EP0182172B1 - Process for improving the stability properties of solidified radioactive ion exchange resin particles - Google Patents
Process for improving the stability properties of solidified radioactive ion exchange resin particles Download PDFInfo
- Publication number
- EP0182172B1 EP0182172B1 EP19850113953 EP85113953A EP0182172B1 EP 0182172 B1 EP0182172 B1 EP 0182172B1 EP 19850113953 EP19850113953 EP 19850113953 EP 85113953 A EP85113953 A EP 85113953A EP 0182172 B1 EP0182172 B1 EP 0182172B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- resin particles
- ion exchange
- treatment
- exchange resin
- anion
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21F—PROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
- G21F9/00—Treating radioactively contaminated material; Decontamination arrangements therefor
- G21F9/28—Treating solids
- G21F9/30—Processing
- G21F9/301—Processing by fixation in stable solid media
Definitions
- the present invention relates to a method for improving the stability properties of solidified radioactive ion exchange resin particles, in which method the resin particles are embedded in a mixture containing inorganic and / or organic binders, which is then allowed to harden.
- organic ion exchange resins in the form of small balls or in powder form are used to clean the various water circuits.
- both the balls and the powder particles of the ion exchange resins are referred to as resin particles.
- the ion exchange resin particles have the task of retaining general impurities in the water circuits, but also radionuclides. The activity of the circuits can thus be kept within limits.
- Active ion exchange resins are also obtained in reprocessing plants.
- the ion exchange resins are almost always used in the mixed bed process, i.e. Anion and cation exchange resins mixed. Only fresh resins in the OH 'or H' form are used, so that no foreign ions are introduced into the circuits.
- the ion exchange resins must be replaced when their capacity is exhausted by loading them with general impurities or when they are no longer able to take up activity.
- the exchanged ion exchange resins are to be regarded as weakly to moderately active radioactive waste that has to be disposed of.
- radioactive waste For final storage, but also for transport, radioactive waste generally has to be solidified, with various requirements being placed on the solidified waste for safety reasons. This includes a sufficiently high compressive strength, good water resistance, sulfate resistance and the lowest possible leaching rate.
- radioactive ion exchange resins When radioactive ion exchange resins are solidified, the resin particles are embedded in inorganic or / and organic binders such as cements, bitumen or plastics to form a so-called matrix.
- the aim is to accommodate the largest possible amount of waste in a given matrix volume.
- the swelling and shrinking behavior of organic ion exchange resins is to blame for the fact that the matrix may not be water-resistant after it has solidified.
- the cement hardening of such resins is therefore often viewed with skepticism. In fact, such a matrix can crack or even disintegrate when it is later stored in water if special techniques are not taken into account during solidification.
- the amount of resin has generally been limited to about 20 kg of dry resin particles per 100 liters of matrix, resulting in a compressive strength of slightly more than 20 N / mm 2 . If the cement mixture is also cured under overcoated water, the matrix also becomes water-resistant, provided that it is not dried in between. With a higher proportion of ion exchange resin in the matrix, the compressive strength drops to below 10 N / mm 2 . Such a matrix can also remain stable when stored in water, as long as no drying takes place beforehand. But if test specimens of such cement consolidation, for example in air with 20% rel.
- test pieces usually disintegrate within hours to a few days, or at least large cracks appear.
- DE-A-31 02 473 discloses a method in which the radioactive resin particles are treated with additives and / or thermally before their embedding in order to separate anion and cation resins.
- the influencing of the source factor was not controlled, but only the aforementioned separation was aimed for.
- the invention is based on the knowledge that the swelling and shrinking properties of the resin particles can be improved by a suitable treatment of the radioactive ion exchange resin particles before or during the solidification process in such a way that the resulting solidified matrix not only considerably more ion exchange resins with an approximately constant compressive strength may contain, but also has good water resistance after drying.
- the treatment according to the invention allows the ion exchange resin particles to be brought into a stable state in which they have a reduced swelling capacity compared to untreated resin particles and possibly also have a smaller volume.
- ion exchange resins are used in Switzerland, namely mostly powder resins in boiling water reactors, e.g. the Powdex resins from Graver Water Conditioning Co.USA, and almost exclusively spherical resins in pressurized water reactors, e.g. the Lewatit resins from Bayer / Leverkusen, FRG.
- the following examples are based on tests with spherical resins of the latter type. However, practically the same results can also be seen with powder resins.
- the Lewatit M-500 was used as the anion exchange resin and the Lewatit S-100 as the cation exchange resin, both from Bayer / Leverkusen FRG.
- radioactive ion exchange resins taken from the water circuits of a nuclear power plant were also loaded as follows: M-500 anion exchange resin with about 200 g of boric acid (H 3 B0 3 ) per liter of resin; Cation exchange resin S-100 with 4 g lithium per liter resin.
- the anion resin particles By treating the anion resin particles with a polysulfide, it was surprisingly possible to induce the resin particles to shrink considerably while at the same time allowing water to escape. After drying at room temperature and subsequent washing of the resin particles treated in this way, they had a swelling factor of only 1.5 to 2.0 prior to the treatment.
- the swelling factor is defined here as the quotient of the shaking volume of the resin particles in the water-wet, swollen state and the shaking volume of the same resin particles in the dry state.
- the swelling factor even decreased to around 1.0, which means that the resin particles then no longer swell and shrink when washed and drying.
- the anion resin particles still contain a vulcanizing agent, e.g. a xanthate was added, the swelling factor dropped to 1.0 to 1.1 even at room temperature.
- the swelling factor of anion resin particles could not only be greatly reduced by treatment with polysulfides, but also by ion exchange with special organic acids or anion-active organic compounds.
- Examples include: Monofunctional and polyfunctional carboxylic acids, their salts and their derivatives, e.g. Stearic acid, acrylic acid, natural and modified root resins, sebacic acid, etc .; Sulfuric acid mono-esters, e.g. Lauryl sulfate; Sulfonates, e.g. Vinyl sulfonates; Phosphoric acid mono- and di-esters, e.g. Stearyl phosphates, butyl phosphates, nonylphenol phosphates. These substances block the hydrophilic groups of the anion resins and can then also be partially crosslinked.
- anion resin In the case of the anion resin, a thermolysis process also proved to be as suitable as the treatment by adding polysulfide or another of the abovementioned compounds.
- the elimination of amines from anion resins at higher temperatures is generally known.
- the manufacturers of the resins expressly warn against excessive temperatures, as this affects the ion exchange properties.
- this previously undesirable phenomenon can be used to improve the stability properties of solidified radioactive ion exchange resin particles. If anion resin particles are heated to 150 ° C. for a long time, preferably in an air stream with stirring, amines split off, primarily trimethylamine. The resin particles shrink considerably and lose their swelling and shrinking capacity.
- the decomposition temperature can be slightly reduced by adding alkali and alkaline earth hydroxides.
- the duration of the thermal treatment depends on the treatment temperature. The higher the temperature, the shorter the treatment time can be.
