EP0188938B1 - Couche barrière au bombardement ionique pour tube à vide - Google Patents

Couche barrière au bombardement ionique pour tube à vide Download PDF

Info

Publication number
EP0188938B1
EP0188938B1 EP85402478A EP85402478A EP0188938B1 EP 0188938 B1 EP0188938 B1 EP 0188938B1 EP 85402478 A EP85402478 A EP 85402478A EP 85402478 A EP85402478 A EP 85402478A EP 0188938 B1 EP0188938 B1 EP 0188938B1
Authority
EP
European Patent Office
Prior art keywords
barrier layer
layer
barrier
micro
microchannel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP85402478A
Other languages
German (de)
English (en)
Other versions
EP0188938A1 (fr
Inventor
Daniel Gally
Pierre-Paul Jobert
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thales SA
Original Assignee
Thomson CSF SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thomson CSF SA filed Critical Thomson CSF SA
Publication of EP0188938A1 publication Critical patent/EP0188938A1/fr
Application granted granted Critical
Publication of EP0188938B1 publication Critical patent/EP0188938B1/fr
Expired legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J43/00Secondary-emission tubes; Electron-multiplier tubes
    • H01J43/04Electron multipliers
    • H01J43/06Electrode arrangements
    • H01J43/18Electrode arrangements using essentially more than one dynode
    • H01J43/24Dynodes having potential gradient along their surfaces
    • H01J43/246Microchannel plates [MCP]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J29/00Details of cathode-ray tubes or of electron-beam tubes of the types covered by group H01J31/00
    • H01J29/02Electrodes; Screens; Mounting, supporting, spacing or insulating thereof
    • H01J29/10Screens on or from which an image or pattern is formed, picked up, converted or stored
    • H01J29/18Luminescent screens
    • H01J29/28Luminescent screens with protective, conductive or reflective layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J29/00Details of cathode-ray tubes or of electron-beam tubes of the types covered by group H01J31/00
    • H01J29/84Traps for removing or diverting unwanted particles, e.g. negative ions, fringing electrons; Arrangements for velocity or mass selection

