US2715846A - Method of groove forming - Google Patents

Method of groove forming Download PDF

Info

Publication number
US2715846A
US2715846A US226572A US22657251A US2715846A US 2715846 A US2715846 A US 2715846A US 226572 A US226572 A US 226572A US 22657251 A US22657251 A US 22657251A US 2715846 A US2715846 A US 2715846A
Authority
US
United States
Prior art keywords
blank
rolling
rotation
axis
rollers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US226572A
Inventor
Grob Ernst
Grob Benjamin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GROB Inc
Original Assignee
GROB Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GROB Inc filed Critical GROB Inc
Priority to US226572A priority Critical patent/US2715846A/en
Priority to CH304101D priority patent/CH304101A/en
Priority to DEG8822A priority patent/DE1016222B/en
Priority to FR1061949D priority patent/FR1061949A/en
Priority to GB12502/52A priority patent/GB721054A/en
Application granted granted Critical
Publication of US2715846A publication Critical patent/US2715846A/en
Priority to CH352987D priority patent/CH352987A/en
Priority to DEG20779A priority patent/DE1034127B/en
Priority to FR1163900D priority patent/FR1163900A/en
Priority to GB32106/56A priority patent/GB808865A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21HMAKING PARTICULAR METAL OBJECTS BY ROLLING, e.g. SCREWS, WHEELS, RINGS, BARRELS, BALLS
    • B21H5/00Making gear wheels, racks, spline shafts or worms
    • B21H5/02Making gear wheels, racks, spline shafts or worms with cylindrical outline, e.g. by means of die rolls
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T279/00Chucks or sockets
    • Y10T279/16Longitudinal screw clamp
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/4935Heat exchanger or boiler making
    • Y10T29/49377Tube with heat transfer means
    • Y10T29/49378Finned tube
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/4935Heat exchanger or boiler making
    • Y10T29/49377Tube with heat transfer means
    • Y10T29/49378Finned tube
    • Y10T29/49382Helically finned

