EP0186555B1 - Self-refrigerating process for the extraction of heavy hydrocarbon fractions - Google Patents

Self-refrigerating process for the extraction of heavy hydrocarbon fractions Download PDF

Info

Publication number
EP0186555B1
EP0186555B1 EP85402339A EP85402339A EP0186555B1 EP 0186555 B1 EP0186555 B1 EP 0186555B1 EP 85402339 A EP85402339 A EP 85402339A EP 85402339 A EP85402339 A EP 85402339A EP 0186555 B1 EP0186555 B1 EP 0186555B1
Authority
EP
European Patent Office
Prior art keywords
gas
solvent
heavy
fraction
heavy fraction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP85402339A
Other languages
German (de)
French (fr)
Other versions
EP0186555A1 (en
Inventor
Joseph Larue
Alexandre Rojey
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IFP Energies Nouvelles IFPEN
Original Assignee
IFP Energies Nouvelles IFPEN
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IFP Energies Nouvelles IFPEN filed Critical IFP Energies Nouvelles IFPEN
Priority to AT85402339T priority Critical patent/ATE33673T1/en
Publication of EP0186555A1 publication Critical patent/EP0186555A1/en
Application granted granted Critical
Publication of EP0186555B1 publication Critical patent/EP0186555B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G5/00Recovery of liquid hydrocarbon mixtures from gases, e.g. natural gas
    • C10G5/04Recovery of liquid hydrocarbon mixtures from gases, e.g. natural gas with liquid absorbents
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1025Natural gas

Definitions

  • the present invention relates to a new self-cooled process, based on the principle of absorption-desorption in a solvent and making it possible to extract hydrocarbons of which the number of carbon atoms is at least equal to two, for example from 2 to 6 , of a gas which contains them.
  • This process can find applications in field gas treatment if the gas to be treated is for example a natural gas or an associated gas, and / or in refining and petrochemicals.
  • Gas expansion is the simplest of the processes; it has the disadvantage of greatly lowering the gas pressure and leads to a low recovery rate.
  • the gas is brought into contact with a solvent, in which the heaviest constituents of the gas are absorbed preferentially; the enriched solvent is then subjected to expansion and / or heating to be regenerated and to release the absorbed constituents; certain stages of these processes, in particular the absorption and recovery of heavy fractions, can be refrigerated by an external refrigeration cycle.
  • the most conventional method consists in cooling the gas using an external refrigerating machine; it allows working in a wide range of temperature and pressure and leads to significant recovery.
  • the present process applies in particular to the treatment of a gas containing a light fraction and a heavy fraction, the light fraction containing at least one light constituent of the group comprising hydrogen, nitrogen and hydrocarbons having from 1 to 2 carbon atoms and the heavy fraction containing at least one heavy constituent from the group comprising hydrocarbons having from 2 to 6 carbon atoms, provided that, when the light fraction contains a hydrocarbon containing 2 carbon atoms, the heavy fraction contains at least a hydrocarbon having 3 to 6 carbon atoms.
  • Non-distillable means that the major part, and preferably at least 90%, most often at least 98%, of the liquid phase is not vaporized under the operating conditions of the process.
  • majority (or selective) absorption of the heavy fraction it is meant that the relative proportion of heavy fraction absorbed is greater than the relative proportion of light fraction absorbed.
  • the majority lowering of the heavy fraction gas content means that the relative lowering of the heavy fraction gas content is greater than the relative lowering of the light fraction gas content.
  • the condensate in step (g), can receive heat not only from absorption (step a), but also from condensation (step f) and circulating fluids: depleted solution from step (e) and gas separated in step (b).
  • the absorption (step a) is carried out in two stages: the mixture of gas and liquid phase yields heat first to a medium external to the process and then to the condensate of step (g).
  • step f it is preferable to carry out the condensation (step f) in two stages: the gaseous phase releases heat first towards the external medium then towards the condensate expanded in step (g).
  • the heavy fraction desorbed may come out entirely vaporized or only partially vaporized.
  • a liquid / vapor fractionation will make it possible to collect a condensate, for example butane, and the remaining gaseous fraction can either be collected or recycled to be treated to a level mixed with the fresh gas.
  • steps (a) and / or (f) can advantageously take place at least partially at a temperature below room temperature thanks to the cold produced in step (g) .
  • the gas to be treated arrives via line 1; it is mixed with a gas flow coming from line 13; the total gas flow, circulating in line 23, is brought into contact with a solvent phase coming from line 8, and an addition of solvent coming from line 24.
  • GR rich gas
  • the mixture circulating in line 21 enters the exchanger A in which it is cooled by heat exchange with an external fluid entering through line 25 and emerging through line 26; during this heat exchange, part of the heaviest components of the gas is absorbed in the solvent; the mixture leaves the exchanger A via line 2, and enters the heat exchanger E2 in which it cools; another fraction of the heaviest components of the gas is absorbed in the solvent; the mixture leaves the exchanger E2 via line 17 and enters the tank B2 in which the gas and the liquid are separated; the gas, depleted in heavy constituents, called lean gas (GP), leaves the cylinder B2 via line 19, enters the exchanger E2 in which it heats up by heat exchange and leaves the process through line 16.
  • GP lean gas
  • the liquid phase leaves the balloon B2 via line 18, passes through pump P which raises the pressure, enters via line 20 in exchanger E2 in which it heats up by heat exchange, exits through line 3, enters heat exchanger E 1 in which it heats up by heat exchange, exits through line 4, enters heat exchanger G in which it heats up by heat exchange with a hot external fluid which enters the exchanger G via the pipe 29 and exits from it via the pipe 30.
  • SR rich solution
  • SP solvent
  • LPG vapor phase
  • the at least partially condensed fluid leaves the exchanger C via the line 10 enters the exchanger E2 in which it cools, which causes total condensation and / or sub-cooling, exits through the line 15, is expanded in valve V1, enters via line 11 into exchanger E1 in which it vaporizes by heat exchange producing cold, exits through line 12 partially vaporized, and enters balloon B3 in which the two liquid phases and steam are separated; the liquid phase, which contains heavy constituents extracted from the treated gas, leaves the process via line 14, the vapor phase leaves the flask B3 through line 13 and is mixed with the gas to be treated coming from line 1.
  • the absorption of the heavy constituents of the treated gas in the solvent is carried out partially at low temperature; on the other hand, the condensation of the desorbed heavy fractions can be completely carried out at a temperature close to ambient, that is to say that the flow leaving the exchanger C via line 10 can be completely in the liquid state if the pressure in this area of the process is high enough.
  • the rich gas which can be treated by the process according to the invention is a petroleum gas which can come from a production field (natural gas or associated gas) or be a gas from a refinery or from a petrochemical unit.
  • This gas can contain hydrocarbons, saturated or not, with a branched or cyclic straight chain, such as for example methane, etane, propane, butane, pentane, hexane, ethylene, propylene, butene, acetylene. Heavier constituents may be present, for example heptane, octane, nonane and decane. The higher the proportions of hydrocarbons present the lower their number of carbon atoms.
  • the method according to the invention makes it possible to recover at least part of the hydrocarbons other than methane.
  • the gas may also contain some constituents which are not part of the hydrocarbon family and which are not recovered by the process, such as for example hydrogen, nitrogen, carbon dioxide, hydrogen sulfide, l 'water.
  • the solvent used in the process according to the invention is chosen so as to allow the absorption of the heavy constituents of the gas; it is preferably characterized by a boiling point at least 50 ° C and preferably at least 100 ° C higher than that of the heaviest component of the heavy fraction of the gas; it can be a pure body or a mixture. It can be chosen from hydrocarbons; in this case the number of carbon atoms is at least equal to 6; the hydrocarbons can be paraffinic, aromatic or naphthenic, and can be chosen, for example, from oils.
  • the external cooling fluid circulating in the exchangers A and C can be water or ambient air or a fluid coming from a refrigeration machine external to the process.
  • certain exchangers can be of multiple flow: 3 for E 1, 5 for E2, but one can also carry out exchanges between fluids two by two.
  • the method according to the invention can treat gases whose pressure is preferably between 0.1 and 20 MPa.
  • the pressure of steps (a, b and g) is preferably within the same range and that of steps (c, d and f) preferably between 0.2 and 20 MPa, with the additional condition that the pressure of steps ( c, d and f) is at least 0.1 MPa, preferably at least 0.5 MPa, higher than that of steps (a, b and g).
  • cooling can precede or follow the pressure reduction: we then go from the pressure of step (d) to that of step (a).
  • the heat supplied to the process in the exchanger G, to carry out the desorption of the absorbed constituents, is at a temperature level preferably between 100 and 300 ° C.
  • the cold produced by the vaporization of a part of the absorbed constituents and which serves to cool the absorption of a part of the heavy constituents of the rich gas and / or to condense said heavy constituents reseparated from the solvent is at a temperature level preferably between 10 and -50 ° CV.
  • the gas to be treated enters the process through line 1; its composition is given in Table 1; its temperature is 35 ° C, its pressure is 0.15 MPa absolute, its flow rate is 1184 kg / h. It is mixed with the gas coming from line 13 whose flow rate is 1264 kg / h, and with the solvent coming from line 8 whose flow rate is 6650 kg / h; the makeup of solvent provided by line 24 is 27 kg / h.
  • the solvent used is a paraffinic oil whose normal boiling temperature is between 300 and 350 ° C.
  • the gas and solvent mixture passes through the exchanger A which is cooled by cooling water; at the outlet of the exchanger A, the mixture is at a temperature of 35 ° C. It enters the exchanger E2, in which it is cooled down to a temperature of -10 ° C.
  • the two liquid and vapor phases are separated in the flask B2; the gas which has not been absorbed, called lean gas and the composition of which is given in Table 1, leaves the cylinder B2 via line 19, passes through the exchanger E2, and leaves the process at a temperature of 30 ° C. via the line 16; its flow rate is 872 kg / h.
  • the solvent phase enriched in absorbed constituents called rich solution leaves the tank B2 via line 18, passes through the pump P which raises its pressure to 0.74 MPa; it enters the exchanger E2 in which it heats up, exits through line 3, enters the exchanger E1 in which it heats up, exits through line 4, enters the exchanger G in which it heats up by exchange thermal with a hot external fluid, comes out through line 5 at a temperature of 200 ° C, partially vaporized.
  • tank B1 The two liquid and vapor phases are separated in tank B1; the liquid phase, rich in solvent called lean solution, leaves tank B1 through line 6, enters exchanger E1 in which it cools, exits through line 7, crosses valve V2 undergoing a pressure loss which reduces its pressure substantially to the value of that of the rich gas at the inlet of the process and passes through line 8 to be brought back into contact with the gas to be treated.
  • the vapor phase of the flask B3 leaves through line 13 and is mixed with the rich gas.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Gas Separation By Absorption (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

