EP0192580A1 - Amplificateur de pression hydraulique - Google Patents

Amplificateur de pression hydraulique Download PDF

Info

Publication number
EP0192580A1
EP0192580A1 EP86420006A EP86420006A EP0192580A1 EP 0192580 A1 EP0192580 A1 EP 0192580A1 EP 86420006 A EP86420006 A EP 86420006A EP 86420006 A EP86420006 A EP 86420006A EP 0192580 A1 EP0192580 A1 EP 0192580A1
Authority
EP
European Patent Office
Prior art keywords
cylinder
piston
annular chamber
section
hydraulic pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP86420006A
Other languages
German (de)
English (en)
Inventor
Jean-Claude Simon Barthomeuf
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
EIMCO-SECOMA
Eimco Secoma SA
Original Assignee
EIMCO-SECOMA
Eimco Secoma SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by EIMCO-SECOMA, Eimco Secoma SA filed Critical EIMCO-SECOMA
Publication of EP0192580A1 publication Critical patent/EP0192580A1/fr
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B9/00Piston machines or pumps characterised by the driving or driven means to or from their working members
    • F04B9/08Piston machines or pumps characterised by the driving or driven means to or from their working members the means being fluid
    • F04B9/10Piston machines or pumps characterised by the driving or driven means to or from their working members the means being fluid the fluid being liquid
    • F04B9/109Piston machines or pumps characterised by the driving or driven means to or from their working members the means being fluid the fluid being liquid having plural pumping chambers
    • F04B9/111Piston machines or pumps characterised by the driving or driven means to or from their working members the means being fluid the fluid being liquid having plural pumping chambers with two mechanically connected pumping members
    • F04B9/113Piston machines or pumps characterised by the driving or driven means to or from their working members the means being fluid the fluid being liquid having plural pumping chambers with two mechanically connected pumping members reciprocating movement of the pumping members being obtained by a double-acting liquid motor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L25/00Drive, or adjustment during the operation, or distribution or expansion valves by non-mechanical means
    • F01L25/02Drive, or adjustment during the operation, or distribution or expansion valves by non-mechanical means by fluid means
    • F01L25/04Drive, or adjustment during the operation, or distribution or expansion valves by non-mechanical means by fluid means by working-fluid of machine or engine, e.g. free-piston machine
    • F01L25/06Arrangements with main and auxiliary valves, at least one of them being fluid-driven
    • F01L25/066Arrangements with main and auxiliary valves, at least one of them being fluid-driven piston or piston-rod being used as auxiliary valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03CPOSITIVE-DISPLACEMENT ENGINES DRIVEN BY LIQUIDS
    • F03C1/00Reciprocating-piston liquid engines
    • F03C1/007Reciprocating-piston liquid engines with single cylinder, double-acting piston
    • F03C1/0073Reciprocating-piston liquid engines with single cylinder, double-acting piston one side of the double-acting piston being always under the influence of the liquid under pressure