Definitions

  • This invention relates to the art of metal rolling.
  • a general aim of the present invention is to provide a novel method of metal rolling particularly adapted for the rapid and economical production of gears and other similar repetitively grooved essentially cylindrical shapes.
  • a more specific object is to provide an improved rolling method for the purpose indicated in which each of the several grooves is progressively formed by the repetitive rolling engagement of a forming roller or succession of like rollers therewith.
  • Another object is to provide a gear forming method in which the gear teeth are formed by a metal rolling action that progresses across the face of the gear or substantially lengthwise of the axis thereof.
  • Figure l is a sectional view of gear rolling equipment capable of use in carrying out the method of the present invention. This view is taken substantially along the line 11 of Fig. 2.
  • Fig. 2 is a sectional view taken substantially along the line 2-2 of Fig. 1.
  • Fig. 3 is a fragmentary view similar to Fig. 2 showing a double acting roller arrangement.
  • Fig. 4 is a fragmentary view in plan illustrating an arrangement of parts for use in rolling helical gears.
  • a gear blank G is repeatedly operated upon by a rolling force herein exemplified by one or more forming rollers movable into and out of engagement with the blank.
  • a rolling force herein exemplified by one or more forming rollers movable into and out of engagement with the blank.
  • four such rollers are shown, each being journalled for free individual rotation within a suitable rotary carrier head 11.
  • the head 11 is rigidly mounted for rotation about a fixed axis A, and is shown fixed to a supporting shaft 12 through which it is driven.
  • the several rollers 10 are brought successively and repeatedly into forming engagement with the blank G by continuous rotation of the head 11, and that each is free to rotate about its individual axis while in engagement with the blank.
  • the axis of rotation of each roller is parallel to the axis A of the carrier head 11 in the arrangement shown.
  • the blank G is shown releasably but securely fixed to a shaft 13 by which it is rigidly supported and by which it is rotated or indexed in timed relation with the rotary head 11.
  • the blank is keyed to the reduced end 14 of the shaft 13, and clamped between an end shoulder on the shaft and a spacer sleeve 15, a nut 16 supplying the clamping pressure.
  • the axis of rotation B of the blank is substantially at right angles to the axis of rotation A of the head 11.
  • the rate of rotation of the carrier head 11 is an exact multiple of the rate of rotation of the blank G. That is to say, during each complete revolution of the blank, the head 11 makes several complete revolutions, at least one for each of the several grooves to be formed on the blank.
  • the head 11 is rotated continuously, and although the blank may be in termittently rotated and held stationary during engagement with each roller, the blank is preferably continuously rotated so as to utilize the higher operating speeds made available by continuous operation.
  • the blank G is fed into and through the path of travel and zone of operation of the rollers 10 by advance of the shaft 13 along its axis.
  • the several rollers 10 are of substantially identical shape. In this instance each is shown equipped with a plurality of axially spaced, parallel, straight sided, peripheral ribs 17 and interposed grooves 18 whose combined cross-sectional contour corresponds essentially to that of a rack gear.
  • Each of the rollers 10 is axially fixed in the carrier head 11 with the projecting ribs 17 of each accurately positioned to reenter and properly mesh with the gashes, grooves, or tooth spaces previously formed in the blank G during the rolling process.
  • the ribs 17 of each roller are preferably disposed in planes ofiset from corresponding ribs of a preceding roller, the degree of offset being such as to compensate for the indexing rotation of the blank G.
  • a penetration of maximum radial depth of course is attained when the leading face of the blank arrives at a dead center position immediately beneath the axis A of the carrier head 11. Thereafter, as the feed and indexing rotation of the blank continues, the repeated rolling action of the successive rollers progresses across the face of the blank until the several gashes are enlarged to form slots or grooves of uniform depth and of the desired length, and in this instance extending completely through the blank and conforming essentially to the tooth spaces of a conventional spur gear.
  • indexing of the blank G may be effected by either intermittent or continuous rotation, but when the blank is continuously rotated, it is desirable, under some conditions of operation, that compensation be made for such rotation during engagement of the blank with the rollers 10. This is accomplished by a slight modification of the angular relation between the axis A of the head 11 and the axis B of the blank. More particularly, with the head 11 and blank G rotating in the directions indicated in Fig. 1, a slight angular displacement of the axis A in a direction to depress the right end thereof below the plane of the paper will induce each roller to travel tangentially with the rotating blank, as well as across the face of the blank, during its engagement with the blank. This correction angle is readily computed.
  • this correction angle is an angle whose sine is equal to the tooth pitch divided by the distance travelled by the roller .ribs 17 during onev complete revolution of the head 11.
  • the above noted correction may be effected by adjusting either the axis A of the head 11 or the axis B of the blank G through the correction angle thus calculated. Also, under some conditions of operation, when such a correction angle is used, it is desirable to also angularly adjust the axes of the individual rollers, so that as each engages the blank G the ribs 17 thereof will lie in planes parallel to the grooves to be rolled.
  • the blank in the form of a bar G, is fed lengthwise between two opposed rotary heads 11, each carrying a set of rollers of a kind and in the same manner as hereinabove described.
  • the rollers 10 are so disposed as to engage and operate on opposite sides of the blank substantially simultaneously so that each radial thrust imposed on the blank G by each roller of one set is substantially counter-balanced by that imposed by a roller of the other set.
  • the blank G is advanced lengthwise between the two sets of rollers 10, it is also rotated about its axis at a rate definitely related to the rate of rotation of the heads 11, in much the same manner and for the same purpose as the blank G previously described.
  • the metal rolling methods hereinabove described may be utilized in the production of helical as well as spur gears.
  • the rollercarrying head 11 is angularly disposed relative to the blank G so that the angle between the axis B of the blank and plane of rotation of the rollers 10 is equal to the helix angle of the gear to be produced.
  • the roller-carrier head 11 and the blank G are rotated in definite timed relation and the blank is also fed, preferably along its axis, in substantially the. same manner as previously described.
  • an additional rotation is imparted to the blank. at a rate definitely related to the feed rate of the blank and such that the ribs 17 of the rollers will follow the helix angle of the gear.
  • angular position of the roller-carrying head may also be modified in the manner hereinabove described to compensate for continued rotation of the blank.