This new process provides for the treatment of a gas containing a light fraction and a heavy fraction, so as to extract at least a portion of the heavy fraction. The process is characterized in that the gas to be treated (1) is contacted with a solvent (8) under cooling conditions to selectively absorb at least a portion of the heavy fraction of the gas in the solvent; the light unabsorbed fraction is discharged (16) and the solution of the heavy fraction in the solvent (18) is subjected to desorption (B1): the solvent (6) is recycled and the evaporated heavy fraction (9) is condensed (C), expanded (V1) and evaporated in thermal exchange contact (E2) with the mixture of the gas and the solvent to be cooled; the heavy fraction is discharged (14). The process may be used for the treatment of gas on the field (associated gas, natural gas) and/or in refining and petrochemical operations.

Description

La présente invention concerne un nouveau procédé autoréfrigéré, basé sur le principe de l'absorption- désorption dans un solvant et permettant d'extraire des hydrocarbures dont le nombre d'atomes de carbone est au moins égale à deux, par exemple de 2 à 6, d'un gaz qui les renferme. Ce procédé peut trouver des applications en traitement de gaz sur champ si le gaz à traiter est par exemple un gaz naturel ou un gas associé, et/ou en raffinage et pétrochimie.The present invention relates to a new self-cooled process, based on the principle of absorption-desorption in a solvent and making it possible to extract hydrocarbons of which the number of carbon atoms is at least equal to two, for example from 2 to 6 , of a gas which contains them. This process can find applications in field gas treatment if the gas to be treated is for example a natural gas or an associated gas, and / or in refining and petrochemicals.

Lorsqu'un gaz, par exemple un gaz de pétrole, est riche en composants lourds, c'est-à-dire en hydrocarbures facilement condensables et si ce gaz doit être transporté, il est nécessaire de le débarrasser d'une partie de ces composants pour éviter la formation de bouchons liquides qui perturberaient le transport. D'autre part, les produits récupérés peuvent s'avérer intéressants financièrement.When a gas, for example a petroleum gas, is rich in heavy components, i.e. easily condensable hydrocarbons and if this gas has to be transported, it is necessary to rid it of part of these components to avoid the formation of liquid plugs which would disrupt transport. On the other hand, the products recovered can prove to be financially attractive.