- the temperature for the thermolysis can be selected in the range from 50 ° C to 250 ° C, preferably between 100 ° C and 200 ° C, the treatment time e.g. can range from 24 hours down to 1/2 hour.
- Anion resin particles which have previously been treated with sulfides or polysulfides, can also be removed by additional heat treatment within the temperature limits described above. Surprisingly, this can already be done successfully at a temperature below 100 ° C, for example at 70-80 ° C. This low decomposition temperature offers significant technical advantages, especially in exhaust gas cleaning. Subsequent oxidation with H 2 0 2 can then be used to produce cation-active resins from the original anion resins, which are more easily oxidatively degradable.
- the swelling and shrinking capacity of cation resin particles could be reduced by ion exchange with very specific cations or cation-active compounds as much as that of anion resin particles. This was done by adding a substance from the following groups: primary, secondary, tertiary and quaternary basic amines which have either one, two or more amine groups per molecule, it being possible for the organic radicals to be additionally crosslinkable; basic organic phosphonium compounds; basic organic sulfonium compounds. Ba ++ and Fe H salts have a similar effect.
- Some of the ionic compounds that sterically fit into the ion exchange resins are so strongly bound to the resins that they no longer exchange these ions in the environment of a cement lye or in highly mineralized groundwater and the resins therefore remain stable in volume.
- This adhesive strength could often be determined by retrofitting Improve heat treatment even more, whereby the swelling factor could be reduced again.
- mixtures of anion and cation resin particles are mostly used.
- either one of the treatments described for the anion resin particles and one of the treatments described for the cation resin particles should be used, or the mixture of anion and cation
- the volume ratios and the swelling factors of mixtures of anion and cation resins treated in this way are proportional to the mixture ratio from the data of the individual components and can therefore be calculated for mixtures in advance if the data for the individual components are known.
- the comparison volumes given in Table 1 are each the specific vibrating volume in liters of an amount of 1 kg of dry ion exchange resin particles in the H or OH form, the specific vibrating volume once for the wet, swollen resin particles and once for the dry resin particles is listed.
- the swelling factor is the quotient wet volume by dry volume.
- the initial state of the resin particles was always the H or
- the resin particles were treated with solutions which exclusively contained the substances listed in Table I.
- the quantities of the treatment solutions were each sufficiently large so that the resins could be fully loaded in accordance with their maximum capacity.
- the resin particles were each treated with the relevant solution for 1/2 hour at 50 ° C., then cooled to 20 ° C., after which stirring was continued at 20 ° C. for 1/2 hour before being filtered off and the resin particles were washed with distilled water. To determine the specific shaking volume of the dry resin particles, the latter were dried in vacuo at 40 ° C. until their water content was less than 1% by weight.
- the untreated ion exchange resin particles have a swelling factor between 2.10 and 2.24 with a specific vibrating volume in the wet, swollen state of 2.50 to 3.23 liters per kg of dry substance. Furthermore, Table I shows that the swelling factor can be considerably reduced to or almost to 1.0 by suitable treatment of the resin particles. All those types of treatment that result in a swelling factor of less than 1.7 are of interest in practice.
- the information in Table I regarding the wet volume of the treated resin particles is also important. The smaller the specific wet volume, the greater the amount of resin particles that can be solidified in a given volume. It is therefore preferable to select a type of treatment which results in an optimum between the lowest possible swelling factor and at the same time the lowest possible specific wet volume.
- the mixture according to the above recipe was allowed to harden with an overcoating of water.
- the resulting solidified matrix had the key figures shown in Table 11.
- the cation resin was loaded with Ba ++ and the anion resin with S 4 - .
- the borate detached from the anion resin was precipitated with further Ba ++ as an insoluble barium metaborate.
- heat was released, which caused the mixture to warm itself from room temperature to approx. 50 ° C.
- the mixture was kept at 50 ° C for a few hours.
- the cement solidification took place about 24 hours after the pretreatment described.
- the mixture was further stirred to prevent the solids from settling and the formation of larger crystals. Loss of water due to evaporation during this time was compensated for by adding more water.
- the resin particles pretreated in this way had the key figures listed in Table I under No. 89.
- Table II compares the corresponding key figures of the solidified matrix produced in accordance with section a) (prior art) and the matrix produced in accordance with sections b) and c).
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- High Energy & Nuclear Physics (AREA)
- Treatment Of Water By Ion Exchange (AREA)
- Processes Of Treating Macromolecular Substances (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Description
Die vorliegende Erfindung betrifft ein Verfahren zur Verbesserung der Stabilitätseigenschaften von verfestigten radioaktiven lonenaustausch-Harzpartikeln, bei welchem Verfahren die Harzpartikeln in ein anorganische oder/und organische Bindemittel enthaltendes Gemisch eingebettet werden, das danach erhärten gelassen wird.The present invention relates to a method for improving the stability properties of solidified radioactive ion exchange resin particles, in which method the resin particles are embedded in a mixture containing inorganic and / or organic binders, which is then allowed to harden.
In den meisten Kernkraftwerken werden zur Reinigung der verschiedenen Wasserkreisläufe organische lonenaustausch-Harze in Form kleiner Kugeln oder in Pulverform verwendet. Im folgenden sind sowohl die Kugeln als auch die Pulverteilchen der lonenaustausch-Harze als Harzpartikeln bezeichnet. Die lonenaustausch-Harzpartikeln haben die Aufgabe, allgemeine Verunreinigungen in den Wasserkreisläufen zurückzuhalten, aber auch Radionuklide. Damit kann die Aktivität der Kreisläufe in Grenzen gehalten werden. Auch in Wiederaufbereitungsanlagen fallen aktive lonenaustausch-Harze an. Die Verwendung der lonenaustausch-Harze erfolgt fast immer im Mischbett-Verfahren, d.h. Anionen- und KationenAustauschharze gemischt. Es gelangen dabei immer nur frische Harze in der OH'- bzw. H'-Form zum Einsatz, damit keine Fremdionen in die Kreisläufe eingeschleppt werden. Die lonenaustausch-Harze müssen jeweils ausgewechselt werden, wenn ihre Kapazität durch Beladung mit allgemeinen Verunreinigungen erschöpft ist oder wenn sie keine Aktivität mehr aufnehmen können. Die ausgewechselten lonenaustausch-Harze sind als schwach- bis mittelaktiver radioaktiver Abfall anzusehen, der zu entsorgen ist.In most nuclear power plants, organic ion exchange resins in the form of small balls or in powder form are used to clean the various water circuits. In the following, both the balls and the powder particles of the ion exchange resins are referred to as resin particles. The ion exchange resin particles have the task of retaining general impurities in the water circuits, but also radionuclides. The activity of the circuits can thus be kept within limits. Active ion exchange resins are also obtained in reprocessing plants. The ion exchange resins are almost always used in the mixed bed process, i.e. Anion and cation exchange resins mixed. Only fresh resins in the OH 'or H' form are used, so that no foreign ions are introduced into the circuits. The ion exchange resins must be replaced when their capacity is exhausted by loading them with general impurities or when they are no longer able to take up activity. The exchanged ion exchange resins are to be regarded as weakly to moderately active radioactive waste that has to be disposed of.