Definitions

  • the present invention relates to a hydraulic pressure booster, that is to say an apparatus receiving its energy from a hydraulic fluid under pressure, called “primary fluid”, and transferring this energy to another hydraulic fluid, called “secondary fluid ", so as to obtain a flow rate of this other fluid under a pressure greater than that of the primary fluid.
  • primary fluid a hydraulic fluid under pressure
  • secondary fluid another hydraulic fluid
  • the invention relates to a pressure amplifier capable of providing a permanent flow of water under high pressure, usable in applications such as the drilling of rocks or the cutting of other materials, either in assistance of mechanical means , or in the form of a cutting jet used alone.
  • Hydraulic pressure amplifiers are also known, making it possible to reach higher water pressures, of the order of 4,000 bars, the principle of which is as follows: a piston is slidably mounted in a cylinder, forming a share and on the other side of the piston two chambers in which oil under pressure is admitted alternately.
  • the piston is extended, on its two opposite faces, by two plungers which slide in respective cylindrical chambers, each comprising an inlet and a outlet for water.
  • the reciprocating movement of the piston under the effect of the thrust of the oil constituting the primary fluid, is accompanied by alternating displacements of the two plungers in the corresponding chambers, ensuring the pressurization of the water constituting the secondary fluid.
  • the pressure thus obtained for this secondary fluid is multiple of that of the primary fluid, the ratio of pressures being equal to the ratio of the section of the piston to the section of the plungers. This ratio can be of the order of 10 to 20.
  • the object of the present invention is to simplify these devices, by a total elimination of all limit switches and by arrangements allowing autonomous operation, without auxiliary organs, controlling the supply of primary fluid to the chambers of the cylinder in which slides the piston being made from the movements of the piston itself, this by purely hydraulic means.
  • the hydraulic pressure booster essentially comprises a stepped piston slidably mounted inside a cylinder so as to form a first annular chamber, of smaller section, permanently connected to a supply. of a primary fluid under pressure, and a second annular chamber, of larger section, connected to a control valve with differential section slide, putting said second annular chamber in communication alternately with the supply of primary fluid under pressure and with a return pipe for this fluid, the control of the control valve being ensured by the primary fluid by means of a single pipe whose outlet in the cylinder is alternately uncovered and masked by the piston, this piston being extended along its axis , at its two ends, by two plungers of smaller section penetrating respectively into two chambers connected, by means of valves, with arrivals and departures of a secondary fluid.
  • the primary fluid the energy of which is transmitted to the piston, also ensures the control of the control valve, the operation being entirely hydraulic so that all mechanical or electrical means for detecting the end of travel and for control become unnecessary.
  • the piston moving in one direction reaches one of its end-of-travel positions, it automatically causes the valve of the control valve to move, modifying the hydraulic connections so as to cause the piston to move in the opposite direction.
  • the piston thus describes a back-and-forth movement which maintains itself, and the two plungers of section smaller than the section of the piston itself cause the pressurization of the secondary fluid. re, one diver in two is still in action.
  • the piston proper and the two plungers extending it at its ends, form a one-piece structure, in which the plungers can also contribute to the delimitation of the annular chambers.
  • the piston has a cylindrical part of intermediate diameter, around which the first annular chamber of the cylinder is formed, of smaller section, and a cylindrical part of small diameter, around which the second chamber is formed. annular of the cylinder, of larger section.
  • the section of the first annular chamber of the cylinder is equal to half the section of the second annular chamber of the cylinder, which makes it possible to obtain equal thrusts and in opposite directions on the piston: in its first direction of displacement, obtained when only the first annular chamber of the cylinder is connected to the supply of primary fluid under pressure, and in its second direction of movement, obtained when the two annular chambers of the cylinder are connected to the supply of primary fluid under pressure .
  • the operation is perfectly “symmetrical” which makes it possible to obtain the same pressure of the secondary fluid, in the "go" movement and in the "return” movement of the piston (the sections of the two plungers being of course equal) .
  • the cylindrical part of larger diameter of the piston has an annular groove
  • the wall of the cylinder has an orifice connected to the return pipe of the primary fluid and located in such a way that, in an end of travel position of the piston, communication is established between the pilot valve control conduit and said return conduit.
  • the control valve advantageously comprises a drawer having two intermediate spans of relatively large section and two ends of smaller sections, the drawer being slidably mounted in a cavity forming, around the drawer, three annular distribution chambers connected respectively to the supply of primary fluid under pressure, to the return duct of this fluid and to the second annular chamber, of larger section, of the cylinder, as well as a fourth annular chamber connected to the cylinder by the pilot duct, the valve putting the third chamber distribution in communication, depending on the position of the drawer, either with the first distribution chamber or with the second distribution chamber.
  • the valve of the control valve has two ends of separate sections, slidably mounted in two respective cylindrical chambers of corresponding sections, into which the primary fluid under pressure is permanently admitted, for example by providing an axial passage extending from one end to the other of the drawer and communicating, by a nozzle, with the lateral surface of this drawer, at the level of the first distribution chamber.
  • the slide is pushed to a position determined by the pressure of the primary fluid acting on its two ends, when the pilot chamber is not pressurized.
  • a single pilot hole in the cylinder is sufficient, allowing the pilot chamber to be pressurized, to move the piston to its other position.
  • the control conduit of the control valve is advantageously connected, permanently, to an accumulator making it possible to maintain the control chamber under pressure during the entire stroke of the piston, by compensating for internal leaks.
  • Another accumulator can be connected to the first annular chamber of the cylinder, permanently, and to the second annular chamber of the cylinder when the latter is placed in communication with the supply of primary fluid under pressure by the control valve; this second accumulator dampens the movements of the piston at the end of the stroke, and restores energy to the piston when it starts again in the opposite direction.
  • It can also be formed, around the piston and / or the plungers, between the cylinder and the two chambers into which the plungers penetrate, two auxiliary annular chambers with outlets, avoiding any mixing of the primary fluid and the secondary fluid.
  • the outlets of the two chambers supplied with this fluid, into which the two plungers respectively penetrate, are united in a single conduit from which an accumulator is provided. This gives a substantially constant flow of secondary fluid under high pressure, substantially constant, which can be directed to the place of use of this secondary fluid.
  • a first cylindrical chamber (2) is formed, in communication with a first water inlet orifice (3) and with a first water outlet orifice (4 ).
  • a second cylindrical chamber (5) is provided at the opposite end of the body (1), in commu- nica t ion with a second water inlet (6) and a second water outlet ( 7), the arrangement being symmetrical with respect to that of the first end.
  • Supply valves (8,9) are placed between each water inlet orifice (3,6) and the corresponding cylindrical chamber (2,5).
  • Discharge valves (10,11) are placed between each cylindrical chamber (2,5) and the corresponding water outlet orifice (4,7).
  • the two water outlet orifices (4,7) are connected, by respective conduits (12,13), from a single conduit (14) directed towards the place of use of the water under high pressure .
  • An accumulator (15) is provided at the start of this latter conduit (1 4 ).
  • the two cylindrical chambers (2,5) are of the same section and arranged along the same axis (16).
  • a cylinder (17) of larger section is hollowed out in the body (1), along this axis (16), between the two cylindrical chambers (2,5).
  • Inside the cylinder (17) is slidably mounted, in the direction of the axis (16), a piston (18) extended, at its ends, by two opposite plungers (19,20), the piston (18) and the plungers (19,20) forming a one-piece structure.
  • the first plunger (19) enters the first cylindrical chamber (2).
  • the second plunger (20) enters the second cylindrical chamber (5).
  • the piston (18) has a stepped shape, with a cylindrical part (20a) of small diameter, a cylindrical part (21) of intermediate diameter and another cylindrical part (22) of larger diameter, in which an annular groove is hollowed out. (23).
  • This conformation of the piston (18) defines inside the cylinder (17), a first annular chamber (24) of section (SI), located around the part (21), and a second annular chamber (25) of section (S2 ), located around part (20a).
  • the two plungers (19,20) are of the same section, much smaller than the previous sections (S1, S2) and can be equal to that of the cylindrical part (20a).
  • an auxiliary annular chamber (28), with evacuation orifice (29), avoiding any mixing of fluids.
  • An auxiliary annular chamber (30) with the same function as the previous one, although of smaller dimensions, is also formed between the cylinder (17) and the second cylindrical chamber (5).
  • the cylinder (17) is designed to receive a hydraulic fluid called "primary fluid", such as oil, capable of causing the reciprocating movement of the piston (18).
  • the first annular chamber (24), of section (S1) is permanently connected to an inlet for pressurized oil (at 31), by a conduit (32) which opens into the chamber considered (24).
  • the second annular chamber (25), of section (S2) is connected either with the arrival of oil under pressure (at 31), or with the departure of the oil towards the reservoir (at 33), this via a control valve (34).
  • the control valve (34) comprises a drawer (35) slidably mounted in a body cavity (1), forming around the drawer (35) three coaxial annular distribution chambers (36,37,38).
  • a first distribution chamber (36) is connected by a channel (39) to a point in the conduit (32) for supplying pressurized oil.
  • a second distribution chamber (37) is connected, by a return pipe (40), to the flow of oil to the tank (at 33).
  • a third distribution chamber (38), located between the two preceding ones (36,37), is connected by a channel (41) to the second annular chamber (25), of section (52), of the cylinder (17).
  • the drawer (35) has two intermediate spans of large section (S). It has an end of small section (S '), sliding in a cylindrical chamber (42). Its other end, of section (S ") intermediate between the preceding sections (S and S '), slides in a cylindrical chamber (43).
  • the drawer (35) still has a passage axial (44) which extends from one end to the other of this drawer (35) and which communicates, by a lateral nozzle (45), with the lateral surface of this drawer, at the level of the first distribution chamber (36).
  • annular chamber (46) Around the first end of the slide (35) is also formed an annular chamber (46), put in communication with the cylinder (17) by a pilot duct (47) starting from a pilot orifice ( 4 8) located in an intermediate point of the length of the cylinder (17).
  • pilot orifice ( 4 8) located in an intermediate point of the length of the cylinder (17).
  • Another orifice (49) of the cylinder (17) close to the previous one, constitutes the starting point of a channel (50) which meets the return duct (40).
  • first accumulator (53) being in connection with the cylinder (17), and with the pilot duct (47), and the second accumulator (54) being in connection with the conduit (32) for supplying pressurized oil, here via the first distribution chamber (36) and the channel (39).
  • the axial passage (44) and the lateral nozzle (45) of the drawer (35) ensure the permanent presence of oil under pressure in the two cylindrical chambers (42,43) housing the ends of the drawer (35). If the annular chamber (46) is connected at the reservoir, the slide (35) is subjected to a first thrust, due to the oil pressure in the chamber (42) acting on the section (S '), and to a second thrust in the opposite direction, due to the oil pressure in the chamber ( 4 , 3) being exerted on the section (S ").
  • the section- (S") being greater than the section (S '), the result of the two thrusts considered is a force oriented to the left.
  • the piston (18) moves from left to right, the second annular chamber (25) of the cylinder (17) being connected to the reservoir taking into account the position of the drawer (35) of the valve (34), position determined by the fact that the annular chamber (46) is also connected to the reservoir.
  • Pressurizing the second annular chamber (25) then causes the piston (18) to move to the right.
  • the pilot orifice (48) is masked by the cylindrical part (22) of the piston (18), so that the drawer (35) of the valve (34) remains in its position indicated in the figure 1.
  • the drawer (35) is thus pushed to the left (position indicated in Figure 2).
  • the position of the two intermediate spans of the drawer (35) then becomes such that the second distribution chamber (37) is placed in direct communication with the third distribution chamber (3S), while the first distribution chamber (36) is isolated from the third distribution chamber (38).
  • the second annular chamber (25) of the cylinder (17) is connected with the flow of oil to the reservoir (at 33), this through the channel (41), of the third chamber distribution (38), the second distribution chamber (37) and the return duct (40).
  • This water is for example used to obtain a cutting jet, in mining applications such as rock drilling, either carried out entirely by a water jet, or only assisted by a water jet.
  • the accumulator (53) which is always in relation to the pilot duct (47), makes it possible to stabilize the pressure in the annular chamber (46), and avoids any influence of internal oil leaks on the piloting of the valve (34).
  • This accumulator (53) allows the piston (18) to describe a relatively large stroke at a relatively low speed.
  • the accumulator (54) its function is to dampen the movement of the piston when approaching the end positions of the left and right, by accumulating energy and restoring it again.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Supply Devices, Intensifiers, Converters, And Telemotors (AREA)
  • Reciprocating Pumps (AREA)