Description

Aug. 23, 1955 E, GROB ET AL 2,715,846
METHOD OF GROOVE FORMING Filed May 15, 1951 2 Sheets-Sheet l INVENTOR.
ERNST 6R BENJAMlHC-l B ATTORNEY Aug. 23, 1955 E. GROB ET AL METHOD OF GROOVE FORMING 2 Sheets-Sheet 2 Filed y 16, 1951 INVENTOR. Elm-451' 69.05 Beruamm Geog BY ATTORNEY United States Patent Ofiice Patented Aug. 23, 1955 METHOD OF GROOVE FORMING Ernst Grob, Zurich, Switzerland, and Benjamin Grob, Grafton, Wis., assignors, by mesne assignments, to Grub, Inc., Grafton, Wis., a corporation of Wisconsin Application May 16, 1951, Serial No. 226,572
2 Claims. (or. 8060) This invention relates to the art of metal rolling.
A general aim of the present invention is to provide a novel method of metal rolling particularly adapted for the rapid and economical production of gears and other similar repetitively grooved essentially cylindrical shapes.
A more specific object is to provide an improved rolling method for the purpose indicated in which each of the several grooves is progressively formed by the repetitive rolling engagement of a forming roller or succession of like rollers therewith.
Another object is to provide a gear forming method in which the gear teeth are formed by a metal rolling action that progresses across the face of the gear or substantially lengthwise of the axis thereof.
Other more specific objects and advantages will appear, expressed or implied, from the following description of a metal rolling method performed in accordance with this invention.
For purposes of illustration and explanation the method of the present invention is shown applied to the rolling of spur and helical gears, although it may be utilized to advantage in the rolling of splines and other shapes of the kind hereinabove mentioned.
In the accompanying drawings:
Figure l is a sectional view of gear rolling equipment capable of use in carrying out the method of the present invention. This view is taken substantially along the line 11 of Fig. 2.
Fig. 2 is a sectional view taken substantially along the line 2-2 of Fig. 1.
Fig. 3 is a fragmentary view similar to Fig. 2 showing a double acting roller arrangement.
Fig. 4 is a fragmentary view in plan illustrating an arrangement of parts for use in rolling helical gears.
In the metal rolling method herein illustrated a gear blank G is repeatedly operated upon by a rolling force herein exemplified by one or more forming rollers movable into and out of engagement with the blank. In this instance four such rollers are shown, each being journalled for free individual rotation within a suitable rotary carrier head 11. The head 11 is rigidly mounted for rotation about a fixed axis A, and is shown fixed to a supporting shaft 12 through which it is driven. It will of course be understood that the several rollers 10 are brought successively and repeatedly into forming engagement with the blank G by continuous rotation of the head 11, and that each is free to rotate about its individual axis while in engagement with the blank. The axis of rotation of each roller is parallel to the axis A of the carrier head 11 in the arrangement shown.
The blank G is shown releasably but securely fixed to a shaft 13 by which it is rigidly supported and by which it is rotated or indexed in timed relation with the rotary head 11. In this instance the blank is keyed to the reduced end 14 of the shaft 13, and clamped between an end shoulder on the shaft and a spacer sleeve 15, a nut 16 supplying the clamping pressure. In the arrangement shown in Figs. 1 and 2 the axis of rotation B of the blank is substantially at right angles to the axis of rotation A of the head 11.
During the rolling process the rate of rotation of the carrier head 11 is an exact multiple of the rate of rotation of the blank G. That is to say, during each complete revolution of the blank, the head 11 makes several complete revolutions, at least one for each of the several grooves to be formed on the blank. The head 11 is rotated continuously, and although the blank may be in termittently rotated and held stationary during engagement with each roller, the blank is preferably continuously rotated so as to utilize the higher operating speeds made available by continuous operation. Also during the rolling process the blank G is fed into and through the path of travel and zone of operation of the rollers 10 by advance of the shaft 13 along its axis.
The several rollers 10 are of substantially identical shape. In this instance each is shown equipped with a plurality of axially spaced, parallel, straight sided, peripheral ribs 17 and interposed grooves 18 whose combined cross-sectional contour corresponds essentially to that of a rack gear.