Für eine Endlagerung, aber auch schon für den Transport, müssen radioaktive Abfälle generell verfestigt werden, wobei aus Sicherheitsgründen verschiedene Anforderungen an die verfestigten Abfälle gestellt werden. Dazu gehören eine ausreichend hohe Druckfestigkeit, eine gute Wasserbeständigkeit, Sulfatbeständigkeit und eine möglichst tiefe Auslaugrate. Bei der Verfestigung von radioaktiven lonenaustausch-Harzen werden die Harzpartikeln zur Bildung einer sogenannten Matrix in anorganische oder/und organische Bindemittel, wie Zemente, Bitumen oder Kunststoffe, eingebettet. Dabei wird angestrebt, eine möglichst grosse Menge Abfall in einem gegebenen Matrix-Volumen unterzubringen. Das Quell- und Schrumpfverhalten von organischen lonenaustausch-Harzen ist Schuld daran, dass nach ihrer Verfestigung die Matrix unter Umständen nicht wasserbeständig ist. Daher wird die Zementverfestigung solcher Harze oft skeptisch beurteilt. Tatsächlich kann eine solche Matrix bei ihrer späteren Lagerung in Wasser Risse bekommen oder sogar zerfallen, wenn bei der Verfestigung nicht auf besondere Techniken geachtet wird.For final storage, but also for transport, radioactive waste generally has to be solidified, with various requirements being placed on the solidified waste for safety reasons. This includes a sufficiently high compressive strength, good water resistance, sulfate resistance and the lowest possible leaching rate. When radioactive ion exchange resins are solidified, the resin particles are embedded in inorganic or / and organic binders such as cements, bitumen or plastics to form a so-called matrix. The aim is to accommodate the largest possible amount of waste in a given matrix volume. The swelling and shrinking behavior of organic ion exchange resins is to blame for the fact that the matrix may not be water-resistant after it has solidified. The cement hardening of such resins is therefore often viewed with skepticism. In fact, such a matrix can crack or even disintegrate when it is later stored in water if special techniques are not taken into account during solidification.
Im Hinblick auf den geschilderten Sachverhalt hat man bisher bei der Verfestigung von lonenaustausch-Harzen in einer Zementmatrix die Harzmenge in der Regel auf etwa 20 kg trockene Harzpartikeln pro 100 Liter Matrix beschränkt, wobei eine Druckfestigkeit von etwas über 20 N/mm2 resultierte. Erfolgt zudem die Aushärtung der Zementmischung unter überschichtetem Wasser, so wird die Matrix auch wasserbeständig, sofern sie nicht zwischengetrocknet wird. Bei einem höheren Anteil von lonenaustausch-Harz in der Matrix sinkt die Druckfestigkeit bis unter 10 N/mm2. Auch eine solche Matrix kann unter Umständen bei Wasserlagerung noch stabil bleiben, solange vorher keine Trocknung erfolgt. Werden aber Probekörper solcher Zementverfestigungen z.B. in Luft mit 20% rel. Feuchtigkeit konditioniert, wobei ein Gewichtsverlust bis gegen 25% durch Trocknung auftritt, so sind sie danach bei Wasserlagerung nicht mehr stabil. Ihre Druckfestigkeit sinkt bereits bei dem Trocknungsvorgang beträchtlich, wobei sich Schwindrisse bilden. Bei der nachfolgenden Wasserlagerung zerfallen die Probestücke meistens innerhalb Stunden bis weniger Tage, oder es treten zumindest grosse Risse auf.In view of the situation described, when solidifying ion exchange resins in a cement matrix, the amount of resin has generally been limited to about 20 kg of dry resin particles per 100 liters of matrix, resulting in a compressive strength of slightly more than 20 N / mm 2 . If the cement mixture is also cured under overcoated water, the matrix also becomes water-resistant, provided that it is not dried in between. With a higher proportion of ion exchange resin in the matrix, the compressive strength drops to below 10 N / mm 2 . Such a matrix can also remain stable when stored in water, as long as no drying takes place beforehand. But if test specimens of such cement consolidation, for example in air with 20% rel. Conditioned moisture, with a weight loss of up to 25% due to drying, they are then no longer stable when stored in water. Their compressive strength drops considerably during the drying process, whereby shrinkage cracks form. During subsequent water storage, the test pieces usually disintegrate within hours to a few days, or at least large cracks appear.
Aus der DE-A-31 02 473 ist ein Verfahren bekannt, bei welchem zur Separierung von Anionen- und Kationenharzen die radioaktiven Harzpartikeln vor ihrer Einbettung mit Zusätzen und/oder thermisch behandelt werden. Dabei wurde aber die Beeinflussung des Quellfaktors nicht gesteuert sondern lediglich die genannte Separierung angestrebt.DE-A-31 02 473 discloses a method in which the radioactive resin particles are treated with additives and / or thermally before their embedding in order to separate anion and cation resins. However, the influencing of the source factor was not controlled, but only the aforementioned separation was aimed for.
Ferner ist aus der FR-A-25 02 382 ein Verfahren bekannt, welches zum Zweck der Verfestigung von radioaktiven Harzpartikeln die Ablösung der Aktivität von den organischen Harzen und deren Bindung an anorganische Materialien beschreibt. Eine einfache Methode zur Stabilisierung des Harzes gegen Quellen und Schrumpfen geht aber auch daraus nicht hervor.Furthermore, from FR-A-25 02 382 a method is known which describes the detachment of the activity from the organic resins and their binding to inorganic materials for the purpose of solidifying radioactive resin particles. A simple method for stabilizing the resin against swelling and shrinking does not come from this either.
Aufgabe der vorliegenden Erfindung ist die Schaffung eines Verfahrens, durch welches die Stabilitätseigenschaften von verfestigten radioaktiven lonenaustausch-Harzpartikeln beträchtlich verbessert werden und damit auch ermöglicht wird, eine grössere Harzmenge pro Matrix-Volumeneinheit zu verfestigen.It is an object of the present invention to provide a method by which the stability properties of solidified radioactive ion exchange resin particles are considerably improved and thus also enables a larger amount of resin per matrix volume unit to be solidified.
Das als Lösung dieser Aufgabe gefundene Verfahren ist im Patentanspruch 1 definiert. Zweckmässige Weiterbildungen des erfindungsgemässen Verfahrens ergeben sich aus den abhängigen Ansprüchen und der nachfolgenden erläuternden Beschreibung.The method found as a solution to this problem is defined in claim 1. Appropriate developments of the method according to the invention result from the dependent claims and the following explanatory description.