Abstract

Un piston étagé (18) est monté coulissant dans un cylindre (17) de manière à former une première chambre annulaire (24), reliée en permanence à une amenée de fluide primaire sous pression (31, 32), et une seconde chambre annulaire (25) de plus grande section. Une valve de commande (34), avec tiroir à sections différentielles (35), met la seconde chambre (25) en communication alternativement avec l'amenée de fluide primaire sous pression (31, 32) et avec un conduit de retour (40). La valve (34) est pilotée par le fluide primaire, au moyen d'un conduit (47) partant du cylindre (17). Le piston (18) est prolongé par deux plongeurs opposés (19, 20) qui pénètrent dans deux chambres (2, 5) mises en relation avec des arrivées (3,6) et des départs (4, 7, 12, 13, 14) d'un fluide secondaire. Application à la fourniture d'eau sous haute pression, pour la foration de roches.

Description

  • La présente invention concerne un amplificateur de pression hydraulique, c'est-à-dire un appareil recevant son énergie d'un fluide hydraulique sous pression, dit "fluide primaire", et transférant cette énergie à un autre fluide hydraulique, dit "fluide secondaire", de manière à obtenir un débit de cet autre fluide sous une pression supérieure à celle du fluide primaire.
  • Plus particulièrement, l'invention se rapporte à un amplificateur de pression capable de fournir un débit permanent d'eau sous haute pression, utilisable dans des applications telles que la foration de roches ou le découpage d'autres matériaux, soit en assistance de moyens mécaniques, soit sous la forme d'un jet coupant utilisé seul.
  • Des pressions d'eau relativement élevées peuvent être obtenues au moyen de pompes à pistons, entraînées mécaniquement. Ces pompes conservent des inconvénients : la pression reste limitée à des valeurs inférieures à 2 500 bars, les pompes en question sont des machines très volumineuses et très coûteuses, et elles manquent de souplesse d'utilisation ; en particulier, leur vitesse est constante de sorte qu'elles fournissent un débit constant, sauf si elles sont pourvues d'un équipement spécial.
  • On connaît par ailleurs des amplificateurs de pression hydraulique, permettant d'atteindre des pressions d'eau plus élevées, de l'ordre de 4 000 bars, dont le principe est le suivant : un piston est monté coulissant dans un cylindre, formant de part et d'autre du piston deux chambres dans lesquelles est admise alternativement de l'huile sous pression. Le piston est prolongé, sur ses deux faces opposées, par deux plongeurs qui coulissent dans des chambres cylindriques respectives, comportant chacune une arrivée et un départ d'eau. Le mouvement alternatif du piston, sous l'effet de la poussée de l'huile constituant le fluide primaire, s'accompagne de déplacements alternatifs des deux plongeurs dans les chambres correspondantes, assurant la mise en pression de l'eau constituant le fluide secondaire. La pression ainsi obtenue pour ce fluide secondaire est multiple de celle du .fluide primaire, le rapport des pressions étant égal au rapport de la section du piston à la section des plongeurs. Ce rapport peut être de l'ordre de 10 à 20.
  • Dans un tel amplificateur de pression, il convient d'alimenter en huile sous pression alternativement les deux chambres du cylindre, en inversant l'alimentation à chaque fois que le piston parvient en fin de course et doit repartir en sens inverse. Les appareils de ce genre actuels utilisent, pour cette fonction, des capteurs mécaniques ou électriques de fin de course du piston, à partir desquels sont commandés des valves ou distributeurs assurant l'alimentation des chambres du cylindre.
  • Le but de la présente invention est de simplifier ces appareils, par une suppression totale de tous détecteurs de fin de course et par des aménagements permettant un fonctionnement autonome, sans organes auxiliaires, la commande de l'alimentation en fluide primaire des chambres du cylindre dans lesquelles coulisse le piston se faisant à partir des mouvements du piston lui-même, ceci par des moyens purement hydrauliques.
  • A cet effet, l'amplificateur de pression hydraulique selon la présente invention comprend essentiellement un piston étagé monté coulissant .à l'intérieur d'un cyclindre de manière à former une première chambre annulaire, de plus petite section, reliée en permanence à une amenée d'un fluide primaire sous pression, et une seconde chambre annulaire, de plus grande section, reliée à une valve de commande avec tiroir à sections différentielles, mettant ladite seconde chambre annulaire en communication alternativement avec l'amenée de fluide primaire sous pression et avec un conduit de retour de ce fluide, le pilotage de la valve de commande étant assuré par le fluide primaire au moyen d'un conduit unique dont le débouché dans le cylindre est alternativement découvert et masqué par le piston, ce piston étant prolongé suivant son axe, à ses deux extrémités, par deux plongeurs de plus petite section pénétrant respectivement dans deux chambres mises en relation, par l'intermédiaire de clapets, avec des arrivées et des départs d'un fluide secondaire.
  • Ainsi le fluide primaire, dont l'énergie est transmise au piston, assure aussi le pilotage de la valve de commande, le fonctionnement étant entièrement hydraulique de sorte que tous moyens mécaniques ou électriques de détection de fin de course et de commande deviennent inutiles. Lorsque le piston se déplaçant dans un sens parvient vers l'une de ses positions de fin de course, il provoque automatiquement un déplacement du tiroir de la valve de commande, modifiant les branchements hydrauliques de manière à provoquer le déplacement du piston en sens inverse. Le piston décrit ainsi un mouvement de va-et-vient qui s'entretient lui-même, et les deux plongeurs de section inférieure à la section du piston proprement dit provoquent la mise en pression du fluide secondaire, un plongeur sur deux étant toujours en action.
  • Avantageusement, le piston proprement dit, et les deux plongeurs le prolongeant à ses extrémités, forment une structure monobloc, dans laquelle les plongeurs peuvent aussi contribuer à la délimitation des chambres annulaires. Dans un mode de réalisation particulier, le piston présente une partie cylindrique de diamètre intermédiaire, autour de laquelle est formée la première chambre annulaire du cylindre, de plus petite section, et une partie cylindrique de petit diamètre, autour de laquelle est formée la seconde chambre annulaire du cylindre, de plus grande section.
  • De préférence, la section de la première chambre annulaire du cylindre est égale à la moitié de la section de la seconde chambre annulaire du cylindre, ce qui permet d'obtenir des poussées égales et de sens opposés sur le piston : dans son premier sens de déplacement, obtenu lorsque seule la première chambre annulaire du cylindre est reliée à l'amenée de fluide primaire sous pression, et dans son second sens de déplacement, obtenu lorsque les deux chambres annulaires du cylindre sont reliées à l'amenée de fluide primaire sous pression. De cette manière, le fonctionnement est parfaitement "symétrique" ce qui permet d'obtenir la même pression du fluide secondaire, dans le mouvement "aller" et dans le mouvement "retour" du piston (les sections des deux plongeurs étant bien entendu égales).
  • Selon une autre caractéristique, la partie cylindrique de plus grand diamètre du piston comporte une gorge annulaire, et la paroi du cylindre comporte un orifice relié au conduit de retour du fluide primaire et situé de telle manière que, dans une position de fin de course du piston, une communication s'établisse entre le conduit de pilotage de la valve de commande et ledit conduit de retour.
  • La valve de commande comprend avantageusement un tiroir possédant deux portées intermédiaires de relativement grande section et deux extrémités de plus petites sections, le tiroir étant monté coulissant dans une cavité formant, autour du tiroir, trois chambres de distribution annulaires reliées respectivement à l'amenée de fluide primaire sous pression, au conduit de retour de ce fluide et à la seconde chambre annulaire, de plus grande section, du cylindre, ainsi qu'une quatrième chambre annulaire reliée au cylindre par le conduit de pilotage, la valve mettant la troisième chambre de distribution en communication, selon la position du tiroir, soit avec la première chambre de distribution, soit avec la deuxième chambre de distribution.