Definitions

  • the present invention relates to an ion bombardment barrier layer for a vacuum tube according to the preamble of claim 1.
  • British patent GB-A 1,368,882 thus relates to an intensifier tube i ficitor of light images or IIL with a wafer of microchannels surmounted on the side of the photo-cathode of the tube by a barrier layer to the ion bombardment.
  • IIL intensifier tube i ficitor of light images or IIL with a wafer of microchannels surmounted on the side of the photo-cathode of the tube by a barrier layer to the ion bombardment.
  • FIG. 1 Such a tube is shown diagrammatically in FIG. 1.
  • the reference 1 designates the glass slab which receives the light radiation symbolized by a wavy arrow.
  • the residual pressure in a vacuum tube is never zero regardless of the quality of cleaning and degassing of its constituent parts.
  • the electron bombardment ionizes the residual gases and the ions thus created, positively charged, go up the channels of the wafer towards the lowest potential and bombard the extraction layer 3 located on the surface of the photo-cathode.
  • This extraction layer which is very fragile and very thin, is very quickly destroyed by ion bombardment.
  • an ion bombardment barrier layer 4 is used, placed on the micro-channel plate 5, on the side of the photo-cathode. This layer stops the ions but lets through the photoelectrons suitably accelerated by a sufficient potential difference.
  • the adhesion of the barrier layer to the microchannel wafer and the stress state of the barrier layer after annealing are not very satisfactory.
  • aluminum is a material easy to deposit and which does not present degassing when it is bombarded.
  • alumina AI2 0 3 a silicon oxide Si 0 2 or Si O, or zinc sulfide ZnS. None of these materials is fully satisfactory because the alumina exhibits a state of stress after annealing which is unsatisfactory, the silicon oxide Si 0 2 or Si O degassed when bombarded and the zinc sulfide has a mass. atomic mean too high for photoelectrons to easily pass through.
  • the present invention makes it possible to obtain an image intensifier tube whose lifespan is improved.
  • the present invention relates to an ion bombardment barrier layer, for a light image intensifier tube, deposited between a multiplying micro-channel plate and an extraction layer situated on the surface of the photocathode of the tube for the extraction of photo- electrons, this barrier layer being intended to stop the ions likely to go up in the micro-channels, characterized in that this layer consists of silicon nitride, Si 3 N 4 .
  • the vacuum tube in which the barrier layer against ion bombardment according to the invention is used can be, as explained above, a light image intensifier tube or IIL
  • This layer can also be used in other types of vacuum tubes, such as, for example, penetration screens.
  • this type of tubes which is described for example in French patent application No. 7,619,420 in the name of THOMSON-CSF, the barrier layer according to the invention is used to separate two layers of phosphors, This barrier layer has in this use the advantage of having a minimum degassing when it is bombarded.
  • the improvement of the properties of the barrier layer made up of a stable silicon nitride compound is due to several factors. We know that when subjected to ion bombardment a body like silica degassed by desorption of water molecules and decomposition of hydroxyl radicals. The use of a non-oxygenated material makes it possible to reduce the extent of degassing. It is observed with a scanning electron microscope that when the annealing is carried out the barrier layer has a "pleated" appearance and has a state of minimum stress. Thus any impurity in the form of micro-dust or any other surface irregularity due to the preceding stages of the process does not create any tear in the film stretched over the orifices of the micro-channel pad.
  • a process of deposition by chemical reaction in vapor phase activated by plasma at low temperature is used which makes it possible to leave the microchannel wafers immobile and to reduce handling during the steps of depositing the protective material on the organic film and annealed.
  • the annealing can be done in situ while handling was required for passage through an oven in the case of sputtering or evaporation deposition.
  • FIG. 1 which schematically shows a light image intensifier tube or IIL has been described in the introduction to the description.
  • the ion bombardment barrier layer 4 consists of a stable compound of formula Sis N 4 .
  • This compound has a refractive index between 1.8 and 1.9.
  • the silicon nitride Sis N 4 has characteristics far superior to those of silica Si 0 2 with regard to compactness.
  • Compactness is defined as the ratio of specific mass to average atomic mass.
  • the compactness of the silicon nitride is 0.17 mol average of atom per cubic centimeter and that of the silica is 0.11.
  • the average atomic mass of these two materials is identical. These two materials therefore have a permeability comparable to electrons with the same incident energy.
  • the barrier layer according to the invention When used in an IIL, it must have a thickness of from 3 to 30 nm approximately, and preferably from 5 to 8 nm. For other applications, it is possible to use a layer of greater thickness, of the order of a few micrometers for example.
  • the barrier layer according to the invention is produced at a temperature between 70 and 200 ° C, and preferably between 120 and 150 ° C. A compromise must be found between the state of intrinsic stress in the material at a given temperature and the characteristics organic thin film thermoplastics, placed on the micro-channel pad.
  • barrier layers are used, such as for example sputtering or evaporation by Joule effect.
  • a deposition method which is also known from the prior art, and which is carried out by chemical reaction in the vapor phase activated by plasma at low temperature.
  • the deposit is made in a cylindrical chamber, having two horizontal electrodes separated by a few centimeters.
  • the micro-channel wafers are placed on the lower electrode which is heated to a temperature such as those previously envisaged.
  • Plasma is created in a mixture of gases with chemical formulas Si H 4 , NHs and N 2 .
  • silane Si H 4 can be diluted in nitrogen N 2 .
  • micro-channel patties remain fixed during deposition.
  • annealing which makes it possible to remove the organic layer can be done in situ, either in air or in any suitable gas mixture.

Landscapes

  • Physical Vapour Deposition (AREA)
  • Formation Of Insulating Films (AREA)
  • Image-Pickup Tubes, Image-Amplification Tubes, And Storage Tubes (AREA)