Each of the rollers 10 is axially fixed in the carrier head 11 with the projecting ribs 17 of each accurately positioned to reenter and properly mesh with the gashes, grooves, or tooth spaces previously formed in the blank G during the rolling process. For this purpose the ribs 17 of each roller are preferably disposed in planes ofiset from corresponding ribs of a preceding roller, the degree of offset being such as to compensate for the indexing rotation of the blank G.
From the foregoing it will of course be understood that, as a relatively slow axial feed movement is imparted to the blank G, the periphery thereof eventually enters into the paths of travel of the projecting roller ribs 17, which initially react thereon to produce a series of gashes g, hereinafter referred to as small increments of groove length, said gashes being spaced about the circumference of the blank, as shown, as a result of the indexing rotation thereof. Thereafter, as the feed and indexing of the blank G continues, these gashes are enlarged and deepened by the repeated rolling action of the successive rollers, as the ribs 17 thereof repeatedly enter and reenter the gashes and penetrate further into the blank. A penetration of maximum radial depth of course is attained when the leading face of the blank arrives at a dead center position immediately beneath the axis A of the carrier head 11. Thereafter, as the feed and indexing rotation of the blank continues, the repeated rolling action of the successive rollers progresses across the face of the blank until the several gashes are enlarged to form slots or grooves of uniform depth and of the desired length, and in this instance extending completely through the blank and conforming essentially to the tooth spaces of a conventional spur gear.
As previously indicated, indexing of the blank G may be effected by either intermittent or continuous rotation, but when the blank is continuously rotated, it is desirable, under some conditions of operation, that compensation be made for such rotation during engagement of the blank with the rollers 10. This is accomplished by a slight modification of the angular relation between the axis A of the head 11 and the axis B of the blank. More particularly, with the head 11 and blank G rotating in the directions indicated in Fig. 1, a slight angular displacement of the axis A in a direction to depress the right end thereof below the plane of the paper will induce each roller to travel tangentially with the rotating blank, as well as across the face of the blank, during its engagement with the blank. This correction angle is readily computed. In an arrangement in which the head 11 makes one complete revolution while the periphery of the blank is rotated through the distance of a single tooth pitch, then this correction angle is an angle whose sine is equal to the tooth pitch divided by the distance travelled by the roller .ribs 17 during onev complete revolution of the head 11.
Since this correction angle is rather small, and since the actual contact between each roller and blank is but momentary, this correction angle may seldom be used except in the production of high precision gears.
It will of course be understood that the above noted correction may be effected by adjusting either the axis A of the head 11 or the axis B of the blank G through the correction angle thus calculated. Also, under some conditions of operation, when such a correction angle is used, it is desirable to also angularly adjust the axes of the individual rollers, so that as each engages the blank G the ribs 17 thereof will lie in planes parallel to the grooves to be rolled.
It will also be understood that the above described process is applicable to the production of several gears in one operation, either by operating in the manner above described on a group of blanks clamped together in coaxial relation, or by operating in a similar manner on an axially'elongated blank and thereafter cutting or otherwise dividing the same into gears of desired face width. The arrangement of parts shown in Fig. 3 is particularly adapted for applying the method last suggested to an axially elongated blank of round bar form.
In the Fig. 3 arrangement the blank, in the form of a bar G, is fed lengthwise between two opposed rotary heads 11, each carrying a set of rollers of a kind and in the same manner as hereinabove described. In this instance the rollers 10 are so disposed as to engage and operate on opposite sides of the blank substantially simultaneously so that each radial thrust imposed on the blank G by each roller of one set is substantially counter-balanced by that imposed by a roller of the other set. It will of course be understood that, as the blank G is advanced lengthwise between the two sets of rollers 10, it is also rotated about its axis at a rate definitely related to the rate of rotation of the heads 11, in much the same manner and for the same purpose as the blank G previously described. This results in the formation on the bar G of a series of longitudinally extending grooves and intermediate ribs whose cross-sectional contour is essentially that of a conventional gear. Gears of desired face width may of course be obtained from the bar thus formed by merely cutting pieces of desired Width from the bar.