  • De préférence, le tiroir de la valve de commande possède deux extrémités de sections distinctes, montées coulissantes dans deux chambres cylindriques respectives de sections correspondantes, dans lesquelles est admis en permanence le fluide primaire sous pression, par exemple en prévoyant un passage axial s'étendant d'une extrémité à l'autre du tiroir et communiquant, par un ajutage, avec la surface latérale de ce tiroir, au niveau de la première chambre de distribution. Par l'effet des sections différentielles, le tiroir est poussé vers une position déterminée par la pression du fluide primaire s'exerçant sur ses deux extrémités, lorsque la chambre de pilotage n'est pas mise sous pression. Il suffit d'un seul orifice de pilotage dans le cylindre, permettant la mise en pression de la chambre de pilotage, pour déplacer le piston vers son autre position. Le conduit de pilotage de la valve de commande est avantageusement relié, de manière permanente, à un accumulateur permettant de maintenir la chambre de pilotage sous pression pendant toute la course du piston, en compensant les fuites internes.
  • Un autre accumulateur peut être relié à la première chambre annulaire du cylindre, de manière permanente, et à la seconde chambre annulaire du cylindre lorsque celle-ci est mise en communication avec l'amenée de fluide primaire sous pression par la valve de commande ; ce deuxième accumulateur amortit les mouvements du piston en fin de course, et restitue de l'énergie au piston au moment à celui-ci repart en sens inverse.
  • Il peut encore être formé, autour du piston et/ou des plongeurs, entre le cylindre et les deux chambres dans lesquelles pénètrent les plongeurs, deux chambres annulaires auxiliaires avec évacuations, évitant tout mélange du fluide primaire et du fluide secondaire.
  • En ce qui concerne le circuit de fluide secondaire, les départs des deux chambres alimentées avec ce fluide, dans lesquelles pénètrent respectivement les deux plongeurs, sont réunis en un conduit unique au départ duquel est prévu un accumulateur. On obtient ainsi un débit sensiblement constant de fluide secondaire sous haute pression, sensiblement constante, qui peut être dirigé vers le lieu d'utilisation de ce fluide secondaire.
  • De toute façon, l'invention sera mieux comprise à l'aide de la description qui suit, en référence au dessin schématique annexé représentant, à titre d'exemple non limitatif, une forme d'exécution de cet amplificateur de pression hydraulique :
    • Figure 1 est une vue en coupe longitudinale d'un amplificateur de pression conforme à l'invention, le piston étant indiqué dans l'une de ses positions de fin de course ;
    • Figure 2 est une vue en coupe longitudinale similaire à figure l, mais avec le piston indiqué dans son autre position de fin de course.
  • L'amplificateur de pression hydraulique représenté au dessin est appliqué à la fourniture d'un débit d'eau sous haute pression. A une extrémité du corps (1) de l'appareil, est ménagée une première chambre cylindrique (2), en communication avec un premier orifice d'entrée d'eau (3) et avec un premier orifice de sortie d'eau (4). A l'extrémité opposée du corps (1) est ménagée une seconde chambre cylindrique (5), en commu- nication avec un second orifice d'entrée d'eau (6) et avec un second orifice de sortie d'eau (7), la disposition étant symétrique par rapport à celle de la première extrémité. Des clapets d'alimentation (8,9) sont placés entre chaque orifice d'entrée d'eau (3,6) et la chambre cylindrique correspondante (2,5). Des clapets de refoulement (10,11) sont placés entre chaque chambre cylindrique (2,5) et l'orifice de sortie d'eau correspondante (4,7). Les deux orifices de sortie d'eau (4,7) sont raccordés, par des conduits respectifs (12,13), au départ d'un conduit unique (14) dirigé vers le lieu d'utilisation de l'eau sous haute pression. Un accumulateur (15) est prévu au départ de ce dernier conduit (14).
  • Les deux chambres cylindriques (2,5) sont de même section et disposées suivant un même axe (16). Un cylindre (17) de section plus importante est creusé dans le corps (1), suivant cet axe (16), entre les deux chambres cylindriques (2,5). A l'intérieur du cylindre (17) est monté coulissant, suivant la direction de l'axe (16), un piston (18) prolongé, à ses extrémités, par deux plongeurs opposés (19,20), le piston (18) et les plongeurs (19,20) formant une structure monobloc. Le premier plongeur (19) pénètre dans la première chambre cylindrique (2). D'une manière symétrique, le second plongeur, (20) pénètre dans la seconde chambre cylindrique (5).
  • Le piston (18) présente une forme étagée, avec une partie cylindrique (20a) de petit diamètre, une partie cylindrique (21) de diamètre intermédiaire et une autre partie cylindrique (22) de plus grand diamètre, dans laquelle est creusée une gorge annulaire (23). Cette conformation du piston (18) définit à l'intérieur du cylindre (17), une première chambre annulaire (24) de section (SI), située autour de la partie (21), et une deuxième chambre annulaire (25) de section (S2), située autour de la partie (20a). Les deux plongeurs (19,20) sont de même section, beaucoup plus petite que les sections précédentes (S1,S2) et pouvant être égale à celle de la partie cylindrique (20a).
  • Entre le cylindre (17) et la première chambre cylindrique (2), et plus particulièrement entre deux joints d'étanchéité (26,27), est encore formée une chambre annulaire auxiliaire (28), avec orifice d'évacuation (29), évitant tout mélange des fluides. Une chambre annulaire auxiliaire (30) de même fonction que la précédente, bien que de dimensions plus petites, est formée aussi entre le cylindre (17) et la seconde chambre cylindrique (5).
  • . Le cylindre (17) est prévu pour recevoir un fluide hydraulique dit "fluide primaire", tel que de l'huile, apte à provoquer le déplacement alternatif du piston (18). La première chambre annulaire (24), de section (Sl), est raccordée de façon permanente à une arrivée d'huile sous pression (en 31), par un conduit (32) qui débouche dans la chambre considérée (24). La deuxième chambre annulaire (25), de section (S2), est mise en relation soit avec l'arrivée d'huile sous pression (en 31), soit avec le départ de l'huile vers le réservoir (en 33), ceci par l'intermédiaire d'une valve de commande (34).
  • La valve de commande (34) comprend un tiroir (35) monté coulissant dans une cavité du corps (1), formant autour du tiroir (35) trois chambres de distribution annulaires coaxiales (36,37,38). Une première chambre de distribution (36) est reliée par un canal (39) à un point du conduit (32) d'amenée d'huile sous pression. Une deuxième chambre de distribution (37) est reliée, par un conduit de retour (40), au départ d'huile vers le réservoir (en 33). Une troisième chambre de distribution (38), située entre les deux précédentes (36,37), est reliée par un canal (41) à la deuxième chambre annulaire (25), de section (52), du cylindre (17). ,
  • Le tiroir (35) possède deux portées intermédiaires de grande section (S). Il comporte une extrémité de petite section (S'), coulissant dans une chambre cylindrique (42). Son autre extrémité, de section (S") intermédiaire entre les sections précédentes (S et S'), coulisse dans une chambre cylindrique (43). Le tiroir (35) présente encore un passage axial (44) qui s'étend d'une extrémité à l'autre de ce tiroir (35) et qui communique, par un ajutage latéral (45), avec la surface latérale de ce tiroir, au niveau de la première chambre de distribution (36).
  • Autour de la première extrémité du tiroir (35) est encore formée une chambre annulaire (46), mise en communication avec le cylindre (17) par un conduit de pilotage (47) partant d'un orifice de pilotage (48) situé en un point intermédiaire de la longueur du cylindre (17). Un autre orifice (49) du cylindre (17), voisin du précédent, constitue le point de départ d'un canal (50) qui se réunit au conduit de retour (40). Deux autres canaux (51,52), ayant leurs points de départ à proximité des joints (tels que 26), se réunissent au canal (50).
  • Enfin, sont prévus deux accumulateurs (53,54), le premier accumulateur (53) étant en liaison avec le cylindre (17), et avec le conduit de pilotage (47), et le second accumulateur (54) étant en liaison avec le conduit (32) d'amenée d'huile sous pression, ici par l'intermédiaire de la première chambre de distribution (36) et du canal (39).