Description

  • La présente invention concerne une couche barrière au bombardement ionique pour tube à vide selon le préambule de la revendication 1.
  • Il est connu d'utiliser de telles couches, notamment dans les tubes intensificateurs d'images lumineuses.
  • Ainsi le brevet anglais GB-A 1.368.882 concerne un tube intensificateur d'images lumineuses ou IIL avec une galette de microcanaux surmontée du côté de la photo-cathode du tube par une couche barrière au bombardement ionique. Un tel tube est représenté schématiquement sur la figure 1.
  • Sur cette figure, on désigne par la référence 1 la dalle de verre qui reçoit le rayonnement lumineux symbolisé par une flèche ondulée.
  • A la suite de cette dalle de verre, on trouve une photocathode 2 qui est recouverte d'une couche 3 permettant l'extraction de photo-électrons. On trouve ensuite la couche barrière au bombardement ionique 4 qui est portée par la galette de micro-canaux 5, puis une couche métallique 6, une couche de luminophore 7 et une dalle de verre 8.
  • Le pression résiduelle dans un tube à vide n'est jamais nulle quelle que soit la qualité du nettoyage et du dégazage de ses pièces constitutives. Le bombardement électronique ionise les gaz résiduels et les ions ainsi créés, chargés positivement, remontent les canaux de la galette vers le potentiel le plus bas et bombardent la couche d'extraction 3 située à la surface de la photo-cathode. Cette couche d'extraction, qui est très fragile et très mince, est très rapidement détruite par le bombardement ionique.
  • Pour éviter cette destruction, on utilise une couche barrière au bombardement ionique 4, posée sur la galette de micro-canaux 5, du côté de la photo-cathode. Cette couche arrête les ions mais laisse passer les photo-électrons convenablement accélérés par une différence de potentiels suffisante.
  • Dans le brevet anglais cité, le procédé utilisé pour déposer la couche barrière est le suivant :
    • - on réalise un film mince organique, à base de nitro-cellulose par exemple, en utilisant l'un des procédés de fabrication des écrans de tubes à rayons cathodiques ;
    • - on dépose ce film sur la galette de micro-canaux;
    • - on dépose une couche de matériau protecteur, de préférence une couche d'aluminium, sur le film organique posé sur la galette de micro-canaux ;
    • - on effectue un recuit à l'air pour assurer la combustion du film organique et la mise en contact de la couche de matériau protecteur avec la galette de micro-canaux.
  • Lorsqu'on utilise une couche barrière en aluminium, l'adhérence de la couche barrière sur la galette de micro-canaux et l'état de contrainte de la couche barrière après le recuit ne sont pas très satisfaisants.
  • Par contre l'aluminium est un matériau facile à déposer et qui ne présente pas de dégazage lorsqu'il est bombardé.
  • Pour réaliser cette couche barrière, il est connu d'utiliser d'autres matériaux tels que l'alumine AI2 03, un oxyde de silicium Si 02 ou Si O, ou le sulfure de zinc ZnS. Aucun de ces matériaux ne donne pleinement satisfaction car l'alumine présente un état de contrainte après le recuit qui est peu satisfaisant, l'oxyde de silicium Si 02 ou Si O dégaze lorsqu'il est bombardé et le sulfure de zinc a une masse atomique moyenne trop élevée pour que les photo-électrons puissent le traverser aisément.
  • Dans l'art antérieur, les couches barrières au bombardement ionique sont déposées par les techniques bien connues de pulvérisation cathodique ou d'évaporation par effet Joule. Ces techniques présentent notamment les inconvénients suivants :
    • - le film organique peut être détérioré;
    • - il faut nécessairement des pièces en rotation et une régulation sophistiquée pour réaliser de façon reproductible des films très minces;
    • - enfin le chauffage lors des différents dépôts est difficile à réaliser.
  • La présente invention concerne une couche barrière qui présente des propriétés plus satisfaisantes que les couches barrières de l'art antérieur notamment sur les points suivants:
    • - l'adhérence sur la galette de micro-canaux car le film organique n'est pas détérioré lors de la formation de la couche barrière;
    • - la masse atomique moyenne minimum pour que les photo-électrons la traversent aisément, mais une compacité élevée;
    • - l'absence de défauts tels que des trous ou des déchirures provenant d'une part du recuit et de l'état de contrainte qu'il crée, et d'autre part des manipulations nécessaires par exemple pour implanter la galette de micro-canaux dans l'IIL.
  • Du fait de l'amélioration des propriétés de la couche barrière, la présente invention permet d'obtenir un tube intensificateur d'images dont la durée de vie est améliorée.
  • La présente invention concerne une couche barrière au bombardement ionique, pour tube intensificateur d'images lumineuses, déposée entre une galette de micro-canaux multiplicatrice et une couche d'extraction située à la surface de la photocathode du tube pour l'extraction de photo-électrons, cette couche barrière étant destinée à arrêter les ions susceptibles de remonter dans les micro-canaux, caractérisée en ce que cette couche est constituée de nitrure de silicium, Si3N4. Le tube à vide dans lequel est utilisée la couche barrière au bombardement ionique selon l'invention peut être, comme cela a été exposé précédemment, un tube intensificateur d'images lumineuses ou I.I.L.