Die Erfindung beruht auf der Erkenntnis, dass durch eine geeignete Behandlung der radioaktiven lonenaustausch-Harzpartikeln vor oder während des Verfestigungsvorganges die Quell- und Schrumpfeigenschaften der Harzpartikeln so verbessert werden können, dass die resultierende verfestigte Matrix bei etwa gleichbleibender Druckfestigkeit nicht nur erheblich mehr lonenaustausch-Harze enthalten kann, sondern auch eine gute Wasserbeständigkeit nach dem Trocknen aufweist. Durch die erfindungsgemässe Behandlung lassen sich die lonenaustausch-Harzpartikeln in einen stabilen Zustand überführen, in welchem sie im Vergleich zu unbehandelten Harzpartikeln ein vermindertes Quellvermögen und gegebenenfalls auch ein kleineres Volumen aufweisen.The invention is based on the knowledge that the swelling and shrinking properties of the resin particles can be improved by a suitable treatment of the radioactive ion exchange resin particles before or during the solidification process in such a way that the resulting solidified matrix not only considerably more ion exchange resins with an approximately constant compressive strength may contain, but also has good water resistance after drying. The treatment according to the invention allows the ion exchange resin particles to be brought into a stable state in which they have a reduced swelling capacity compared to untreated resin particles and possibly also have a smaller volume.
Nachstehend ist die Erfindung anhand von Beispielen näher erläutert und mit dem Stand der Technik verglichen.The invention is explained in more detail below with the aid of examples and compared with the prior art.
Je nach dem Typ des Kernreaktors werden in der Schweiz zwei verschiedene Arten von lonenaustausch-Harzen verwendet, nämlich in Siedewasser-Reaktoren grösstenteils Pulverharze, z.B. die Powdex-Harze der Graver Water Conditioning Co. USA, und in Druckwasser-Reaktoren fast ausschliesslich Kugelharze, z.B. die Lewatit-Harze von Bayer/Leverkusen, BRD. Die nachstehenden Beispiele beruhen auf Versuchen mit Kugelharzen der letztgenannten Art. Praktisch gleiche Ergebnisse zeigen sich aber auch mit Pulverharzen. Als Anionen-Austauschharz wurde der Typ Lewatit M-500 und als Kationen-Austauschharz der Typ Lewatit S-100, beide von Bayer/Leverkusen BRD, verwendet. Die aus Wasserkreisläufen eines Kernkraftwerkes entnommenen radioaktiven lonenaustausch-Harze waren zudem wie folgt beladen: Anionen-Austauschharz M-500 mit ca. 200 g Borsäure (H3B03) pro Liter Harz; Kationen-Austauschharz S-100 mit 4 g Lithium pro Liter Harz.Depending on the type of nuclear reactor, two different types of ion exchange resins are used in Switzerland, namely mostly powder resins in boiling water reactors, e.g. the Powdex resins from Graver Water Conditioning Co.USA, and almost exclusively spherical resins in pressurized water reactors, e.g. the Lewatit resins from Bayer / Leverkusen, FRG. The following examples are based on tests with spherical resins of the latter type. However, practically the same results can also be seen with powder resins. The Lewatit M-500 was used as the anion exchange resin and the Lewatit S-100 as the cation exchange resin, both from Bayer / Leverkusen FRG. The radioactive ion exchange resins taken from the water circuits of a nuclear power plant were also loaded as follows: M-500 anion exchange resin with about 200 g of boric acid (H 3 B0 3 ) per liter of resin; Cation exchange resin S-100 with 4 g lithium per liter resin.
Durch Behandlung der Anionen-Harzpartikeln mit einem Polysulfid konnten überraschenderweise die Harzpartikeln zu einem starken Schrumpfen bei gleichzeitigem Wasseraustritt veranlasst werden. Nach dem Trocknen bei Raumtemperatur und anschliessendem Wässern der so behandelten Harzpartikeln wiesen dieselben einen Quellfaktor von lediglich noch 1,5 auf gegenüber 2,0 vor der Behandlung. Der Quellfaktor ist hier definiert als Quotient aus dem Rüttelvolumen der Harzpartikeln in wassernassem, gequollenem Zustand und dem Rüttelvolumen der gleichen Harzpartikeln in trockenem Zustand.By treating the anion resin particles with a polysulfide, it was surprisingly possible to induce the resin particles to shrink considerably while at the same time allowing water to escape. After drying at room temperature and subsequent washing of the resin particles treated in this way, they had a swelling factor of only 1.5 to 2.0 prior to the treatment. The swelling factor is defined here as the quotient of the shaking volume of the resin particles in the water-wet, swollen state and the shaking volume of the same resin particles in the dry state.
Wurden Anionen-Harzpartikeln anschliessend an die Polysulfid-Behandlung während ca. 24 Stunden bei einer Temperatur von 50°C getrocknet, dann sank der Quellfaktor sogar bis gegen 1,0, was bedeutet, dass die Harzpartikeln dann überhaupt nicht mehr quellen und schrumpfen beim Wässern und Trocknen.If the anion resin particles were dried at a temperature of 50 ° C for approx. 24 hours after the polysulfide treatment, the swelling factor even decreased to around 1.0, which means that the resin particles then no longer swell and shrink when washed and drying.
Wenn während der Behandlung mit Polysulfid den Anionen-Harzpartikeln noch ein Vulkanisationsmittel, z.B. ein Xanthogenat, zugesetzt wurde, sank auch bei Raumtemperatur der Quellfaktor auf 1,0 bis 1,1.If, during treatment with polysulfide, the anion resin particles still contain a vulcanizing agent, e.g. a xanthate was added, the swelling factor dropped to 1.0 to 1.1 even at room temperature.
Nicht nur durch die Behandlung mit Polysulfiden liess sich der Quellfaktor von Anionen-Harzpartikeln stark reduzieren sondern auch durch Ionenaustausch mit speziellen organischen Säuren oder anionenaktiven organischen Verbindungen. Als solche sind beispielsweise zu nennen: Mono- und polyfunktionelle Karbonsäuren, deren Salze und deren Derivate, z.B. Stearinsäure, Acrylsäure, natürliche und modifizierte Wurzelharze, Sebazinsäure usw.; Schwefelsäure-Mono-Ester, z.B. Laurylsulfat; Sulfonate, z.B. Vinyl-Sulfonate; Phosphorsäure-Mono- und Di-Ester, z.B. Stearyl-Phosphate, Butyl-Phosphate, Nonylphenol-Phosphate. Diese Stoffe blockieren die hydrophilen Gruppen der Anionenharze und sind zum Teil dann auch noch vernetzbar.The swelling factor of anion resin particles could not only be greatly reduced by treatment with polysulfides, but also by ion exchange with special organic acids or anion-active organic compounds. Examples include: Monofunctional and polyfunctional carboxylic acids, their salts and their derivatives, e.g. Stearic acid, acrylic acid, natural and modified root resins, sebacic acid, etc .; Sulfuric acid mono-esters, e.g. Lauryl sulfate; Sulfonates, e.g. Vinyl sulfonates; Phosphoric acid mono- and di-esters, e.g. Stearyl phosphates, butyl phosphates, nonylphenol phosphates. These substances block the hydrophilic groups of the anion resins and can then also be partially crosslinked.