  • Le fonctionnement de l'appareil est déterminé par les sections différentielles du piston (18) et du tiroir (35) de la manière suivante :
    • La pression d'huile dans la première chambre annulaire (24) du cylindre (17), s'exerçant sur la section (SI), soumet le piston (18) à une poussée permanente vers la droite (Pl). Si la deuxième chambre annulaire (25) du cylindre (17) est reliée au réservoir, le piston (18) n'est soumis à aucune autre force hydraulique, et est poussé vers la droite. Lorsque la deuxième chambre annulaire (25) est remplie d'huile sous pression, la pression s'exerçant sur la section (S2) soumet le piston (1S) à une deuxième poussée orientée vers la gauche (P2), qui l'emporte sur la poussée vers la droite (Pl) puisque les deux poussées (P1,P2) sont dans le même rapport que les sections (Sl,52). Plus particulièrement, si la section (S2) est choisie égale au double de la section (SI), la poussée (P2) est égale au double de la poussée (P1) en valeur absolue, mais est dirigée en sens opposé, de sorte que la force résultante exercée sur le piston (18), orientée vers la gauche, aura la même valeur absolue que la poussée (Pl).
  • En ce qui concerne la valve de commande (34), le passage axial (44) et l'ajutage latéral (45) du tiroir (35) assurent la présence permanente d'huile sous pression dans les deux chambres cylindriques (42,43) logeant les extrémités du tiroir (35). Si la chambre annulaire (46) est reliée au réservoir, le tiroir (35) est soumis à une première poussée, due à la pression d'huile dans la chambre (42) s'exerçant sur la section (S'), et à une deuxième poussée de sens opposé, due à la pression d'huile dans la chambre (4,3) s'exerçant sur la section (S"). La section- (S") étant supérieure à la section (S'), la résultante des deux poussées considérées est une force orientée vers la gauche. Lorsque la chambre annulaire (46) est remplie d'huile sous pression, il s'ajoute aux deux poussées précédentes une troisième poussée, dirigée vers la droite. Les deux poussées orientées vers la droite, s'exerçant sur une section totale (S) supérieure à la section (S"), l'emportent alors sur la poussée orientée vers la gauche. Le tiroir (35) est alors repoussé vers la droite.
  • A un certain moment du cycle de fonctionnement de l'appareil, le piston (18) se déplace de la gauche vers la droite, la deuxième chambre annulaire (25) du cylindre (17) étant reliée au réservoir compte tenu de la position du tiroir (35) de la valve (34), position déterminée par le fait que la chambre annulaire (46) est elle aussi reliée au réservoir.
  • Lorsque le piston (18) parvient vers sa position de fin de course à droite, comme le montre la figure 1, sa partie cylindrique (22) de plus grand diamètre découvre l'orifice de pilotage (48), précédemment masqué. "La chambre annulaire (46) est alors mise en communication avec le conduit (32) d'amenée d'huile sous pression, par l'intermédiaire de la première chambre annulaire (24) du cylindre (17) et du conduit de pilotage (47). Le tiroir (35) est ainsi repoussé vers la droite (position indiquée sur la figure 1). La position des deux portées intermédiaires du tiroir (35) devient à ce moment telle que la première chambre de distribution (36) est mise en communication directe avec la troisième chambre de distribution (38), tandis que la deuxième chambre de distribution (37) se trouve isolée de la troisième chambre de distribution (38). Il en résulte que l'huile sous pression, amenée par le conduit (32), est admise dans la chambre annulaire (25) du cylindre (17) en passant successivement par le canal (39), par la première chambre de distribution (36), par la troisième chambre de distribution (38) et par le canal (41).
  • La mise sous pression de la deuxième chambre annulaire (25) provoque alors le déplacement du piston (18) vers la droite. Au cours de ce déplacement, l'orifice de pilotage (48) est masqué par la partie cylindrique (22) du piston (18), de sorte que le tiroir (35) de la valve (34) reste dans sa position indiquée à la figure 1.
  • Lorsque le piston (18) parvient vers sa position de fin de course à gauche, comme le montre la figure 2, l'orifice de pilotage (48) est découvert, et mis en relation avec l'orifice voisin (49) grâce à la position prise par la gorge annulaire, (23) du piston (18). La chambre annulaire (46) est ainsi mise en relation avec le départ d'huile vers le réservoir (en 33), ceci par l'intermédiaire du conduit de pilotage (47), de la gorge annulaire (23), du canal (50) et d'un tronçon du conduit de retour (40).
  • Le tiroir (35) est ainsi repoussé vers la gauche (position indiquée à la figure 2). La position des deux portées intermédiaires du tiroir (35) devient alors telle que la deuxième chambre de distribution (37) est mise en communication directe avec la troisième chambre de distribution (3S), tandis que la première chambre de distribution (36) se trouve isolée de la troisième chambre de distribution (38). Il en résulte que la deuxième chambre annulaire (25) du cylindre (17) est mise en relation avec le départ d'huile vers le réservoir (en 33), ceci par l'intermédiaire du canal (41), de la troisième chambre de distribution (38), de la deuxième chambre de distribution (37) et du conduit de retour (40).
  • La suppression de la pression dans la deuxième chambre annulaire (25) provoque alors le déplacement du piston (17) vers la droite, et le même cycle de fonctionnement peut se répéter indéfiniment. On notera que la mise sous pression initiale de l'appareil provoque nécessairement l'amorçage de ce cycle.
  • On obtient ainsi un mouvement alternatif du piston (18) dans le cylindre (17), suivant l'axe (16), s'accompagnant d'un mouvement de va-et-vient des deux plongeurs (19,20) dans les chambres cylindriques respectives (2,5), faisant varier le volume de ces chambres (2,5). Ce mouvement des deux plongeurs (19,20), associé au fonctionnement des clapets (8 à 11), permet de refouler alternativement sur les deux conduits de sortie (12,13) des débits d'eau à une pression multipliée, par rapport à la pression du fluide primaire (huile), par un facteur égal au rapport des sections utiles du piston (18) et des plongeurs (19,20). Un débit d'eau permanent, sous haute pression, résultant de la réunion des débits véhiculés par les deux conduits (12,13), est obtenu sur le conduit (14) qui amène ce débit résultant au point d'utilisation de l'eau sous haute pression. Cette eau est par exemple utilisée pour obtenir un jet coupant, dans des applications minières telles que la foration de roches, soit réalisée intégralement par un jet d'eau, soit seulement assistée par un jet d'eau.
  • L'accumulateur (53), qui se trouve toujours en relation avec le conduit de pilotage (47), permet de stabiliser la pression dans la chambre annulaire (46), et évite toute influence des fuites d'huile internes sur le pilotage de la valve (34). Cet accumulateur (53) permet au piston (18) de décrire une course relativement importante à une vitesse relativement faible. Quand à l'accumulateur (54), sa fonction est d'amortir le mouvement du piston à l'approche des positions de fin de course à gauche et à droite, en accumulant de l'énergie et en la restituant de nouveau.
  • Les canaux (51,52) évitent que les joints (tels que 26) restent sous pression, au cours du fonctionnement de l'appareil, et ils diminuent les efforts de frottement sur le piston (18), augmentant ainsi le rendement de l'appareil.
    • - Comme il va de soi, l'invention ne se limite pas à la seule forme d'exécution de cet amplificateur de pression hydraulique qui a été décrite ci-dessus, à titre d'exemple ; elle en embrasse, au contraire, toutes les variantes de réalisation et d'application respectant les mêmes principes. En particulier, l'on ne s'éloignerait pas du cadre de l'invention :
    • - par des aménagements tels qu'une modification des positions des amortisseurs (53,54), ne changeant pas leurs relations avec les autres éléments, ou leurs fonctions ;
    • - par l'utilisation de tous liquides autres que l'huile et l'eau, en tant que fluides primaire et secondaire, selon les applications envisagées de l'amplificateur de pression, les deux fluides pouvant être de même nature par exemple pour l'obtention de pressions d'épreuve.