  • Cette couche peut aussi être utilisée dans d'autres types de tubes à vide, comme par exemple les écrans à pénétration. Dans ce type de tubes, qui est décrit par exemple dans la demande de brevet français no 7 619 420 au nom de THOMSON-CSF, la couche barrière selon l'invention est utilisée pour séparer deux couches de luminophores, Cette couche barrière présente dans cette utilisation l'avantage d'avoir un dégazage minimum lorsqu'elle est bombardée.
  • L'amélioration des propriétés de la couche barrière constituée d'un composé stable de nitrure de silicium (SisN4) tient à plusieurs facteurs. On sait que lorsqu'il est soumis au bombardement ionique un corps comme la silice dégaze par désorption de molécules d'eau et décomposition des radicaux hydroxyles. L'utilisation d'un matériau non oxygéné permet de réduire l'ampleur de dégazage. On observe au microscope électronique à balayage que lorsqu'on effectue le recuit la couche barrière a un aspect "plissé" et présente un état de contrainte minimum. Ainsi toute impureté sous forme de micro- poussière ou toute autre irrégularité de surface due aux étapes précédentes du procédé ne crée aucune déchirure dans le film tendu au-dessus des orifices de la galette de micro-canaux.
  • Au contraire, lorsqu'une couche barrière en silice Si 02 est utilisée, on observe qu'on obtient un film tendu après le recuit ce qui entraîne un état de contrainte important.
  • Enfin, on utilise un procédé de dépôt par réaction chimique en phase vapeur activée par plasma à basse température qui permet de laisser immobiles les galettes de micro-canaux et de réduire les manipulations lors des étapes de dépôt du matériau protecteur sur le film organique et de recuit. Ainsi le recuit peut se faire in situ alors qu'il fallait une manipulation pour le passage en étuve dans le cas de dépôt par pulvérisation cathodique ou par évaporation.
  • D'autres objets, caractéristiques et résultats de l'invention ressortiront de la description suivante donnée à titre d'exemple non limitatif et illustrée par la figure annexée qui représente le schéma d'un tube intensificateur d'images lumineuses.
  • Sur la figure annexée, pour des raisons de clarté, les cotes et proportions des divers éléments ne sont pas respectées.
  • La figure 1 qui représente de façon schématique un tube intensificateur d'image lumineuse ou IIL a été décrite dans l'introduction à la description.
  • Selon l'invention, la couche barrière au bombardement ionique 4 est constituée d'un composé stable de formule Sis N4.
  • Ce composé a un indice de réfraction compris entre 1,8 et 1,9.
  • Le nitrure de silicium Sis N4 présente des caractéristiques bien supérieures à celles de la silice Si 02 en ce qui concerne la compacité. La compacité est définie comme le rapport de la masse spécifique à la masse atomique moyenne. La'compacité du nitrure de silicium est de 0,17 moles moyennes d'atome par centimètre cube et celle de la silice est de 0,11.
  • La masse atomique moyenne de ces deux matériaux est identique. Ces deux matériaux présentent donc une perméabilité comparable aux électrons de même énergie incidente.
  • Lorsque la couche barrière selon l'invention est utilisée dans un IIL, elle doit présenter une épaisseur de 3 à 30 nm environ, et préférentiellement de 5 à 8 nm. Pour d'autres applications, on peut utiliser une couche de plus grande épaisseur, de l'ordre de quelques micromètres par exemple.
  • La couche barrière selon l'invention est réalisée à une température comprise entre 70 et 200°C, et de préférence entre 120 et 150°C. Il faut trouver un compromis entre l'état de contrainte intrinsèque au matériau à température donnée et les caractéristiques thermoplastiques de film mince organique, posé sur la galette de micro-canaux.
  • On a vu précédemment que dans l'art antérieur, on utilise des méthodes du dépôt des couches barrières, telles que par exemple la pulvérisation cathodique ou l'évaporation par effet Joule.
  • Ces méthodes concement uniquement le dépôt de la couche barrière. Elles sont mises en oeuvre pour déposer la couche barrière sur le film mince organique déposé sur la galette de micro-canaux et elles sont suivies par le recuit à l'air, comme cela a été exposé précédemment.
  • Selon l'invention, on utilise de préférence une méthode de dépôt qui est également connue de l'art antérieur, et qui est réalisée par réaction chimique en phase vapeur activée par plasma à basse température.
  • Le dépôt se fait dans une chambre cylindrique, présentant deux électrodes horizontales séparées de quelques centimètres. On pose les galettes de micro-canaux sur l'électrode inférieure qui est chauffée à une température telle que celles envisagées précédemment. La plasma est créé dans un mélange de gaz de formules chimiques Si H4, NHs et N2. Pour diminuer la vitesse de dépôt, on peut diluer du silane Si H4 dans de l'azote N2.
  • Les galettes de micro-canaux restent fixes lors du dépôt. De plus, le recuit qui permet d'éliminer la couche organique peut être fait in situ, soit à l'air, soit dans tout mélange de gaz convenable.