The metal rolling methods hereinabove described may be utilized in the production of helical as well as spur gears. In the production of helical gears the rollercarrying head 11 is angularly disposed relative to the blank G so that the angle between the axis B of the blank and plane of rotation of the rollers 10 is equal to the helix angle of the gear to be produced. With the parts thus arranged, the roller-carrier head 11 and the blank G are rotated in definite timed relation and the blank is also fed, preferably along its axis, in substantially the. same manner as previously described. However, when so fed an additional rotation is imparted to the blank. at a rate definitely related to the feed rate of the blank and such that the ribs 17 of the rollers will follow the helix angle of the gear.
It will of course be understood that the angular position of the roller-carrying head may also be modified in the manner hereinabove described to compensate for continued rotation of the blank.
Under some conditions of operation it may be advisable to feed the blank G of Fig. 4 in a direction parallel to the plane of rotation of the rollers 10, and thereby avoid the necessity of imparting the above described additional rotation to the blank.
Various changes may be made in any of the-rolling methods hereinabove specifically described without departing from or sacrificing the advantages of the invention as defined in the appended claims.
We claim:
1. The method of incremently rolling a series of elongated grooves extending lengthwise of a cylindrical surface and spaced around the circumference comprising, applying a rolling force into and out of penetrating rolling engagement with said surface to roll a small increment of groove length into said surface, coupled with rotation of said surface aboutits axis in such timed relation with repeated in and out applications of said rolling force to cause said rolling force to intermittently and succeedingly roll said surface at spaced intervals about its circumference to complete a series of grooves spaced around said circumference each of increment length, and feeding said surface axially to progress said incremental lengths into the length of the desired grooves.
2. The method of incremently rolling a series of elongated grooves extending lengthwise of a cylindrical surface and spaced around the circumference comprising, applying a rolling force into and out of penetrating rolling engagement with said surface, coupled with relative rotation of said surface and said rolling force about the axis of said surface in such timed relation with repeated in and out applications of said rolling force to cause said rolling force to intermittently and succeedingly roll said surface at spaced intervals about its circumference to complete a series of grooves spaced around said circumference each of increment length, and creating a relative feeding between said surface and said force axially of said surface to progress said incremental lengths into the length of the desired grooves.
References Cited in the file of this patent UNITED STATES PATENTS
US226572A 1951-05-16 1951-05-16 Method of groove forming Expired - Lifetime US2715846A (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
US226572A US2715846A (en) 1951-05-16 1951-05-16 Method of groove forming
CH304101D CH304101A (en) 1951-05-16 1952-05-05 Process for profiling metal bodies and device for carrying out this process.
DEG8822A DE1016222B (en) 1951-05-16 1952-05-12 Method and device for producing straight profiles or profiles that run obliquely to the workpiece axis, e.g. of gears, by a rolling process
GB12502/52A GB721054A (en) 1951-05-16 1952-05-16 Process and apparatus for the shaping of metal bodies by rolling
FR1061949D FR1061949A (en) 1951-05-16 1952-05-16 Method for grooving metal bodies and device for applying this method
CH352987D CH352987A (en) 1951-05-16 1955-10-22 Process for profiling metal bodies and device for carrying out this process
DEG20779A DE1034127B (en) 1951-05-16 1956-10-22 Process for generating straight profiles or profiles running parallel to the workpiece axis, e.g. B. of gears, by a rolling process and device for performing this process
FR1163900D FR1163900A (en) 1951-05-16 1956-10-22 Rolling Metal Roll Forming Machine
GB32106/56A GB808865A (en) 1951-05-16 1956-10-22 Profile rolling machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US226572A US2715846A (en) 1951-05-16 1951-05-16 Method of groove forming