Claims (13)

1. Amplificateur de pression hydraulique, caractérisé en ce qu'il comprend un piston étagé (18) monté coulissant à l'intérieur d'un cylindre (17) de manière à former une première chambre annulaire (24); de plus petite section (SI), reliée en permanence à une amenée d'un fluide primaire sous pression (31,32), et une seconde chambre annulaire (25), de plus grande section (S2), reliée à une valve de commande (34) avec tiroir à sections différentielles (35), mettant ladite seconde chambre annulaire (25) en communication alternativement avec l'amenée de fluide primaire sous pression (31,32) et avec un conduit de retour de ce fluide (40), le pilotage de la valve de commande (34) étant assuré par le fluide primaire au moyen d'un conduit unique (47) dont le débouché (48) dans le cylindre (17) est alternativement découvert et masqué par le piston (18), ce piston (18) étant prolongé suivant son axe (16), à ses deux extrémités, par deux plongeurs (19,20) de plus petite section pénétrant respectivement dans deux chambres (2,5) mises en relation, par l'intermédiaire de clapets (8 à 11), avec des arrivées (3,6) et des départs (4,7,12,13,14) d'un fluide secondaire.
2. Amplificateur de pression hydraulique selon la revendication 1, caractérisé en ce que le piston proprement dit (18), et les deux plongeurs (19,20) le prolongeant à ses extrémités, forment une structure monobloc.
3. Amplificateur de pression hydraulique selon la revendication 1 ou 2, caractérisé en ce que le piston (18) présente une partie cylindrique de diamètre intermédiaire (21), autour de laquelle est formée la première chambre annulaire (24) du cylindre (17), de section (SI), et une partie cylindrique de petit diamètre (20a), autour de laquelle est formée la seconde chambre annulaire (25) du cylindre (17), de section (S2).
4. Amplificateur de pression hydraulique selon la revendication 3, caractérisé en ce que la section (SI) de la première chambre annulaire (24) du cylindre (17) est égale à.la moitié de la section (S2) de la seconde chambre annulaire (25) du cylindre (17).
5. Amplificateur de pression hydraulique selon la revendication 3 ou 4, caractérisé en ce que la partie cylindrique de plus grand diamètre (22) du piston (18) comporte une gorge annulaire (23), et en ce que la paroi du cylindre (17) comporte un orifice (49) relié au conduit de retour du fluide primaire (40) et situé de telle manière que, dans une position de fin de course du piston (18), une communication s'établisse entre le conduit de pilotage (47) de la valve de commande (34) et ledit conduit de retour (40).
6. Amplificateur de pression hydraulique selon l'une quelconque des revendications 1 à 5, caractérisé en ce que la valve de commande (34) comprend un tiroir (35) possédant deux portées intermédiaires de relativement grande section (S) et deux extrémités de plus petites sections (S',S"), le tiroir (35) étant monté coulissant dans une cavité formant, autour du tiroir (35), trois chambres de distribution annulaires (36,37,38) reliées respectivement à l'amenée de fluide primaire sous pression (31,32), au conduit de retour de ce fluide (40) et à la seconde chambre annulaire (25), de plus grande section (S2), du cylindre (17), ainsi qu'une quatrième chambre annulaire (46) reliée au cylindre (17) par le conduit de pilotage (47), la valve (34) mettant la troisième chambre de distribution (38) en communication, selon la position du tiroir (35), soit avec la première chambre de distribution (36), soit avec la deuxième chambre de distribution (37).
7. Amplificateur de pression hydraulique selon la revendication 6, caractérisé en ce que le tiroir (35) de la valve de commande (34) possède deux extrémités de sections distinctes (S',S"), montées coulissantes dans deux chambres cylindriques respectives (42,43) de sections correspondantes, dans lesquelles est admis en permanence le fluide primaire sous pression.
8. Amplificateur de pression hydraulique selon la revendication 7, caractérisé en ce que le tiroir (35) de la valve de commande (34) comporte un passage axial (44) s'étendant d'une extrémité à l'autre de ce tiroir (35) et communiquant, par un ajutage (45), avec la surface latérale de ce tiroir (35), au niveau de la première chambre de distribution (36).
9. Amplificateur de pression hydraulique selon l'une quelconque des revendications 1 à 9, caractérisé en ce que le conduit de pilotage (47) de la valve de commande (34) est relié, de manière permanente, à un accumulateur (53).
10. Amplificateur de pression hydraulique selon l'une quelconque des revendications 1 à 9, caractérisé en ce qu'un autre accumulateur (54) est relié à la première chambre annulaire (24) du cylindre (17), de manière permanente, et à la seconde chambre annulaire (25) du cylindre (17) lorsque celle-ci est mise en communication avec l'amenée de fluide primaire sous pression (31,32) par la valve de commande (34).
11. Amplificateur de pression hydraulique selon l'une quelconque des revendications 1 à 10, caractérisé en ce que sont encore formées autour du piston (18) et/ou des plongeurs (19,20), entre le cylindre (17) et les deux chambres (2,5) dans lesquelles pénètrent les plongeurs (19,20), deux chambres annulaires auxiliaires (28,30) avec évacuations (29), évitant tout mélange du fluide primaire et du fluide secondaire.
12. Amplificateur de pression hydraulique selon l'une quelconque des revendications 1 à 11, caractérisé en ce que les départs (4,7) des deux chambres alimentées en fluide secondaire, dans lesquelles pénètrent respectivement les deux plongeurs (19,20), sont réunis en un conduit unique (14) au départ duquel est prévu un accumulateur (15).
13. Amplificateur de pression hydraulique selon l'une quelconque des revendications 1 à 12, caractérisé par son application à la fourniture d'un fluide, tel que de l'eau, sous haute pression, utilisé pour la foration de roches.
EP86420006A 1985-01-09 1986-01-08 Amplificateur de pression hydraulique Withdrawn EP0192580A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8500540A FR2575792A1 (fr) 1985-01-09 1985-01-09 Amplificateur de pression hydraulique
FR8500540 1985-01-09

