Rolling of metal billets
US3439519A (en) * 1967-04-25 1969-04-22 Jones & Laughlin Steel Corp Billet roughing mill
GB1447813A (en) * 1974-06-27 1976-09-02 Wilson A I Rolling mill

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2532614C1 (ru) * 2013-04-15 2014-11-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Орловский государственный аграрный университет" (ФГБОУ ВПО Орел ГАУ) Устройство для накатывания

Also Published As

Publication number Publication date
CA1293845C (fr) 1992-01-07
FR2576228A1 (fr) 1986-07-25
EP0192584A1 (fr) 1986-08-27
JPH0236329B2 (fr) 1990-08-16
SU1729282A3 (ru) 1992-04-23
US4838066A (en) 1989-06-13
FR2576228B1 (fr) 1989-12-01
ATE48771T1 (de) 1990-01-15
DE3667618D1 (de) 1990-01-25
WO1986004274A1 (fr) 1986-07-31
JPS62501488A (ja) 1987-06-18

Similar Documents

Publication Publication Date Title
EP0192584B1 (fr) Procédé et dispositif pour la réalisation de gorges sur une paroi de révolution
FR2591919A1 (fr) Machine-outil pour laminer par refoulement des pieces cylindriques creuses
CH671726A5 (fr)
FR2492794A1 (fr) Machine d'enroulement d'un fil en helice
FR2521042A1 (fr) Outil de formage de dents pour canneler des elements tubulaires
FR2545752A1 (fr) Dispositif de tronconnage pour tubes de carton fabriques en continu
EP2686149A2 (fr) Procédé et dispositif de réalisation de pièces, notamment de pièces de révolution allongées, par usinage d'une barre maintenue fixe en rotation
CH336244A (fr) Procédé de taille de roues dentées coniques sans générateur, machine pour la mise en oeuvre de ce procédé et roue dentée obtenue selon ce procédé
FR2676668A1 (fr) Dispositif et procede permettant le formage a froid de cannelures sur la paroi d'une piece de revolution.
EP0569307B1 (fr) Dispositif permettant le formage d'ailettes hélicoidales sur la paroi extérieure de tubes
EP0161192B1 (fr) Procédé de réglage d'un laminoir à cylindres obliques et laminoir pour la mise en oeuvre de ce procédé
FR2716394A1 (fr) Procédé et dispositif pour couper des corps creux.
FR2503616A1 (fr) Procede et dispositif de formation d'empreintes sur des tubes en ceramique
EP0860228A1 (fr) Machine pour la coupe et/ou l'usinage de tubes
WO2018167021A1 (fr) Laminoir multimandrin, méthode de réglage de la position des mandrins d'un tel laminoir et procédé de laminage en continu au moyen d'un tel laminoir
EP1670621B1 (fr) Procede de coupe d'un tube en ligne et dispositif de coupe mettant en oeuvre ledit procede
EP0097750A2 (fr) Procédé et dispositif de formation d'empreintes sur des tubes en céramique
FR2530503A1 (fr) Procede de laminage a froid de tubes au moyen d'un laminoir a pas de pelerin et dispositif pour la mise en oeuvre du procede
FR2937576A1 (fr) Procede et dispositif de realisation de pieces de revolution notamment en bois
BE667283A (fr)
CH518145A (fr) Procédé de fabrication d'un pas de vis, outil pour la mise en oeuvre de ce procédé, application de ce procédé et tige filetée résultant de ce procédé
FR2558396A1 (fr) Procede de laminage de tubes au pas de pelerin, laminoir pour sa mise en oeuvre et tubes lamines conformement audit procede
FR2571990A1 (fr) Procede et machine pour la fabrication de corps de revolution comportant des rainures formees par empreinte
BE348456A (fr)
BE507333A (fr)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE DE FR GB IT NL SE

17P Request for examination filed

Effective date: 19860911

17Q First examination report despatched

Effective date: 19871112

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE DE FR GB IT NL SE

REF Corresponds to:

Ref document number: 48771

Country of ref document: AT

Date of ref document: 19900115

Kind code of ref document: T

ITF It: translation for a ep patent filed

Owner name: ING. A. GIAMBROCONO & C. S.R.L.

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
REF Corresponds to:

Ref document number: 3667618

Country of ref document: DE

Date of ref document: 19900125

ITTA It: last paid annual fee
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19921214

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19921215

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19921228

Year of fee payment: 8

Ref country code: DE

Payment date: 19921228

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19921229

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19930113

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19930131

Year of fee payment: 8

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19940122

Ref country code: AT

Effective date: 19940122

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19940123

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19940131

BERE Be: lapsed

Owner name: S.A. ESCOFIER TECHNOLOGIE

Effective date: 19940131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19940801

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19940122

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19940930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19941001

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

EUG Se: european patent has lapsed

Ref document number: 86420020.9

Effective date: 19940810

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050122