Les procédés les plus utilisés pour réaliser ces séparations sont de trois types: la détente, l'absorption dans un solvant et la réfrigération.There are three types of processes most commonly used to achieve these separations: expansion, absorption in a solvent, and refrigeration.

La détente du gaz est le plus simple des procédés; il présente l'inconvénient d'abaisser fortement la pression du gaz et conduit à un taux de récupération faible.Gas expansion is the simplest of the processes; it has the disadvantage of greatly lowering the gas pressure and leads to a low recovery rate.

Dans les procédés à absorption, le gaz est mis en contact avec un solvant, dans lequel les constituants les plus lourds du gaz s'absorbent préférentiellement; le solvant enrichi est ensuite soumis à une détente et/ou un chauffage pour être régénéré et libérer les constituants absorbés; certaines étapes de ces procédés, en particulier l'absorption et la récupération des fractions lourdes, peuvent être réfrigérées par un cycle frigorifique externe.In absorption processes, the gas is brought into contact with a solvent, in which the heaviest constituents of the gas are absorbed preferentially; the enriched solvent is then subjected to expansion and / or heating to be regenerated and to release the absorbed constituents; certain stages of these processes, in particular the absorption and recovery of heavy fractions, can be refrigerated by an external refrigeration cycle.

Le procédé le plus classique consiste à réfroidir le gaz à l'aide d'une machine frigorifique externe; il permet de travailler dans une large gamme de température et de pression et conduit à une récupération importante.The most conventional method consists in cooling the gas using an external refrigerating machine; it allows working in a wide range of temperature and pressure and leads to significant recovery.

Le présent procédé s'applique en particulier au traitement d'un gaz renfermant une fraction légère et une fraction lourde, la fraction légère contenant au moins un constituant léger du groupe comprenant l'hydrogène, l'azote et les hydrocarbures ayant de 1 à 2 atomes de carbone et la fraction lourde contenant au moins un constituant lourd du groupe comprenant les hydrocarbures ayant de 2 à 6 atomes de carbone, sous réserve que, lorsque la fraction légère renferme un hydrocarbure à 2 atomes de carbone, la fraction lourde renferme au moins un hydrocarbure ayant de 3 à 6 atomes de carbone.The present process applies in particular to the treatment of a gas containing a light fraction and a heavy fraction, the light fraction containing at least one light constituent of the group comprising hydrogen, nitrogen and hydrocarbons having from 1 to 2 carbon atoms and the heavy fraction containing at least one heavy constituent from the group comprising hydrocarbons having from 2 to 6 carbon atoms, provided that, when the light fraction contains a hydrocarbon containing 2 carbon atoms, the heavy fraction contains at least a hydrocarbon having 3 to 6 carbon atoms.

Le procédé selon l'invention de traitement d'un gaz tel que défini plus haut, par extraction dans une phase liquide de solvant, la solubilité de la fraction lourde dans le solvant étant supérieure à celle de la fraction légère et la phase liquide de solvant étant substantiellement non-distillable dans les conditions du procédé, est caractérisé en ce que:

  • a) on met en contact le gaz avec la phase liquide de solvant, de manière à absorber majoritairement au moins une partie de la fraction lourde du gaz dans la phase liquide et à abaisser majoritairement la teneur du gaz en cette fraction lourde, et l'on évacue la chaleur résultante,
  • b) on fractionne le produit de l'étape (a) pour recueillir séparément la phase liquide résultante et le gaz non-absorbé,
  • c) on élève la pression de la phase liquide séparée à l'étape (b) et on élève suffisamment sa température pour qu'elle laisse se désorber au moins une partie du gaz qu'elle avait absorbé à l'étape (a),
  • d) on fractionne le produit de l'étape (c) pour recueillir séparément une solution appauvrie et une phase gazeuse désorbée,
  • e) on refroidit la solution appauvrie, on abaisse sa pression et on la renvoie à l'étape (a) pour y reconstituer au moins une partie de la phase liquide de solvant,
  • f) on refroidit la phase désorbée de manière à en condenser au moins une partie et l'on recueille le condensat résultant,
  • g) on détend la pression du condensat et fournit de la chaleur au condensat détendu, de manière à en évaporer au moins une partie, et on recueille le produit résultant de cette évaporation au moins partielle, enrichi en constituant lourd, par rapport au gaz de départ,
  • le procédé étant caractérisé en outre en ce que au moins une partie de la chaleur évacuée à l'étape (a) constitue au moins une partie de la chaleur fournie à l'étape (g).
The process according to the invention for treating a gas as defined above, by extraction in a liquid solvent phase, the solubility of the heavy fraction in the solvent being greater than that of the light fraction and the liquid solvent phase being substantially non-distillable under the process conditions, is characterized in that:
  • a) the gas is brought into contact with the liquid solvent phase, so as to mainly absorb at least part of the heavy fraction of the gas in the liquid phase and to lower the majority of the content of the gas in this heavy fraction, and we remove the resulting heat,
  • b) the product from step (a) is fractionated to collect the resulting liquid phase and the non-absorbed gas separately,
  • c) the pressure of the liquid phase separated in step (b) is raised and its temperature is raised enough to allow at least part of the gas it had absorbed to be desorbed in step (a),
  • d) the product of step (c) is fractionated to collect separately a depleted solution and a desorbed gas phase,
  • e) the depleted solution is cooled, its pressure is lowered and it is returned to step (a) in order to reconstitute therein at least part of the liquid solvent phase,
  • f) the desorbed phase is cooled so as to condense at least part of it and the resulting condensate is collected,
  • g) the pressure of the condensate is relaxed and heat is supplied to the expanded condensate, so as to evaporate at least part of it, and the product resulting from this at least partial evaporation is collected, enriched with a heavy constituent, relative to the gas of departure,
  • the method being further characterized in that at least a portion of the heat removed in step (a) constitutes at least a portion of the heat provided in step (g).

Non-distillable signifie que la majeure partie, et de préférence au moins 90%, le plus souvent au moins 98%, de la phase liquide n'est pas vaporisée dans les conditions opératoires du procédé. Par absorption majoritaire (ou sélective) de la fraction lourde, on entend que la proportion relative de fraction lourde absorbée est supérieure à la proportion relative de fraction légère absorbée. L'abaissement majoritaire de la teneur du gaz en fraction lourde signifie que l'abaissement relatif de la teneur du gaz en fraction lourde est supérieur à l'abaissement relatif de la teneur du gaz en fraction légère.Non-distillable means that the major part, and preferably at least 90%, most often at least 98%, of the liquid phase is not vaporized under the operating conditions of the process. By majority (or selective) absorption of the heavy fraction, it is meant that the relative proportion of heavy fraction absorbed is greater than the relative proportion of light fraction absorbed. The majority lowering of the heavy fraction gas content means that the relative lowering of the heavy fraction gas content is greater than the relative lowering of the light fraction gas content.