Bei dem Anionenharz erwies sich ferner auch ein Thermolyse-Prozess als ebenso geeignet wie die Behandlung durch Zusetzen von Polysulfid oder einer anderen der vorstehend genannten Verbindungen. Die Abspaltung von Aminen aus Anionenharzen bei höheren Temperaturen ist allgemein bekannt. Die Hersteller der Harze warnen ausdrücklich vor zu hohen Temperaturen, da dadurch die lonenaustausch-Eigenschaften in Mitleidenschaft gezogen werden. Es wurde nun aber gefunden, dass diese bisher unerwünschte Erscheinung für die Verbesserung der Stabilitätseigenschaften von verfestigten radioaktiven lonenaustausch-Harzpartikeln nutzbar gemacht werden kann. Werden Anionen-Harzpartikeln längere Zeit auf 150°C erhitzt, vorzugsweise in einem Luftstrom bei Rührung, so spalten sich Amine ab, vornehmlich Trimethylamin. Dabei schrumpfen die Harzpartikeln stark und verlieren ihr Quell- und Schrumpfvermögen. Durch Zusetzen von Alkali- und Erdalkali-Hydroxiden lässt sich die Zersetzungstemperatur noch leicht senken. Die Zeitdauer der thermischen Behandlung richtet sich nach der Behandlungstemperatur. Je höher die Temperatur, desto kürzer kann die Behandlungsdauer sein. Die Temperatur für die Thermolyse kann im Bereich von 50°C bis 250°C gewählt werden, vorzugsweise zwischen 100°C und 200°C, wobei die Behandlungsdauer z.B. im Bereich von 24 Stunden bis herab zu 1/2 Stunde betragen kann.In the case of the anion resin, a thermolysis process also proved to be as suitable as the treatment by adding polysulfide or another of the abovementioned compounds. The elimination of amines from anion resins at higher temperatures is generally known. The manufacturers of the resins expressly warn against excessive temperatures, as this affects the ion exchange properties. However, it has now been found that this previously undesirable phenomenon can be used to improve the stability properties of solidified radioactive ion exchange resin particles. If anion resin particles are heated to 150 ° C. for a long time, preferably in an air stream with stirring, amines split off, primarily trimethylamine. The resin particles shrink considerably and lose their swelling and shrinking capacity. The decomposition temperature can be slightly reduced by adding alkali and alkaline earth hydroxides. The duration of the thermal treatment depends on the treatment temperature. The higher the temperature, the shorter the treatment time can be. The temperature for the thermolysis can be selected in the range from 50 ° C to 250 ° C, preferably between 100 ° C and 200 ° C, the treatment time e.g. can range from 24 hours down to 1/2 hour.
Von Anionen-Harzpartikeln, die zuvor mit Sulfiden oder Polysulfiden behandelt worden sind, lassen sich durch eine zusätzliche Wärmebehandlung in den vorstehend beschriebenen Temperaturgrenzen ebenfalls Amine abspalten. Ueberraschenderweise kann dies bereits bei einer Temperatur unterhalb 100°C, z.B. bei 70 - 80°C, erfolgreich geschehen. Diese niedrige Zersetzungstemperatur bietet wesentliche technische Vorteile, insbesondere in der Abgasreinigung. Durch eine anschliessende Oxydation mit H202 lassen sich aus den ursprünglichen Anionenharzen dann sogar kationenaktive Harze herstellen, die oxydativ einfacher abbaubar sind.Anion resin particles, which have previously been treated with sulfides or polysulfides, can also be removed by additional heat treatment within the temperature limits described above. Surprisingly, this can already be done successfully at a temperature below 100 ° C, for example at 70-80 ° C. This low decomposition temperature offers significant technical advantages, especially in exhaust gas cleaning. Subsequent oxidation with H 2 0 2 can then be used to produce cation-active resins from the original anion resins, which are more easily oxidatively degradable.
Das Quell- und Schrumpfvermögen von Kationen-Harzpartikeln konnte durch lonenaustausch mit sehr spezifischen Kationen oder kationenaktiven Verbindungen ebenso stark reduziert werden wie dasjenige von Anionen-Harzpartikeln. Dies erfolgte durch Zusetzen eines Stoffes aus den folgenden Gruppen: Primäre, sekundäre, tertiäre und quarternäre basische Amine, die pro Molekül entweder ein, zwei oder mehr Amingruppen aufweisen, wobei die organischen Reste zusätzlich auch noch vernetzbar sein können; basische organische Phosphonium-Verbindungen; basische organische Sulfonium-Verbindungen. Eine ähnliche Wirkung zeigen Ba++- und FeH -Salze. Diese sterisch in die lonenaustausch-Harze passenden ionogenen Verbindungen sind zum Teil so stark an die Harze gebunden, dass sie im Milieu einer Zementlauge oder in hoch mineralisierten Grundwässern diese Ionen nicht mehr zurücktauschen und die Harze also volumenstabil bleiben. Diese Haftfestigkeit liess sich oft durch eine nachträgliche Wärmebehandlung noch verbessern, wobei der Quellfaktor nochmals erniedrigt werden konnte.The swelling and shrinking capacity of cation resin particles could be reduced by ion exchange with very specific cations or cation-active compounds as much as that of anion resin particles. This was done by adding a substance from the following groups: primary, secondary, tertiary and quaternary basic amines which have either one, two or more amine groups per molecule, it being possible for the organic radicals to be additionally crosslinkable; basic organic phosphonium compounds; basic organic sulfonium compounds. Ba ++ and Fe H salts have a similar effect. Some of the ionic compounds that sterically fit into the ion exchange resins are so strongly bound to the resins that they no longer exchange these ions in the environment of a cement lye or in highly mineralized groundwater and the resins therefore remain stable in volume. This adhesive strength could often be determined by retrofitting Improve heat treatment even more, whereby the swelling factor could be reduced again.
In der Praxis gelangen meistens Mischungen aus Anionen- und Kationen-Harzpartikeln zur Verwendung. Damit gleichzeitig eine Reduktion des Quellfaktors für beide Arten der Harzpartikeln erzielt werden kann, ist sowohl eine der beschriebenen Behandlungen für die Anionen-Harzpartikein als auch eine der beschriebenen Behandlungen für die Kationen-Harzpartikeln anzuwenden, oder es ist dem Gemisch von Anionen- und Kationen-Harzpartikeln eine Verbindung zuzusetzen, die sowohl anionen- als auch kationenaktive Komponenten, also wirksame Anionen und Kationen oder anionenaktive wie auch kationenaktive Bestandteile, enthält. Die Volumenverhältnisse und die Quellfaktoren so behandelter Mischungen aus Anionen- und Kationen-Harzen setzen sich proportional dem Mischungsverhältnis aus den Daten der Einzelkomponenten zusammen und sind somit für Mischungen im voraus berechenbar, wenn die Daten für die Einzelkomponenten bekannt sind.In practice, mixtures of anion and cation resin particles are mostly used. In order to achieve a reduction in the swelling factor for both types of resin particles at the same time, either one of the treatments described for the anion resin particles and one of the treatments described for the cation resin particles should be used, or the mixture of anion and cation To add resin particles a compound that contains both anion and cation-active components, ie effective anions and cations or anion-active as well as cation-active components. The volume ratios and the swelling factors of mixtures of anion and cation resins treated in this way are proportional to the mixture ratio from the data of the individual components and can therefore be calculated for mixtures in advance if the data for the individual components are known.