Publications (1)

Publication Number Publication Date
EP0192580A1 true EP0192580A1 (fr) 1986-08-27

Family

ID=9315307

Family Applications (1)

Application Number Title Priority Date Filing Date
EP86420006A Withdrawn EP0192580A1 (fr) 1985-01-09 1986-01-08 Amplificateur de pression hydraulique

Country Status (6)

Country Link
US (1) US4659294A (fr)
EP (1) EP0192580A1 (fr)
JP (1) JPS61197801A (fr)
AU (1) AU5214186A (fr)
FR (1) FR2575792A1 (fr)
ZA (1) ZA8646B (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103038499B (zh) * 2010-06-21 2016-11-16 水动力科技有限公司 流体压力放大器

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4787271A (en) * 1987-03-23 1988-11-29 Teledyne Industries, Inc. Gear box
US5058768A (en) * 1989-03-31 1991-10-22 Fountain Technologies, Inc. Methods and apparatus for dispensing plural fluids in a precise proportion
US5385452A (en) * 1992-12-07 1995-01-31 Active Management, Inc. Hydraulic fluid pressurizer with fluid cushioning means
GB2275969B (en) * 1993-03-01 1997-09-17 Europ Gas Turbines Ltd Hydraulic intensifier
JP2763736B2 (ja) * 1993-06-29 1998-06-11 幸彦 唐澤 高圧ポンプ
CN1050403C (zh) * 1993-08-26 2000-03-15 李洪敏 自动增压装置
US5388725A (en) * 1993-11-24 1995-02-14 Fountain Fresh International Fluid-driven apparatus for dispensing plural fluids in a precise proportion
JPH08281571A (ja) * 1995-04-14 1996-10-29 Komatsu Ltd 振動発生装置
AU6719296A (en) * 1995-08-03 1997-03-05 Flowdril Corporation Down hole pressure intensifier and drilling assembly and method
GB2346178B (en) * 1999-01-26 2003-03-19 Brian William Young Integral pump and control valve
US6729860B1 (en) * 2000-01-24 2004-05-04 Daniel A. Holt Pneumatically driven liquified gas booster pump
EP1358407A4 (fr) * 2001-01-19 2004-08-11 Munters Corp Pompe a eau haute pression
ES2219122B1 (es) * 2001-07-27 2005-09-16 Bolsaplast, S.A. Bomba para sistemas desalinizadores de agua marina por osmosis inversa.
DE10158182B4 (de) * 2001-11-28 2005-06-02 Minibooster Hydraulics A/S Doppeltwirkender hydraulischer Druckverstärker
DE10249523C5 (de) * 2002-10-23 2015-12-24 Minibooster Hydraulics A/S Druckverstärker
DE102004042369A1 (de) * 2004-09-01 2006-07-13 Eurodrill Gmbh Bodenbearbeitungsgerät und Verfahren zum Einbringen eines Arbeitselementes in den Boden
DE102006038862A1 (de) * 2006-08-18 2008-02-21 Scanwill Aps Druckübersetzer mit Doppelsitzventil
US8695414B2 (en) 2011-07-12 2014-04-15 Halliburton Energy Services, Inc. High pressure and flow rate pump useful in formation fluid sample testing
US9695840B2 (en) 2013-08-20 2017-07-04 Vianney Rabhi Reversible hydraulic pressure converter employing tubular valves
FR3009849B1 (fr) 2013-08-20 2016-03-11 Vianney Rabhi Convertisseur de pression hydraulique reversible a vannes tubulaires
BR102013024307B1 (pt) * 2013-09-23 2022-03-29 Drausuisse Brasil Comércio E Locação De Unidades Hidráulicas Inteligentes S.A. Unidade geradora de pressão hidráulica com acionamento pneumático
DE102014006759A1 (de) * 2014-05-08 2015-11-12 Dürr Systems GmbH Abluftführung für eine Beschichtungsmittelpumpe
AT516738B1 (de) * 2015-02-23 2016-08-15 Reinhard Ing Gruber Verfahren und Vorrichtung zum Betreiben einer hydraulischen Hochdruckanlage
CH711414A1 (de) * 2015-08-13 2017-02-15 Hatebur Umformmaschinen Ag Vorrichtung zur Erzeugung impulsdynamischer Prozesskräfte.
ES2736135T3 (es) * 2017-03-03 2019-12-26 Pistonpower Aps Amplificador de presión
ES2734307T3 (es) 2017-03-03 2019-12-05 Pistonpower Aps Intensificador de presión hidráulica
EP3369929B1 (fr) 2017-03-03 2019-04-24 PistonPower ApS Amplificateur de pression
ES2736402T3 (es) 2017-03-03 2019-12-30 Pistonpower Aps Intensificador de presión hidráulica de doble acción
CN107476915B (zh) * 2017-08-22 2019-11-01 哈尔滨工程大学 一种带缓冲装置的双作用式高压燃油供给装置
DE102019109486B4 (de) * 2019-04-10 2022-12-22 RED Drilling & Services GmbH Vorrichtung zum Erhöhen eines Drucks eines Arbeitsfluids für ein Bohrsystem
EP3966416A4 (fr) * 2019-05-06 2022-12-14 Services Pétroliers Schlumberger Ensemble de forage à haute pression
CA3169736A1 (fr) * 2020-03-02 2021-09-10 Chandu KUMAR Deflecteur de securite de systeme d'entrainement de pompe de fracturation lineaire