Dans le procédé, à l'étape (g), le condensât peut recevoir de la chaleur non seulement de l'absorption (étape a), mais aussi de la condensation (étape f) et des fluides circulants: solution appauvrie de l'étape (e) et gaz séparé à l'étape (b).In the process, in step (g), the condensate can receive heat not only from absorption (step a), but also from condensation (step f) and circulating fluids: depleted solution from step (e) and gas separated in step (b).

De préférence, l'absorption (étape a) est réalisée en deux stades: le mélange de gaz et de phase liquide cède de la chaleur d'abord à un milieu extérieur au procédé puis au condensat de l'étape (g).Preferably, the absorption (step a) is carried out in two stages: the mixture of gas and liquid phase yields heat first to a medium external to the process and then to the condensate of step (g).

De même il est préférable de réaliser la condensation (étape f) en deux stades: la phase gazeuse libère de la chaleur d'abord vers le milieu extérieur puis vers le condensat détendu à l'étape (g).Similarly, it is preferable to carry out the condensation (step f) in two stages: the gaseous phase releases heat first towards the external medium then towards the condensate expanded in step (g).

Selon le degré d'évaporation à l'étape (g), la fraction lourde désorbée pourra sortir entièrement vaporisée ou seulement partiellement vaporisée. Dans ce dernier cas, un fractionnement liquide/vapeur permettra de recueillir un condensat, par exemple du butane, et la fraction gazeuse restante pourra être soit recueillie, soit recyclée pour être à niveau traitée en mélange avec le gaz frais.Depending on the degree of evaporation in step (g), the heavy fraction desorbed may come out entirely vaporized or only partially vaporized. In the latter case, a liquid / vapor fractionation will make it possible to collect a condensate, for example butane, and the remaining gaseous fraction can either be collected or recycled to be treated to a level mixed with the fresh gas.

Dans le procédé selon l'invention, l'une au moins des étapes (a) et/ou (f) peut avantageusement avoir lieu au moins partiellement à une température inférieure à la température ambiante grâce au froid produit à l'étape (g).In the process according to the invention, at least one of steps (a) and / or (f) can advantageously take place at least partially at a temperature below room temperature thanks to the cold produced in step (g) .

Un exemple du procédé selon l'invention est illustré par la figure. Le gaz à traiter, dénommé gaz riche (GR), arrive par la conduite 1; il est mélangé avec un flux gazeux venant de la conduite 13; le flux gazeux total, circulant dans la conduite 23, est mis en contact avec une phase solvant venant de la conduite 8, et un appoint de solvant provenant de la conduite 24. Le mélange circulant dans la conduite 21 entre dans l'échangeur A dans lequel il est refroidi par échange thermique avec un fluide externe entrant par la conduite 25 et ressortant par la conduite 26; au cours de cet échange de chaleur, une partie des constituants les plus lourdes du gaz s'absorbe dans le solvant; le mélange sort de l'échangeur A par la conduite 2, et entre dans l'échangeur de chaleur E2 dans lequel il se refroidit; une autre fraction des consituants les plus lourds du gaz s'absorbe dans le solvant; le mélange sort de l'échangeur E2 par la conduite 17 et entre dans le ballon B2 dans lequel le gaz et le liquide sont séparés; le gaz, appauvri en constituants lourds, dénommé gaz pauvre (GP), sort du ballon B2 par la conduite 19, entre dans l'échangeur E2 dans lequel il se réchauffe par échange thermique et sort du procédé par la conduite 16. La phase liquide, dénommée solution riche (SR), constituée de solvant et des constituants lourds absorbés, sort du ballon B2 par la conduite 18, passe dans la pompe P qui en élève la pression, entre par la conduite 20 dans l'échangeur E2 dans lequel elle se réchauffe par échange thermique, sort par la conduite 3, entre dans l'échangeur E 1 dans lequel elle se réchauffe par échange thermique, sort par la conduite 4, entre dans l'échangeur G dans lequel elle se réchauffe par échange thermique avec un fluide externe chaud qui entre dans l'échangeur G par la conduite 29 et en ressort par la conduite 30. Le mélange ressort de l'échangeur G par la conduite 5 partiellement vaporisé; la phase liquide est séparée de la phase vapeur dans le ballon B1 ; la phase liquide, constituée principalement de solvant, dénommée solution pauvre (SP), sort du ballon B1 par la conduite 6, entre dans l'échangeur E1 dans lequel elle se refroidit par échange thermique, sort par la conduite 7, traverse la vanne V2 en subissant une baisse de pression, et arrive par la conduite 8 pour être à nouveau mise en contact avec le gaz; la phase vapeur (GPL), constituée principalement des constituants absorbés par le solvant, sort du ballon 81 par la conduite 9, entre dans l'échangeur E1 dans lequel elle se refroidit par échange thermique, sort par la conduite 22, entre dans le condenseur C dans lequel elle se refroidit par échange thermique avec un fluide externe froid entrant par la conduite 27 et ressortant par la conduite 28; au cours de ce refroidissement une condensation au moins partielle se produit. Le fluide au moins partiellement condensé sort de l'échangeur C par la conduite 10, entre dans l'échangeur E2 dans lequel il se refroidit, ce qui provoque une condensation totale et/ou un sous-refroidissement, ressort par la conduite 15, est détendu dans la vanne V1, entre par la conduite 11 dans l'échangeur E1 dans lequel il se vaporise par échange thermique en produisant du froid, ressort par la conduite 12 partiellement vaporisé, et entre dans le ballon B3 dans lequel les deux phases liquide et vapeur sont séparées; la phase liquide, qui contient des constituants lourds extraits du gaz traité, sort du procédé par la conduite 14, la phase vapeur sort du ballon B3 par la conduite 13 et est mélangée au gaz à traiter provenant de la conduite 1.An example of the method according to the invention is illustrated in the figure. The gas to be treated, called rich gas (GR), arrives via line 1; it is mixed with a gas flow coming from line 13; the total gas flow, circulating in line 23, is brought into contact with a solvent phase coming from line 8, and an addition of solvent coming from line 24. The mixture circulating in line 21 enters the exchanger A in which it is cooled by heat exchange with an external fluid entering through line 25 and emerging through line 26; during this heat exchange, part of the heaviest components of the gas is absorbed in the solvent; the mixture leaves the exchanger A via line 2, and enters the heat exchanger E2 in which it cools; another fraction of the heaviest components of the gas is absorbed in the solvent; the mixture leaves the exchanger E2 via line 17 and enters the tank B2 in which the gas and the liquid are separated; the gas, depleted in heavy constituents, called lean gas (GP), leaves the cylinder B2 via line 19, enters the exchanger E2 in which it heats up by heat exchange and leaves the process through line 16. The liquid phase , called rich solution (SR), consisting of solvent and heavy constituents absorbed, leaves the balloon B2 via line 18, passes through pump P which raises the pressure, enters via line 20 in exchanger E2 in which it heats up by heat exchange, exits through line 3, enters heat exchanger E 1 in which it heats up by heat exchange, exits through line 4, enters heat exchanger G in which it heats up by heat exchange with a hot external fluid which enters the exchanger G via the pipe 29 and exits from it via the pipe 30. The mixture leaves the exchanger G via the pipe 5 partially vaporized; the liquid phase is separated from the vapor phase in the flask B1; the liquid phase, consisting mainly of solvent, called lean solution (SP), leaves the balloon B1 via line 6, enters the exchanger E1 in which it cools by heat exchange, leaves via line 7, passes through the valve V2 undergoing a drop in pressure, and arrives via line 8 to be brought back into contact with the gas; the vapor phase (LPG), consisting mainly of the constituents absorbed by the solvent, leaves the flask 81 via line 9, enters the exchanger E1 in which it cools by heat exchange, leaves via line 22, enters the condenser C in which it cools by heat exchange with a cold external fluid entering through line 27 and emerging through line 28; during this cooling at least partial condensation occurs. The at least partially condensed fluid leaves the exchanger C via the line 10, enters the exchanger E2 in which it cools, which causes total condensation and / or sub-cooling, exits through the line 15, is expanded in valve V1, enters via line 11 into exchanger E1 in which it vaporizes by heat exchange producing cold, exits through line 12 partially vaporized, and enters balloon B3 in which the two liquid phases and steam are separated; the liquid phase, which contains heavy constituents extracted from the treated gas, leaves the process via line 14, the vapor phase leaves the flask B3 through line 13 and is mixed with the gas to be treated coming from line 1.