Publications (1)

Publication Number Publication Date
US2715846A true US2715846A (en) 1955-08-23

Family

ID=22849454

Family Applications (1)

Application Number Title Priority Date Filing Date
US226572A Expired - Lifetime US2715846A (en) 1951-05-16 1951-05-16 Method of groove forming

Country Status (5)

Country Link
US (1) US2715846A (en)
CH (2) CH304101A (en)
DE (2) DE1016222B (en)
FR (2) FR1061949A (en)
GB (2) GB721054A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2905033A (en) * 1955-04-06 1959-09-22 Grob Benjamin Groove rolling machine
US2991672A (en) * 1958-05-16 1961-07-11 Maag Zahnraeder & Maschinen Ag Machine for the cold form generating of cylindrical workpieces
US3043169A (en) * 1959-05-14 1962-07-10 Michigan Tool Co Apparatus for pressure forming toothed elements
US3094888A (en) * 1957-09-09 1963-06-25 Grob Benjamin Roller tool mounting and driving means
US3096669A (en) * 1958-09-15 1963-07-09 Kent Owens Machine Co Metal forming machine and method
US3137926A (en) * 1957-04-02 1964-06-23 Fairey Eng Formation of fins on metal bar or tube stock
US3141051A (en) * 1960-09-14 1964-07-14 Elm Coated Fabrics Company Inc Method and apparatus for preparing special surface finishes
US3142207A (en) * 1962-04-17 1964-07-28 Grob Benjamin Grooving method and apparatus
US3830087A (en) * 1970-07-01 1974-08-20 Sumitomo Metal Ind Method of making a cross-rifled vapor generating tube
US5659955A (en) * 1994-01-21 1997-08-26 Plamper; Gerhard Method of making powder metal helical gears
US6705949B2 (en) 2001-08-27 2004-03-16 Visteon Global Technologies, Inc. Shaft spline having a straight side tooth profile
US20110083485A1 (en) * 2008-06-09 2011-04-14 Zf Friedrichshafen Ag Roll forming method for producing longitudinally toothed profiled bodies in pot-shaped cylindrical workpieces
CN102500690A (en) * 2011-12-26 2012-06-20 天津天海同步科技股份有限公司 Machining tool for thin-walled rotating body parts and machining equipment employing machining tool

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1175192B (en) * 1959-11-26 1964-08-06 Joachim Pfeiffer Dipl Ing Method and device for ironing strangfoermigem good, z. B. Band
DE2219663A1 (en) * 1972-04-21 1973-10-25 Grob Kaltwalzmasch Ernst ROLLING HEAD FOR COLD ROLLING SPELLED SHAFTS OR GEARS
FR2576228B1 (en) * 1985-01-23 1989-12-01 Escofier Tech Sa METHOD AND DEVICE FOR THE PRODUCTION OF GROOVES ON A REVOLUTION WALL
US5054146A (en) * 1988-12-08 1991-10-08 Videx-Wire Products (Pty.) Limited Anchor bolt
CH687597A5 (en) * 1993-02-25 1997-01-15 Grob Ernst Fa A process for the preparation rack, then prepared rack and device for Verfahrensdurchfuehrung.
DE102007039959B4 (en) 2007-08-23 2013-06-06 Profiroll Technologies Gmbh Method for cold rolling of longitudinal gears and profiles for long shaft-shaped workpieces and profile rolling machine for this purpose
DE102010053547A1 (en) * 2010-12-04 2012-06-06 Form Technology Gmbh Method and device for producing an internally and externally toothed cup-shaped sheet metal part
DE102011011886B4 (en) * 2011-02-21 2012-12-27 Profiroll Technologies Gmbh Method for compacting the surface of sintered metal components
DE102012024030A1 (en) 2012-12-10 2014-06-12 Profiroll Technologies Gmbh Device useful for compression and calibration of sintered metal component, preferably sintered metal cams, comprises five compression tools, which are arranged and driven in a common plane
CN105436327B (en) * 2014-08-12 2018-02-02 博世华域转向系统(烟台)有限公司 A kind of lower steering spindle spline riveting device of steering column