Mit Kationen-Harzpartikeln des Typs Lewatit S-100 und Anionen-Harzpartikeln des Typs Lewatit M-500 sowie mit einer Mischung aus 50 Gew.% Lewatit S-100 und 50 Gew.% Lewatit M-500 wurden jeweils eine Reihe von Untersuchungen durchgeführt, um die Vergleichsvolumina der Harzpartikeln in wassernassem, gequollenem Zustand und in trockenem Zustand wie auch den Quellfaktor zu ermitteln, und zwar für Harzpartikeln ohne Behandlung und für Harzpartikeln nach einer der vorstehend beschriebenen Behandlungen. Die hierbei erzielten Resultate sind in der Tabelle I zusammengestellt.A series of tests were carried out in each case with cation resin particles of the Lewatit S-100 type and anion resin particles of the Lewatit M-500 type and with a mixture of 50% by weight of Lewatit S-100 and 50% by weight of Lewatit M-500, to determine the comparative volumes of resin particles in water-wet, swollen and dry states, as well as the swelling factor, for resin particles without treatment and for resin particles after one of the treatments described above. The results obtained are summarized in Table I.
Die in der Tabelle 1 angegebenen Vergleichsvolumina (Liter/kg) sind jeweils das spezifische Rüttelvolumen in Liter einer Menge von 1 kg trockener lonenaustausch-Harzpartikeln in der H- bzw. OH-Form wobei das spezifische Rüttelvolumen einmal für die nassen, gequollenen Harzpartikeln und einmal für die trockenen Harzpartikeln aufgeführt ist. Der Quellfaktor ist der Quotient Nassvolumen durch Trockenvolumen.The comparison volumes given in Table 1 (liters / kg) are each the specific vibrating volume in liters of an amount of 1 kg of dry ion exchange resin particles in the H or OH form, the specific vibrating volume once for the wet, swollen resin particles and once for the dry resin particles is listed. The swelling factor is the quotient wet volume by dry volume.
Der Ausgangszustand der Harzpartikeln war immer die H- bzw.The initial state of the resin particles was always the H or
OH-Form. Behandelt wurden die Harzpartikeln mit Lösungen, die ausschliesslich die in der Tabelle I aufgeführten Substanzen enthielten. Die Mengen der Behandlungslösungen waren jeweils ausreichend gross, so dass eine vollständige Beladung der Harze entsprechend ihrer Maximalkapazität ermöglicht war. Wo nichts anderes vermerkt ist, wurden die Harzpartikeln jeweils während 1/2 Stunde bei 50°C mit der betreffenden Lösung behandelt, dann auf 20°C abgekühlt, wonach bei 20°C noch während 1/2 Stunde weiter gerührt wurde, ehe abfiltriert und die Harzpartikeln mit destilliertem Wasser gewaschen wurden. Für die Bestimmung des spezifischen Rüttelvolumens der trockenen Harzpartikeln wurden die letzteren im Vakuum bei 40°C getrocknet bis ihr Wassergehalt weniger als 1 Gew.% betrug.OH form. The resin particles were treated with solutions which exclusively contained the substances listed in Table I. The quantities of the treatment solutions were each sufficiently large so that the resins could be fully loaded in accordance with their maximum capacity. Unless otherwise noted, the resin particles were each treated with the relevant solution for 1/2 hour at 50 ° C., then cooled to 20 ° C., after which stirring was continued at 20 ° C. for 1/2 hour before being filtered off and the resin particles were washed with distilled water. To determine the specific shaking volume of the dry resin particles, the latter were dried in vacuo at 40 ° C. until their water content was less than 1% by weight.
Wo in der Tabelle I eine Wärmebehandlung bei 160°C erwähnt ist, handelte es sich um eine Trocknung und anschliessende Erhitzung auf 160°C während 2 Stunden.Where a heat treatment at 160 ° C is mentioned in Table I, it was a drying and subsequent heating to 160 ° C for 2 hours.
Die in der Tabelle 1 unter den Nr. 1 bis 3 aufgeführten Kennwerte betreffen unbehandelte lonenaustausch-Harze. Die Versuche Nr. 4 bis 61 wurden mit Kationen-Harzpartikeln und die Versuche Nr. 62 bis 83 mit Anionen-Harzpartikeln durchgeführt. Die Angaben unter den Nr. 84 bis 103 betreffen Versuche mit einem Gemisch aus 50 Gew.% Kationenund 50 Gew.% Anionen-Harzpartikeln.The characteristic values listed in Table 1 under Nos. 1 to 3 relate to untreated ion exchange resins. Experiments Nos. 4 to 61 were carried out with cation resin particles and Experiments Nos. 62 to 83 with anion resin particles. Nos. 84 to 103 relate to experiments with a mixture of 50% by weight of cations and 50% by weight of anion resin particles.
Aus der Tabelle I ist ersichtlich, dass die unbehandelten lonenaustausch-Harzpartikeln einen Quellfaktor zwischen 2,10 und 2,24 bei einem spezifischen Rüttelvolumen in nassem, gequollenem Zustand von 2,50 bis 3,23 Liter pro kg Trockensubstanz aufweisen. Ferner zeigt die Tabelle I, dass durch eine geeignete Behandlung der Harzpartikeln der Quellfaktor sich beträchtlich reduzieren lässt bis oder nahezu bis 1,0. Für die Praxis interessant sind alle jene Behandlungsarten, bei welchen ein Quellfaktor von weniger als 1,7 resultiert. Von Bedeutung sind aber auch die der Tabelle I entnehmbaren Angaben betreffend das Nassvolumen der behandelten Harzpartikeln. Je kleiner nämlich das spezifische Nassvolumen ist, desto grösser ist die Menge der Harzpartikeln, die in einem gegebenen Volumen verfestigt werden kann. Vorzugsweise wird man also eine Behandlungsart auswählen, die ein Optimum zwischen möglichst niedrigem Quellfaktor und zugleich möglichst geringem spezifischem Nassvolumen ergibt. Um die Auswirkungen der Reduktion des Quellfaktors auf die Stabilitätseigenschaften von verfestigten radioaktiven lonenaustausch-Harzpartikeln zu ermitteln, wurden die nachstehend beschriebenen Vergleichsuntersuchungen einerseits an einer bekannten Standard-Zementverfestigung von unbehandelten Harzpartikeln und anderseits an einer Zementverfestigung von zur Reduktion des Quellfaktors behandelten Harzpartikeln durchgeführt.It can be seen from Table I that the untreated ion exchange resin particles have a swelling factor between 2.10 and 2.24 with a specific vibrating volume in the wet, swollen state of 2.50 to 3.23 liters per kg of dry substance. Furthermore, Table I shows that the swelling factor can be considerably reduced to or almost to 1.0 by suitable treatment of the resin particles. All those types of treatment that result in a swelling factor of less than 1.7 are of interest in practice. The information in Table I regarding the wet volume of the treated resin particles is also important. The smaller the specific wet volume, the greater the amount of resin particles that can be solidified in a given volume. It is therefore preferable to select a type of treatment which results in an optimum between the lowest possible swelling factor and at the same time the lowest possible specific wet volume. In order to determine the effects of the reduction of the swelling factor on the stability properties of solidified radioactive ion exchange resin particles, the comparative investigations described below were carried out on the one hand on a known standard cement hardening of untreated resin particles and on the other hand on a cement hardening of resin particles treated to reduce the swelling factor.