Dans cet exemple du procédé selon l'invention, l'absorption des constituants lourds du gaz traité dans le solvant est réalisée partiellement à basse température; par contre, la condensation des fractions lourdes désorbées peut être totalement réalisée à une température proche de l'ambiante, c'est-à-dire que le flux sortant de l'échangeur C par la conduite 10 peut être totalement à l'état liquide si la pression dans cette zone du procédé est suffisamment élevée.In this example of the process according to the invention, the absorption of the heavy constituents of the treated gas in the solvent is carried out partially at low temperature; on the other hand, the condensation of the desorbed heavy fractions can be completely carried out at a temperature close to ambient, that is to say that the flow leaving the exchanger C via line 10 can be completely in the liquid state if the pressure in this area of the process is high enough.

Le gaz riche qui peut être traité par le procédé selon l'invention est un gaz de pétrole qui peut provenir d'un champ de production (gas naturel ou gaz associé) ou être un gas de raffinerie ou d'unité pétrochimique. Ce gaz peut contenir des hydrocarbures, saturé ou non, à chaîne droite ramifiée ou cyclique, tels que par exemple le méthane, l'étane, le propane, le butane, le pentane, l'hexane, l'éthylène, le propylène, le butène, l'acétylène. Des constituants plus lourdes peuvent être présents, par exemple l'heptane, l'octane, le nonane et le décane. Les proportions d'hydrocarures présents sont d'autant plus faibles que leur nombre d'atomes de carbone est plus grand. Le procédé selon l'invention permet de récupérer une partie au moins des hydrocarbures autres que le méthane. Le gaz peut également contenir quelques constituants qui ne font pas partie de la famille des hydrocarbures et qui ne sont pas récupérés par le procédé, tels que par exemple l'hydrogène, l'azote, le dioxyde de carbone, l'hydrogène sulfuré, l'eau.The rich gas which can be treated by the process according to the invention is a petroleum gas which can come from a production field (natural gas or associated gas) or be a gas from a refinery or from a petrochemical unit. This gas can contain hydrocarbons, saturated or not, with a branched or cyclic straight chain, such as for example methane, etane, propane, butane, pentane, hexane, ethylene, propylene, butene, acetylene. Heavier constituents may be present, for example heptane, octane, nonane and decane. The higher the proportions of hydrocarbons present the lower their number of carbon atoms. The method according to the invention makes it possible to recover at least part of the hydrocarbons other than methane. The gas may also contain some constituents which are not part of the hydrocarbon family and which are not recovered by the process, such as for example hydrogen, nitrogen, carbon dioxide, hydrogen sulfide, l 'water.

Le solvant utilisé dans le procédé selon l'invention est choisi de manière à permettre l'absorption des consituants lourds du gaz; il est de préférence caractérisé par un point d'ébullition supérieur d'au moins 50°C et de préference d'au moins 100°C à celui du constituant le plus lourd de la fraction lourde du gaz; il peut être un corps pur ou un mélange. Il peut être choisi parmi les hydrocarbures; dans ce cas le nombre d'atomes de carbone est au moins ègal à 6; les hydrocarbùres peuvent être paraffiniques, aromatiques ou naphthéniques, et peuvent être choisis, par exemple, parmi les huiles. Un ou plusieurs atomes d'hydrogène peuvent être substitués par d'autres atomes tels que F, CI, Br et le solvant peut comporter des fonctions alcool, aldéhyde, cétone, ester, éther, acide carboxylique ayant notamment les formules R-CH20H, R-CHOH-R', RR'R"C-OH, R-CHO, RR'C=O, R-COO-R', R-O-R', R-COOH dans lesquelles R, R', et R" désignent des radicaux hydrocarbon- nés qui peuvant eux-même partiellement substitués, le dit solvant pouvant être constitué d'un mélange de plusieurs de ces produits.The solvent used in the process according to the invention is chosen so as to allow the absorption of the heavy constituents of the gas; it is preferably characterized by a boiling point at least 50 ° C and preferably at least 100 ° C higher than that of the heaviest component of the heavy fraction of the gas; it can be a pure body or a mixture. It can be chosen from hydrocarbons; in this case the number of carbon atoms is at least equal to 6; the hydrocarbons can be paraffinic, aromatic or naphthenic, and can be chosen, for example, from oils. One or more hydrogen atoms may be substituted by other atoms such as F, CI, Br and the solvent may contain alcohol, aldehyde, ketone, ester, ether, ether, carboxylic acid functions having in particular the formulas R-CH 2 0H , R-CHOH-R ', RR'R "C-OH, R-CHO, RR'C = O, R-COO-R', RO-R ', R-COOH in which R, R', and R "denote hydrocarbon radicals which may themselves be partially substituted, the said solvent being able to consist of a mixture of several of these products.