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US58134A (en) * 1866-09-18 Improvement in machines for making screws
US74570A (en) * 1868-02-18 Improved peooess of eoliing hoes
US97691A (en) * 1869-12-07 Improved machine for swaging threads on screws
US857576A (en) * 1906-08-13 1907-06-25 George A Bates Machine for raising flutes on drawing and other rolls.
US989643A (en) * 1908-10-30 1911-04-18 Tubes Ltd Manufacture of metal tubes or the like.
US1017569A (en) * 1910-10-19 1912-02-13 Cyrus Lewis Sr Riffling-machine.
US1128613A (en) * 1912-06-29 1915-02-16 Frederick William Lanchester Apparatus for cutting worm-gear.
US1499534A (en) * 1922-06-05 1924-07-01 John A Katzenmeyer Reducing cylindrical bodies
US1545070A (en) * 1921-09-23 1925-07-07 Niles Bementpond Co Process of generating gears
US1580975A (en) * 1924-01-03 1926-04-13 Retterath Valentin Device for making corrugated cylinders
US1887510A (en) * 1931-03-28 1932-11-15 Curtis E Honeycutt Method and means for refluting textile rolls
US1929987A (en) * 1930-06-09 1933-10-10 Alice F Mead Rod reducing apparatus
US2565780A (en) * 1946-04-26 1951-08-28 Nat Tube Co Roller die
US2645954A (en) * 1949-03-30 1953-07-21 Servel Inc Thread forming method and apparatus

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE295561C (en) *
CH46879A (en) * 1909-04-24 1910-06-01 Raoul Petite Machine for clamping strands of a flexible attachment part in a metal mass
CH52298A (en) * 1910-02-14 1911-11-01 Mannesmann Ag Rolling mill with work rolls moving in closed orbits
CH52216A (en) * 1910-02-14 1911-11-01 Mannesmann Ag Rolling mill with work rolls moving in closed orbits
CH50733A (en) * 1910-02-14 1911-06-16 Mannesmann Ag Rolling mill with work rolls moving in closed orbits
FR477486A (en) * 1913-08-28 1915-10-22 Harold Napier Anderson Manufacturing process of toothed wheels
US1964746A (en) * 1932-06-09 1934-07-03 Francis P Sloan Floor roughing machine
NL59098C (en) * 1942-01-16
NL66860C (en) * 1942-09-04

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US58134A (en) * 1866-09-18 Improvement in machines for making screws
US74570A (en) * 1868-02-18 Improved peooess of eoliing hoes
US97691A (en) * 1869-12-07 Improved machine for swaging threads on screws
US857576A (en) * 1906-08-13 1907-06-25 George A Bates Machine for raising flutes on drawing and other rolls.
US989643A (en) * 1908-10-30 1911-04-18 Tubes Ltd Manufacture of metal tubes or the like.
US1017569A (en) * 1910-10-19 1912-02-13 Cyrus Lewis Sr Riffling-machine.
US1128613A (en) * 1912-06-29 1915-02-16 Frederick William Lanchester Apparatus for cutting worm-gear.
US1545070A (en) * 1921-09-23 1925-07-07 Niles Bementpond Co Process of generating gears
US1499534A (en) * 1922-06-05 1924-07-01 John A Katzenmeyer Reducing cylindrical bodies
US1580975A (en) * 1924-01-03 1926-04-13 Retterath Valentin Device for making corrugated cylinders
US1929987A (en) * 1930-06-09 1933-10-10 Alice F Mead Rod reducing apparatus
US1887510A (en) * 1931-03-28 1932-11-15 Curtis E Honeycutt Method and means for refluting textile rolls
US2565780A (en) * 1946-04-26 1951-08-28 Nat Tube Co Roller die
US2645954A (en) * 1949-03-30 1953-07-21 Servel Inc Thread forming method and apparatus