In beiden Fällen wurde ausgegangen von einer Mischung aus 50 Gew.% Kationen-Austuschharz des Typs Lewatit S-100 und 50 Gew.% Anionen-Austauschharz des Typs Lewatit M-500, wie sie z.B. im schweizerischen Kernkraftwerk Gösgen als radioaktiver Abfall anfällt.In both cases, a mixture of 50% by weight of Lewatit S-100 cation exchange resin and 50% by weight of Lewatit M-500 anion exchange resin was used, e.g. is generated as radioactive waste in the Gösgen nuclear power plant in Switzerland.
60 Gew.-Teile der unbehandelten Harzpartikel-Mischung mit 50% Wassergehalt, also voll aufgequollen, wurden vermischt mit60 parts by weight of the untreated resin particle mixture with 50% water content, ie fully swollen, were mixed with
100 Gew.-Teilen künstlicher Portland-Zement mit hohem Silikatgehalt, Bezeichnung CPA 55 HTS, hergestellt durch Ciments Lafarge France, F-92214 St. Cloud, (entspricht der französischen Norm NF P 15301, Dez. 1978, und der amerikanischen Norm ASTM als Typ V, Qualität "low alkali cement"),100 parts by weight of artificial Portland cement with a high silicate content, designation CPA 55 HTS, manufactured by Ciments Lafarge France, F-92214 St. Cloud, (corresponds to the French standard NF P 15301, December 1978, and the American standard ASTM as Type V, quality "low alkali cement"),
40 Gew.-Teilen hydraulischer Nettetaler Trass nach DIN 51043, hergestellt durch Trass-Werke Meurin, Andernach/Rhein, BRD, Werk Kruft,40 parts by weight of hydraulic Nettetaler trass according to DIN 51043, manufactured by Trass-Werke Meurin, Andernach / Rhein, FRG, Kruft plant,
10 Gew.-Teilen Kalziumhydroxid, Ca(OH)2 10 parts by weight of calcium hydroxide, Ca (OH) 2
4,2 Gew.-Teilen Superverflüssiger (Naphtalin-Formaldehyd-Kondensat), Bezeichnung Sikament, hergestellt durch Sika AG, CH-8048 Zürich, und4.2 parts by weight of superplasticizer (naphthalene-formaldehyde condensate), called Sikament, manufactured by Sika AG, CH-8048 Zurich, and
30,8 Gew.-Teilen Wasser.30.8 parts by weight of water.
Die Mischung gemäss vorstehender Rezeptur wurde mit Wasserüberschichtung aushärten gelassen. Die hierbei entstandene, verfestigte Matrix wies die in der Tabelle 11 ersichtlichen Kennzahlen auf.The mixture according to the above recipe was allowed to harden with an overcoating of water. The resulting solidified matrix had the key figures shown in Table 11.
63,65 Gew.-Teile der Harzpartikel-Mischung mit 16,4 Gew.% Wassergehalt (Festkörper trocken 83,6 Gew.%) wurden mit den folgenden Zusätzen zu einem dünnen Brei vermischt:
- 36,0 Gew.-Teile BaS4-Lösung mit 72,4 Gew.% Wassergehalt (Festkörper trocken 27,6 Gew.%) und 43,35 Gew.-Teile Ba(OH)2 . 8H20.
- 36.0 parts by weight of BaS 4 solution with 72.4% by weight water content (dry solids 27.6% by weight) and 43.35 parts by weight Ba (OH) 2 . 8H 2 0.
Dabei wurde das Kationen-Harz mit Ba++ und das Anionen-Harz mit S4 -- beladen. Das vom Anionen- Harz abgelöste Borat wurde mit weiterem Ba++ als unlösliches Barium-Metaborat gefällt. Durch diese beim Zusammenmischen auftretenden Reaktionen wurde Wärme frei, wodurch die Mischung sich von selbst von Raumtemperatur auf ca. 50°C erwärmte. Dann wurde die Mischung während einiger Stunden auf 50°C gehalten. Die Zementverfestigung erfolgte etwa 24 Stunden nach der beschriebenen Vorbehandlung. In der Zwischenzeit wurde die Mischung weiter gerührt, um ein Absetzen der Feststoffe und die Bildung von grösseren Kristallen zu verhindern. Ein Wasserverlust durch Verdunstung in dieser Zeit wurde durch Zugeben von weiterem Wasser kompensiert. Die so vorbehandelten Harzpartikeln wiesen die in der Tabelle I unter der Nr. 89 aufgeführten Kennzahlen auf.The cation resin was loaded with Ba ++ and the anion resin with S 4 - . The borate detached from the anion resin was precipitated with further Ba ++ as an insoluble barium metaborate. As a result of these reactions occurring during the mixing together, heat was released, which caused the mixture to warm itself from room temperature to approx. 50 ° C. Then the mixture was kept at 50 ° C for a few hours. The cement solidification took place about 24 hours after the pretreatment described. In the meantime, the mixture was further stirred to prevent the solids from settling and the formation of larger crystals. Loss of water due to evaporation during this time was compensated for by adding more water. The resin particles pretreated in this way had the key figures listed in Table I under No. 89.
Der im Abschnitt b) beschriebenen Mischung mit den vorbehandelten lonenaustausch-Harzpartikeln wurde eine vorher zubereitete Mischung zugesetzt, bestehend ausA previously prepared mixture consisting of was added to the mixture with the pretreated ion exchange resin particles described in section b)
100 Gew.-Teilen künstlicher Portland-Zement der gleichen Qualität wie im Abschnitt a) beschrieben, und100 parts by weight of artificial Portland cement of the same quality as described in section a), and
40 Gew.-Teilen hydraulischer Nettetaler Trass der gleichen Qualität wie im Abschnitt a) beschrieben.40 parts by weight of hydraulic Nettetaler trass of the same quality as described in section a).
Dabei wurde anfänglich nur soviel von der letztgenannten Mischung zugesetzt und homogen eingerührt, bis ein dicker Brei entstand, der aber noch von selbst zusammenlief. Dann folgte eine Zugabe vonInitially, only so much of the latter mixture was added and stirred in homogeneously until a thick paste was formed which, however, still ran together on its own. Then an addition of
2,5 Gew.-Teilen Betonzusatzmittel zur Verbesserung der Zement-Dichtigkeit und -Festigkeit, Bezeichnung Sperrbarra Plus OL, geliefert durch Meynadier + Cie AG, CH-8048 Zürich.2.5 parts by weight of concrete admixture to improve the cement tightness and strength, called Sperrbarra Plus OL, supplied by Meynadier + Cie AG, CH-8048 Zurich.