Dans le procédé selon l'invention, le fluide externe de refroidissement circulant dans les échangeurs A et C peut être l'eau ou l'air ambiant ou un fluide provenant d'une machine frigorifique externe au procédé.In the process according to the invention, the external cooling fluid circulating in the exchangers A and C can be water or ambient air or a fluid coming from a refrigeration machine external to the process.

Dans le procédé selon l'invention, certains échangeurs peuvent être à flux multiples: 3 pour E 1, 5 pour E2, mais on peut également procéder à des échanges entre fluides deux par deux.In the process according to the invention, certain exchangers can be of multiple flow: 3 for E 1, 5 for E2, but one can also carry out exchanges between fluids two by two.

Le procédé selon l'invention peut traiter des gaz dont la pression est de préférence comprise entre 0,1 et 20 MPa. La pression des étapes (a, b et g) est de préférence comprise dans le même domaine et celle des étapes (c, d et f) de préférence entre 0, 2 et 20 MPa, avec la condition supplémentaire que la pression des étapes (c, d et f) est supérieure d'au moins 0,1 MPa, de préférence d'au moins 0,5 MPa, à celle des étapes (a, b et g).A l'étape (e) le refroidissement peut précéder ou suivre l'abaissement de pression: on passe alors de la pression de l'étape (d) à celle de l'étape (a).The method according to the invention can treat gases whose pressure is preferably between 0.1 and 20 MPa. The pressure of steps (a, b and g) is preferably within the same range and that of steps (c, d and f) preferably between 0.2 and 20 MPa, with the additional condition that the pressure of steps ( c, d and f) is at least 0.1 MPa, preferably at least 0.5 MPa, higher than that of steps (a, b and g). In step (e) cooling can precede or follow the pressure reduction: we then go from the pressure of step (d) to that of step (a).

La chaleur fournie au procédé dans l'échangeur G, pour réaliser la désorption des constituants absorbés, est à un niveau de température de préférence compris entre 100 et 300°C.The heat supplied to the process in the exchanger G, to carry out the desorption of the absorbed constituents, is at a temperature level preferably between 100 and 300 ° C.

Le froid produit par la vaporisation d'une partie des constituants absorbés et qui sert à refroidir l'absorption d'une partie des constituants lourds du gaz riche et/ou à condenser lesdits constituants lourds resépa- rés du solvant est à un niveau de température de préférence compris entre 10 et -50°CV.The cold produced by the vaporization of a part of the absorbed constituents and which serves to cool the absorption of a part of the heavy constituents of the rich gas and / or to condense said heavy constituents reseparated from the solvent is at a temperature level preferably between 10 and -50 ° CV.

Le procédé selon l'invention est illustré par l'exemple suivant:The process according to the invention is illustrated by the following example:

ExempleExample

Dans cet exemple, on procède selon le schéma représenté sur la figure.In this example, we proceed according to the diagram shown in the figure.

Le gaz à traiter, dénommé gaz riche, entre dans le procédé par la conduite 1 ; sa composition est donnée sur le Tableau 1; sa température est de 35°C, sa pression est de 0,15 MPa absolu, son débit est de 1184 kg/h. Il est mélangé au gaz provenant de la conduite 13 dont le débit est de 1264 kg/h, et au solvant provenant de la conduite 8 dont le débit est de 6650 kg/h; l'appoint de solvant apporté par la conduite 24 est de 27 kg/h. Le solvant utilisé est une huile paraffi- nique dont la température d'ébullition normale est comprise entre 300 et 350°C.

Figure imgb0001
The gas to be treated, called rich gas, enters the process through line 1; its composition is given in Table 1; its temperature is 35 ° C, its pressure is 0.15 MPa absolute, its flow rate is 1184 kg / h. It is mixed with the gas coming from line 13 whose flow rate is 1264 kg / h, and with the solvent coming from line 8 whose flow rate is 6650 kg / h; the makeup of solvent provided by line 24 is 27 kg / h. The solvent used is a paraffinic oil whose normal boiling temperature is between 300 and 350 ° C.
Figure imgb0001

Le mélange gaz et solvant traverse l'échangeur A qui est refroidi par de l'eau de refroidissement; à la sortie de l'échangeur A, le mélange est à une température de 35°C. Il entre dans l'échangeur E2, dans lequel il est refroidi jusqu'à une température de -10°C. Les deux phases liquide et vapeur sont séparées dans le ballon B2; le gaz qui n'a pas été absorbé dénommé gaz pauvre et dont la composition est donnée sur le Tableau 1 sort du ballon B2 par la conduite 19, traverse l'échangeur E2, et sort du procédé à une température de 30°C par la conduite 16; son débit est de 872 kg/h. La phase solvant enrichie en constituants absorbés dénommée solution riche, sort du bac B2 par la conduite 18, passe dans la pompe P qui élève sa pression jusqu'à 0,74 MPa; elle entre dans l'échangeur E2 dans lequel elle se réchauffe, ressort par la conduite 3, entre dans l'échangeur E1 dans lequel elle se réchauffe, sort par la conduite 4, entre dans l'échangeur G dans lequel elle se réchauffe par échange thermique avec un fluide externe chaud, ressort par la conduite 5 à une température de 200°C, partiellement vaporisée. Les deux phases liquide et vapeur sont séparés dans le bac B1 ; la phase liquide, riche en solvant dénommée solution pauvre, sort du bac B1 par la conduite 6, entre dans l'échangeur E1 dans lequel elle se refroidit, ressort par la conduite 7, traverse la vanne V2 en subissant une perte de pression ce qui ramène sa pression sensiblement à la valeur de celle du gaz riche à l'entrée du procédé et passe par la conduite 8 pour être à nouveau mise en contact avec le gaz à traiter. La phase gazeuse du bac B1, sort par la conduite 9, entre dans l'échangeur E1 dans lequel elle se refroidit, sort par la conduite 22, entre dans le condenseur C dans lequel elle se refroidit jusqu'à 35°C par échange thermique avec de l'eau de refroidissement; à la sortie du condenseur C, le fluide est entièrement condensé, il entre dans l'échangeur E2 dans lequel il est sous-refroidi jusqu'à -11 °C, détendu dans la vanne V1, jusqu'à 0,15 MPa environ et vaporisé partiellement dans l'échangeur E1 en produisant du froid, ressort par la conduite 12 à une température de 30°C, et entre dans le ballon B3 où les deux phases liquide et vapeur sont séparées; la phase liquide constituée principalement de constituants extraits du gaz riche, sort du procédé par la conduite 14, sa composition est donnée sur le Tableau 1. La phase vapeur du ballon B3 sort par la conduite 13 et est mélangée avec le gaz riche.The gas and solvent mixture passes through the exchanger A which is cooled by cooling water; at the outlet of the exchanger A, the mixture is at a temperature of 35 ° C. It enters the exchanger E2, in which it is cooled down to a temperature of -10 ° C. The two liquid and vapor phases are separated in the flask B2; the gas which has not been absorbed, called lean gas and the composition of which is given in Table 1, leaves the cylinder B2 via line 19, passes through the exchanger E2, and leaves the process at a temperature of 30 ° C. via the line 16; its flow rate is 872 kg / h. The solvent phase enriched in absorbed constituents called rich solution, leaves the tank B2 via line 18, passes through the pump P which raises its pressure to 0.74 MPa; it enters the exchanger E2 in which it heats up, exits through line 3, enters the exchanger E1 in which it heats up, exits through line 4, enters the exchanger G in which it heats up by exchange thermal with a hot external fluid, comes out through line 5 at a temperature of 200 ° C, partially vaporized. The two liquid and vapor phases are separated in tank B1; the liquid phase, rich in solvent called lean solution, leaves tank B1 through line 6, enters exchanger E1 in which it cools, exits through line 7, crosses valve V2 undergoing a pressure loss which reduces its pressure substantially to the value of that of the rich gas at the inlet of the process and passes through line 8 to be brought back into contact with the gas to be treated. The gaseous phase of tank B1, exits via line 9, enters exchanger E1 in which it cools, exits via line 22, enters condenser C in which it cools to 35 ° C by heat exchange with cooling water; at the outlet of the condenser C, the fluid is fully condensed, it enters the exchanger E2 in which it is sub-cooled to -11 ° C, expanded in the valve V1, up to approximately 0.15 MPa and partially vaporized in the exchanger E1, producing cold, exits through line 12 at a temperature of 30 ° C, and enters the flask B3 where the two liquid and vapor phases are separated; the liquid phase consisting mainly of constituents extracted from the rich gas, leaves the process via line 14, its composition is given in Table 1. The vapor phase of the flask B3 leaves through line 13 and is mixed with the rich gas.