Claims (5)

1. Couche barrière (4) au bombardement ionique, pour tube intensificateur d'images lumineuses, déposée entre une galette de micro-canaux multiplicatrice et une couche d'extraction (3) située à la surface de la photocathode du tube pour l'extraction de photo-électrons, cette couche barrière (4) étant destinée à arrêter les ions susceptibles de remonter dans les micro-canaux, caractérisée en ce que cette couche est constituée d'un composé stable de nitrure de silicium, Si3N4.
2. Couche barrière selon la revendication 1, caractérisée en ce que le composé est choisi pour que son indice de réfraction soit compris entre 1,8 et 1,9.
3. Couche barrière selon l'une des revendications 1 ou 2, caractérisée en ce que son épaisseur est comprise entre 5 et 8 nm.
4. Procédé de fabrication d'une couche barrière selon l'une des revendcations 1 à 3, caractérisée en ce qu'elle comprend le cycle opératoire suivant:
- dépôt d'un mince film organique sur la galette de micro-canaux;
- dépôt de la couche barrière (4) constituée d'un composé stable d'azote et de silicium sur le film mince organique par réaction chimique en phase vapeur activée par plasma à basse température;
- recuit à l'air pour assurer la combustion du film organique qui réalise l'adhérence de la couche barrière à la galette de micro-canaux.
5. Procédé selon la revendication 4, caractérisé en ce que son dépôt s'effectue à une température comprise entre 120°C et 150°C.
EP85402478A 1984-12-18 1985-12-12 Couche barrière au bombardement ionique pour tube à vide Expired EP0188938B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8419362 1984-12-18
FR8419362A FR2580864B1 (fr) 1984-12-18 1984-12-18 Couche barriere au bombardement ionique pour tube a vide

Publications (2)

Publication Number Publication Date
EP0188938A1 EP0188938A1 (fr) 1986-07-30
EP0188938B1 true EP0188938B1 (fr) 1989-07-12

Family

ID=9310728

Family Applications (1)

Application Number Title Priority Date Filing Date
EP85402478A Expired EP0188938B1 (fr) 1984-12-18 1985-12-12 Couche barrière au bombardement ionique pour tube à vide

Country Status (4)

Country Link
US (1) US4931693A (fr)
EP (1) EP0188938B1 (fr)
DE (1) DE3571530D1 (fr)
FR (1) FR2580864B1 (fr)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2683388A1 (fr) * 1991-10-31 1993-05-07 Thomson Tubes Electroniques Tube intensificateur d'image radiologique a resolution amelioree.
US6373174B1 (en) 1999-12-10 2002-04-16 Motorola, Inc. Field emission device having a surface passivation layer
US6396049B1 (en) * 2000-01-31 2002-05-28 Northrop Grumman Corporation Microchannel plate having an enhanced coating
JP6817160B2 (ja) * 2017-06-30 2021-01-20 浜松ホトニクス株式会社 電子増倍体
CN112420477B (zh) * 2020-10-30 2022-09-06 北方夜视技术股份有限公司 高增益、低发光ald-mcp及其制备方法与应用