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2905033A (en) * 1955-04-06 1959-09-22 Grob Benjamin Groove rolling machine
US3137926A (en) * 1957-04-02 1964-06-23 Fairey Eng Formation of fins on metal bar or tube stock
US3094888A (en) * 1957-09-09 1963-06-25 Grob Benjamin Roller tool mounting and driving means
US2991672A (en) * 1958-05-16 1961-07-11 Maag Zahnraeder & Maschinen Ag Machine for the cold form generating of cylindrical workpieces
US3032871A (en) * 1958-05-16 1962-05-08 Maag Zahnraeder & Maschinen Ag Method for the cold form generating of cylindrical workpieces
US3096669A (en) * 1958-09-15 1963-07-09 Kent Owens Machine Co Metal forming machine and method
US3043169A (en) * 1959-05-14 1962-07-10 Michigan Tool Co Apparatus for pressure forming toothed elements
US3141051A (en) * 1960-09-14 1964-07-14 Elm Coated Fabrics Company Inc Method and apparatus for preparing special surface finishes
US3142207A (en) * 1962-04-17 1964-07-28 Grob Benjamin Grooving method and apparatus
US3830087A (en) * 1970-07-01 1974-08-20 Sumitomo Metal Ind Method of making a cross-rifled vapor generating tube
US5659955A (en) * 1994-01-21 1997-08-26 Plamper; Gerhard Method of making powder metal helical gears
US6705949B2 (en) 2001-08-27 2004-03-16 Visteon Global Technologies, Inc. Shaft spline having a straight side tooth profile
US20110083485A1 (en) * 2008-06-09 2011-04-14 Zf Friedrichshafen Ag Roll forming method for producing longitudinally toothed profiled bodies in pot-shaped cylindrical workpieces
US8539806B2 (en) * 2008-06-09 2013-09-24 Zf Friedrichshafen Ag Roll forming method for producing longitudinally toothed profiled bodies in pot-shaped cylindrical workpieces
CN102500690A (en) * 2011-12-26 2012-06-20 天津天海同步科技股份有限公司 Machining tool for thin-walled rotating body parts and machining equipment employing machining tool

Also Published As

Publication number Publication date
GB721054A (en) 1954-12-29
CH352987A (en) 1961-03-31
DE1034127B (en) 1958-07-17
FR1163900A (en) 1958-10-02
FR1061949A (en) 1954-04-16
DE1016222B (en) 1957-09-26
GB808865A (en) 1959-02-11
CH304101A (en) 1954-12-31

Similar Documents

Publication Publication Date Title
US2715846A (en) Method of groove forming
CH647704A5 (en) METHOD AND DEVICE FOR MACHINING A SNAIL-SHAPED WORKPIECE WITH A SNAIL-SHAPED TOOL.
US3032871A (en) Method for the cold form generating of cylindrical workpieces
US1642179A (en) Method for finishing gear teeth
US2906147A (en) Roll for forming toothed elements
US4089090A (en) Arrangement for perforating a stripe
US3323339A (en) Method and apparatus for corrugating tubes
US2081639A (en) Method of and apparatus for face milling
ES428507A1 (en) Method and machine for rolling threads or the like
DE1905949C2 (en) Device for transverse rolling of bodies of revolution
US2661526A (en) Method of making fin tubing
US2934980A (en) Metal rolling machine
US2360235A (en) Grinding machine
US2690089A (en) Apparatus for forming screw threads
US3281925A (en) Method and apparatus for forming toothed parts
US2250593A (en) Method and machine for cutting openings in metal ribbons or the like
EP2527072B1 (en) Method for hob peeling external gears and device with hop peeling tool
US3352138A (en) Tool for forming toothed parts
US2200584A (en) Method of simultaneously finishing cluster gears
US2416296A (en) Apparatus for and method of cutting spiral grooves in grooved rolls
US2405159A (en) Method and machine for finishing the teeth of gear shaving cutters and the like
US3142207A (en) Grooving method and apparatus
US1384543A (en) Gearing
US1832507A (en) Machine for profiling gear teeth
US1922757A (en) Method of and means for producing gears