Claims (8)

1. A process for treating a gas containing a light fraction and a heavy fraction, in order to extract at least a portion of the heavy fraction, the light fraction containing at least one light constituent from the group comprising hydrogen, nitrogen, and hydrocarbons having 1 to 2 carbon atoms and the heavy fraction containing at least one heavy constituent from the group comprising hydrocarbons having 2 to 6 carbon atoms, provided that, when the light fraction contains a hydrocarbon of 2 carbon atoms, the heavy fraction contains at least one hydrocarbon having from 3 to 6 carbon atoms, said process involving an extraction in a solvent liquid phase so selected that the solubility of the heavy fraction in the solvent be higher than that of the light fraction, and that the solvent liquid be substantially undistillable under the operating conditions of the process, said process being characterized by the steps of:
a) contacting the gas with the solvent liquid phase so as to absorb to a major extent at least a portion of the heavy fraction of the gas in the liquid phase and to decrease to a major extent the heavy fraction content of the gas, and releasing the resultant heat,
b) fractionating the product from step (a) to separately recover the resultant liquid phase and the unabsorbed gas,
c) increasing the pressure of the liquid phase separated in step (b) and sufficiently increasing its temperature to desorb at least a portion of the gas absorbed therein in step (a),
d) fractionating the product from step (c) to separately recover a lean solution and a desorbed gas phase,
e) cooling said lean solution, decreasing its pressure and feeding it back to step (a) to reconstitute at least a portion of the solvent liquid phase,
f) cooling the desorbed gas phase so as to condense at least a portion thereof and recovering the resultant condensate,
g) expanding the condensate and supplying heat to said expanded condensate so as to epavorate at least a portion thereof, and recovering the resultant product of higher content of heavy constituent, as compared with the initial gas, the process being further characterized in that at least a portion of the heat released in step (a) forms at least a portion of the heat supplied to step (g).
2. A process according to claim 1, characterized in that step (a) is conducted by transferring released heat, first partially to an external cooling fluid and then, for at leat a part of the remaining portion, to step (g).
3. A process according to claim 1 or 2, characterized by a partial evaporation in step (g) and by the recovery of a relatively heavy unevaporated liquid phase and a relatively light evaporated gas phase.
4. A process according to claim 3, characterized in that the relatively light gas phase is fed back to step (a) to be contacted again with the solvent liquid phase.
5. A process according to one of claims 1 to 4, wherein the solvent is a paraffinic, aromatic or naphthenic hydrocarbon of at least 6 carbon atoms, a hydrocarbon oil, a halogenated hydrocarbon, an alcohol of formula R-CH2-OH, R-CHOH-R', or RR'R"C-OH, an aldehyde of formula R-CHO, a ketone of formula RR' C = 0, an ester of formula R-COO-R', an ether of formula R-O-R', an organic acid of formula R-COOH, or a mixture thereof, R, R' and R" being substituted or unsubstituted hydrocarbon radicals.
6. A process according to one of claims 1 to 5, characterized in that the pressure in steps a, b and g ranges from 0.1 to 20 MPa and the pressure in steps c, d and f ranges from 0.2 to 20 MPa, with the additional condition that the pressure in steps c, d and f is at least 0.1. MPa higher than that of steps a, b and g.
7. A process according to one of claims 1 to 6, characterized in that the temperature in step (c) ranges from 100 to 300°C.
8. A process according to one of claims 1 to 7, characterized in that the vaporisation temperature in step (g) ranges from + 10 to -50°C.
EP85402339A 1984-12-18 1985-11-28 Self-refrigerating process for the extraction of heavy hydrocarbon fractions Expired EP0186555B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT85402339T ATE33673T1 (en) 1984-12-18 1985-11-28 SELF-COOLING PROCESS FOR THE EXTRACTION OF HEAVY HYDROCARBON FRACTIONS.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8419500 1984-12-18
FR8419500A FR2574811B1 (en) 1984-12-18 1984-12-18 NEW SELF-REFRIGERATED PROCESS FOR EXTRACTING HEAVY HYDROCARBON FRACTIONS

Publications (2)

Publication Number Publication Date
EP0186555A1 EP0186555A1 (en) 1986-07-02
EP0186555B1 true EP0186555B1 (en) 1988-04-20

Family

ID=9310802

Family Applications (1)