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2303563A (en) * 1941-05-09 1942-12-01 Rca Corp Cathode ray tube and luminescent screen
GB1104935A (en) * 1964-05-08 1968-03-06 Standard Telephones Cables Ltd Improvements in or relating to a method of forming a layer of an inorganic compound
US3742224A (en) * 1972-02-29 1973-06-26 Litton Systems Inc Light amplifier device having an ion and low energy electron trapping means
US4242371A (en) * 1976-06-25 1980-12-30 Thomson-Csf High-luminance color screen for cathode-ray tubes and the method for manufacturing the same
US4395438A (en) * 1980-09-08 1983-07-26 Amdahl Corporation Low pressure chemical vapor deposition of silicon nitride films
JPH0129709Y2 (fr) * 1981-06-15 1989-09-11
US4618541A (en) * 1984-12-21 1986-10-21 Advanced Micro Devices, Inc. Method of forming a silicon nitride film transparent to ultraviolet radiation and resulting article

Also Published As

Publication number Publication date
FR2580864A1 (fr) 1986-10-24
US4931693A (en) 1990-06-05
DE3571530D1 (en) 1989-08-17
FR2580864B1 (fr) 1987-05-22
EP0188938A1 (fr) 1986-07-30

Similar Documents

Publication Publication Date Title
Zheng et al. Low resistivity indium tin oxide films by pulsed laser deposition
US4412903A (en) Coating infra red transparent semiconductor material
US4120700A (en) Method of producing p-n junction type elements by ionized cluster beam deposition and ion-implantation
US4201797A (en) Process for applying a light-absorbing, electron permeable layer within an image intensifier tube
EP0115970A1 (fr) Enceinte pour le traitement et notamment la gravure de substrats par la méthode du plasma réactif
US3769536A (en) Iii-v photocathode bonded to a foreign transparent substrate
FR2756096A1 (fr) Procede de production d'un dispositif d'affichage a plasma et structure de substrat correspondante
EP1421630B1 (fr) Procede de depot d'une couche d'oxyde sur un substrat et cellule photovoltaique utilisant ce substrat
US3992233A (en) Surface treatment of III-V compound crystals
EP0188938B1 (fr) Couche barrière au bombardement ionique pour tube à vide
EP0221812B1 (fr) Appareil et son procédé d'utilisation pour la formation de films minces assistée par plasma
US6580215B2 (en) Photocathode
EP0738420B1 (fr) PROCEDE et installation d'ASSEMBLAGE D'UN ECRAN PLAT DE VISUALISATION
US3959038A (en) Electron emitter and method of fabrication
US4563614A (en) Photocathode having fiber optic faceplate containing glass having a low annealing temperature
Hayashi et al. Photoluminescence spectra of clusters of group IV elements embedded in SiO 2 matrices
EP0413617B1 (fr) Procédé de dépôt de couches minces
US6116976A (en) Photocathode and image intensifier tube having an active layer comprised substantially of amorphic diamond-like carbon, diamond, or a combination of both
US6597112B1 (en) Photocathode for night vision image intensifier and method of manufacture
US4139857A (en) Schottky barrier type solid-state element
US5470266A (en) Low temperature process and apparatus for cleaning photo-cathodes
US4218495A (en) Schottky barrier type solid-state element
JPH01192177A (ja) 受光素子の製造方法
CN114180857A (zh) 一种银膜制备方法和具有银膜的基板
FR2793264A1 (fr) Procede de nettoyage d'une surface de substrat de silicium et application a la fabrication de composants electroniques integres

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE GB

17P Request for examination filed

Effective date: 19860808

17Q First examination report despatched

Effective date: 19871214

RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: THOMSON-CSF

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE GB

REF Corresponds to:

Ref document number: 3571530

Country of ref document: DE

Date of ref document: 19890817

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19901122

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19901126

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19911212

GBPC Gb: european patent ceased through non-payment of renewal fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19920901