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1360978A (fr) * 1963-06-19 1964-05-15 Keelavite Hydraulics Ltd Appareil hydraulique alternatif
FR1488575A (fr) * 1965-09-14 1967-07-13 Sulzer Ag Dispositif pour l'injection du carburant dans un moteur à combustion interne à pistons
FR2305279A1 (fr) * 1975-03-22 1976-10-22 Klemm Bohrtech Appareil de frappe hydraulique
FR2352175A1 (fr) * 1976-05-21 1977-12-16 Hausherr & Soehne Maschf Pompe a haute pression
GB2117845A (en) * 1982-04-03 1983-10-19 Af Hydraulics Hydraulic percussive apparatus

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2300110A (en) * 1941-07-12 1942-10-27 Aulene B De Hoog Liquid meter
US2789510A (en) * 1954-03-11 1957-04-23 Black Sivalls & Bryson Inc Liquid injector
US2826149A (en) * 1955-03-23 1958-03-11 Gen Motors Corp Booster pump
US2864313A (en) * 1957-04-24 1958-12-16 Dawson Edward Hydraulic intensifier
GB1319577A (en) * 1969-07-08 1973-06-06 Taylor Zwicky Ltd C F Air operated hydraulic pump
US3776665A (en) * 1971-07-08 1973-12-04 Westran Corp Two stage fluid pump
US3790310A (en) * 1972-05-10 1974-02-05 Gen Motors Corp Fluid powered air compressor
US4102609A (en) * 1975-09-12 1978-07-25 Wood's Powr-Grip Co., Inc. Valve control system for air powered vacuum pump
ES469097A1 (es) * 1978-03-31 1980-06-16 Crespo Jose T G Aparato hidraulico para producir impactos

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1360978A (fr) * 1963-06-19 1964-05-15 Keelavite Hydraulics Ltd Appareil hydraulique alternatif
FR1488575A (fr) * 1965-09-14 1967-07-13 Sulzer Ag Dispositif pour l'injection du carburant dans un moteur à combustion interne à pistons
FR2305279A1 (fr) * 1975-03-22 1976-10-22 Klemm Bohrtech Appareil de frappe hydraulique
FR2352175A1 (fr) * 1976-05-21 1977-12-16 Hausherr & Soehne Maschf Pompe a haute pression
GB2117845A (en) * 1982-04-03 1983-10-19 Af Hydraulics Hydraulic percussive apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103038499B (zh) * 2010-06-21 2016-11-16 水动力科技有限公司 流体压力放大器

Also Published As

Publication number Publication date
FR2575792A1 (fr) 1986-07-11
AU5214186A (en) 1986-07-17
ZA8646B (en) 1986-08-27
US4659294A (en) 1987-04-21
JPS61197801A (ja) 1986-09-02

Similar Documents

Publication Publication Date Title
EP0192580A1 (fr) Amplificateur de pression hydraulique
EP0516561B1 (fr) Appareil hydraulique à percussions
WO2000077397A1 (fr) Pompe a pistons, procede et installation de filtration d'eau
EP3301335B1 (fr) Vanne fluidique
FR2666787A1 (fr) Actionneur hydraulique a mode hydrostatique de fonctionnement de preference en secours, et systeme de commande de vol le comportant.
EP0284460B1 (fr) Mécanisme à fluide sous pression, moteur ou pompe, à plusieurs cylindrées
CH617117A5 (fr)
EP0276188B1 (fr) Servovalve électrohydraulique pour la commande asservie d'un actionneur hydraulique, notamment dans les servomécanismes de commande de vol des aéronefs
EP0088017A2 (fr) Dispositif de distribution hydraulique à tiroir
EP0082048B1 (fr) Distributeur hydraulique
EP0042774B1 (fr) Dispositif pour produire successivement des débits de fluide hydraulique de valeurs échelonnées
WO2009124957A1 (fr) Verin hydraulique et structure d ' actionnement d' un bras manipulateur mettant en oeuvre au mois un tel verin
EP3163076B1 (fr) Machine hydraulique à deux cylindrées et à valve de sécurité
EP0306368B1 (fr) Dispositif compensateur de pression adapté à équiper un distributeur hydraulique du type proportionnel et distributeur hydraulique le comportant
FR2463039A1 (fr) Procede et dispositif de realisation d'une assistance hydraulique pour la commande de la direction
FR2781532A1 (fr) Dispositif de valve pour un moteur hydraulique apte a entrainer une masse d'inertie importante
EP0176381B1 (fr) Distributeur hydraulique haute pression, à générateur de pression de pilotage
FR2736124A1 (fr) Ensemble hydrostatique a patinage controle
FR2739149A1 (fr) Verin hydraulique a quadruple effet
EP0269471A1 (fr) Joint hydraulique tournant annulaire à température stabilisée
WO1998042555A1 (fr) Maitre-cylindre tandem compact a sortie primaire decalee
FR2473651A1 (fr) Valve de commande
FR2562020A1 (fr) Dispositif de direction assistee pour vehicules
WO2010007101A1 (fr) Dispositif d'assistance hydraulique de freinage
FR2479918A1 (fr) Verin lineaire a transmission d'effort variable au cours du deplacement de son piston

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT CH DE GB IT LI SE

17P Request for examination filed

Effective date: 19861025

17Q First examination report despatched

Effective date: 19871005

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 19880722

RIN1 Information on inventor provided before grant (corrected)

Inventor name: BARTHOMEUF, JEAN-CLAUDE SIMON