Application Number Title Priority Date Filing Date
EP85402339A Expired EP0186555B1 (en) 1984-12-18 1985-11-28 Self-refrigerating process for the extraction of heavy hydrocarbon fractions

Country Status (7)

Country Link
US (1) US4822948A (en)
EP (1) EP0186555B1 (en)
JP (1) JPS61151297A (en)
AT (1) ATE33673T1 (en)
CA (1) CA1281994C (en)
DE (1) DE3562270D1 (en)
FR (1) FR2574811B1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1052746C (en) * 1994-12-24 2000-05-24 中国科学院新疆化学研究所 Comprehensive deep process for non-seperating light hydrocarbon of oil field well-head gas
US5481060A (en) * 1995-04-20 1996-01-02 Uop Process for the removal of heavy hydrocarbonaceous co-products from a vapor effluent from a normally gaseous hydrocarbon dehydrogenation reaction zone
IT201600081851A1 (en) 2016-08-03 2018-02-03 Danieli Off Mecc METHOD AND SYSTEM TO PRODUCE DIRECT REDUCTION IRON USING A CATALYTIC PRETREATMENT OF HYDROCARBONS AS A REDUCTION GAS SOURCE
CN110404387A (en) * 2019-06-19 2019-11-05 河北工程大学 Solar energy assisted coal fired unit CO2Resource utilization system and device

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1507634A (en) * 1921-08-29 1924-09-09 Carbide & Carbon Chem Corp Process of making gasoline
US2762453A (en) * 1951-11-01 1956-09-11 Monsanto Chemicals Separation of acetylene gases
US2794516A (en) * 1955-10-10 1957-06-04 Dow Chemical Co Solvent and process for separating acetylene from gas mixture
US3098107A (en) * 1959-05-22 1963-07-16 Linde Eismasch Ag Method for producing ethylene
US3188287A (en) * 1961-09-07 1965-06-08 Gas Processors Inc Oil absorption process
US3255105A (en) * 1962-12-10 1966-06-07 Phillips Petroleum Co Natural gasoline recovery process control method
US3272735A (en) * 1964-02-03 1966-09-13 Phillips Petroleum Co Oil removal from liquid refrigerant
US3393527A (en) * 1966-01-03 1968-07-23 Pritchard & Co J F Method of fractionating natural gas to remove heavy hydrocarbons therefrom
US3943185A (en) * 1974-05-28 1976-03-09 Petro-Tex Chemical Corporation Diolefin production and purification
US4334102A (en) * 1981-04-02 1982-06-08 Allied Corporation Removing liquid hydrocarbons from polyether solvents
US4421535A (en) * 1982-05-03 1983-12-20 El Paso Hydrocarbons Company Process for recovery of natural gas liquids from a sweetened natural gas stream
FR2544998B1 (en) * 1983-04-29 1985-07-19 Inst Francais Du Petrole NEW PROCESS FOR FRACTIONATING A GAS MIXTURE OF MULTIPLE CONSTITUENTS

Also Published As

Publication number Publication date
JPS61151297A (en) 1986-07-09
DE3562270D1 (en) 1988-05-26
FR2574811A1 (en) 1986-06-20
CA1281994C (en) 1991-03-26
ATE33673T1 (en) 1988-05-15
US4822948A (en) 1989-04-18
FR2574811B1 (en) 1988-01-08
EP0186555A1 (en) 1986-07-02

Similar Documents

Publication Publication Date Title
EP0768502B1 (en) Process and apparatus for the liquefaction and the treatment of natural gas
EP0291401B1 (en) Cryogenic process for the simultaneous selective desulfurization and degasolination of a gaseous mixture principally consisting of methane and also h2s and c2+ hydrocarbons
EP0783031B1 (en) Process for the dewatering, deactification and degasolination of natural gas, using a mixture of solvents
US3213631A (en) Separated from a gas mixture on a refrigeration medium
CA1310579C (en) Air distillation facility and process
FR2814379A1 (en) Process for the temperature controlled deacidification of a gas by absorption in a solvent
FR2544998A1 (en) NEW PROCESS FOR FRACTIONATING A GAS MIXTURE OF MULTIPLE CONSTITUENTS
CA2452991A1 (en) Process for deacidifying and dehydrating a natural gas
FR2646166A1 (en) PROCESS FOR THE RECOVERY OF LIQUID HYDROCARBONS IN A GAS CHARGE AND INSTALLATION FOR THE EXECUTION OF SAID PROCESS
US2468750A (en) Method of separating hydrocarbons
CA1283599C (en) Process and facility for the recovery of the heavier hydrocarbons of a gas mixture
FR2739789A1 (en) METHOD AND DEVICE FOR TREATING A GAS CONTAINING WATER SUCH AS A NATURAL GAS
EP0186555B1 (en) Self-refrigerating process for the extraction of heavy hydrocarbon fractions
US1804432A (en) Process of fractionating, cooling, and condensing gas mixtures
EP0768106B1 (en) Process for fractionating a fluid containing separable multi-components, e.g. a natural gas
WO2014207053A1 (en) Method for recovering an ethylene stream from a carbon monoxide rich feed stream, and associated installation
CA1137768A (en) Desorption cycle for absorption heat pumps and refrigerating units
JPS585957B2 (en) Solvent purification method for lubricating oil
EP0556875B1 (en) Process for the simultaneous elimination of CO2 and gasoline from a gaseous hydrocarbon mixture comprising methane, C2 and higher hydrocarbons and also CO2
BE582906A (en)
FR3113606A3 (en) Nitrogen and methane separation process by cryogenic distillation
US1984463A (en) Separation of gaseous mixtures
CH348500A (en) Process for the production of town gas from petroleum fractions
BE514132A (en)
BE438425A (en)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE DE GB IT NL SE

17P Request for examination filed

Effective date: 19861002

17Q First examination report despatched

Effective date: 19870921

ITF It: translation for a ep patent filed
GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE DE GB IT NL SE

REF Corresponds to:

Ref document number: 33673

Country of ref document: AT

Date of ref document: 19880515

Kind code of ref document: T

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
REF Corresponds to:

Ref document number: 3562270

Country of ref document: DE

Date of ref document: 19880526

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
ITTA It: last paid annual fee
EAL Se: european patent in force in sweden

Ref document number: 85402339.7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19951215

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19960926

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19961002

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19961120

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19961130

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19970801

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19971128

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19971129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19971130

BERE Be: lapsed

Owner name: INSTITUT FRANCAIS DU PETROLE

Effective date: 19971130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980601

EUG Se: european patent has lapsed

Ref document number: 85402339.7

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19980601

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20001024

Year of fee payment: 16

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20011128

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20011128