Beim Zumischen dieses Betonzusatzmittels wurde der Brei merklich dünnflüssiger. Der Rest der Portland-Zement/Trass-Mischung konnte hierauf unter ständiger Rührung ebenfalls zugegeben werden. Der schliesslich gebildete Brei wies eine gerade noch pumpbare Konsistenz auf und wurde noch 10 Minuten lang fertig homogen gemischt. Durch Vibration wurden eingemischte Luftblasen entfernt. Nach etwa 2 Stunden war die Mischung ausreichend thixotrop erstarrt, so dass sie für die Aushärtung mit Wasser überschichtet werden konnte. Die Aushärtung durch das Abbinden des Zementes setzte nach 5 bis 6 Stunden ein, was durch einen Temperaturanstieg erkennbar war. Die schliesslich entstandene, verfestigte Matrix wies die in der Tabelle II aufgeführten Kennzahlen auf.When this concrete admixture was added, the slurry became noticeably thinner. The rest of the Portland cement / trass mixture could then also be added with constant stirring. The porridge that was finally formed had a just pumpable consistency and was mixed homogeneously for a further 10 minutes. Mixed air bubbles were removed by vibration. After about 2 hours the mixture had solidified sufficiently thixotropically so that it could be overlaid with water for curing. The hardening by the setting of the cement started after 5 to 6 hours, which was recognizable by an increase in temperature. The resulting solidified matrix had the key figures listed in Table II.
In der Tabelle II sind die einander entsprechenden Kennzahlen der gemäss dem Abschnitt a) (Stand der Technik) hergestellten verfestigten Matrix und der gemäss den Abschnitten b) und c) hergestellten Matrix einander gegenübergestellt.Table II compares the corresponding key figures of the solidified matrix produced in accordance with section a) (prior art) and the matrix produced in accordance with sections b) and c).
Aus der Tabelle 11 ist deutlich erkennbar, dass durch die beschriebene erfindungsgemässe Vorbehandlung der lonenaustausch-Harzpartikeln zwecks Reduktion des Quellfaktors zwei bedeutende Vorteile gegenüber dem Stand der Technik erzielt werden. Der Hauptvorteil ist darin zu sehen, dass die Wasserbeständigkeit der verfestigten Matrix auch dann gewährleistet ist, wenn die Matrix bis zur Gewichtskonstanz bei 20% rel. Feuchtigkeit getrocknet und nachher wieder in Wasser gelagert wird, wogegen bei der Matrix gemäss dem Stand der Technik die Wasserbeständigkeit nur solange gewährleistet ist als keine Zwischentrocknung erfolgt. Der andere Vorteil ist, dass in einem gegebenen Matrixvolumen, z.B. 100 Liter, eine beträchtlich grössere Menge Harzpartikeln, nämlich 35,1 kg gegenüber 22 kg Trockensubstanz der Ausgangs-Harzpartikeln, eingeschlossen werden können. Hierdurch wird die Entsorgung und Endlagerung der radioaktiven Abfall-lonenaustausch-Harze fühlbar erleichtert. Als weiterer Vorteil des neuen Verfahrens ist zu erwähnen, dass die übrigen Eigenschaften der verfestigten Matrix, insbesondere die Druckfestigkeit und die Sulfat-Beständigkeit, durch die erfindungsgemässe Vorbehandlung der lonenaustausch-Harzpartikeln nicht beeinträchtigt werden.It can be clearly seen from Table 11 that the described pretreatment of the ion exchange resin particles according to the invention for the purpose of reducing the swelling factor achieves two significant advantages over the prior art. The main advantage can be seen in the fact that the water resistance of the solidified matrix is guaranteed even if the matrix up to constant weight at 20% rel. Moisture is dried and then stored again in water, whereas with the matrix according to the prior art the water resistance is only guaranteed as long as no intermediate drying takes place. The other advantage is that in a given matrix volume, e.g. 100 liters, a considerably larger amount of resin particles, namely 35.1 kg versus 22 kg dry matter of the starting resin particles, can be included. This noticeably facilitates the disposal and disposal of the radioactive waste ion exchange resins. As a further advantage of the new process, it should be mentioned that the other properties of the solidified matrix, in particular the compressive strength and the sulfate resistance, are not impaired by the pretreatment of the ion exchange resin particles according to the invention.
Es ist klar, dass für die Vorbehandlung der zu verfestigenden lonenaustausch-Harzpartikeln noch zahlreiche andere als die in der Tabelle I aufgeführten Substanzen in Frage kommen und dass die lediglich beispielsweise beschriebenen Rezepturen für die Zementverfestigung modifiziert werden können. Die erfindungsgemäss vorbehandelten lonenaustausch-Harzpartikeln mit reduziertem Quellfaktor sind nicht nur für die Zementverfestigung geeignet, sondern können ebenso gut auch mittels Bitumen oder Kunststoffen verfestigt werden.
Claims (4)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CH5407/84A CH664843A5 (en) | 1984-11-12 | 1984-11-12 | METHOD FOR IMPROVING THE STABILITY PROPERTIES OF STRENGTHENED RADIOACTIVE ION EXCHANGE RESIN PARTICLES. |
CH5407/84 | 1984-11-12 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0182172A1 EP0182172A1 (en) | 1986-05-28 |
EP0182172B1 true EP0182172B1 (en) | 1990-08-16 |
Family
ID=4293063
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP19850113953 Expired - Lifetime EP0182172B1 (en) | 1984-11-12 | 1985-11-02 | Process for improving the stability properties of solidified radioactive ion exchange resin particles |
Country Status (4)
Country | Link |
---|---|
US (1) | US4732705A (en) |
EP (1) | EP0182172B1 (en) |
CH (1) | CH664843A5 (en) |
DE (1) | DE3579219D1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4420658A1 (en) * | 1994-06-14 | 1995-12-21 | Siemens Ag | Process for reducing the volume of a mixture of powder resins and inert plastic fibers |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2608457B1 (en) * | 1986-12-19 | 1993-09-10 | Charbonnages Ste Chimique | PROCESS FOR THE EXTRACTION OF CATIONS AND ITS APPLICATION TO THE TREATMENT OF AQUEOUS EFFLUENTS |
US5481061A (en) * | 1987-03-13 | 1996-01-02 | Hitachi, Ltd. | Method for solidifying radioactive waste |
FR2624769B1 (en) * | 1987-12-16 | 1991-04-19 | Sgn Soc Gen Tech Nouvelle | METHOD OF IMMOBILIZING ION EXCHANGE RESINS FROM SECONDARY CIRCUITS OF PRESSURIZED WATER NUCLEAR REACTORS AND GRAPHITE-GAS REACTORS |
US5269975A (en) * | 1991-02-21 | 1993-12-14 | Noakes John E | Solidification of organic waste materials in cement |
DE4137947C2 (en) * | 1991-11-18 | 1996-01-11 | Siemens Ag | Processes for the treatment of radioactive waste |
US5545798A (en) * | 1992-09-28 | 1996-08-13 | Elliott; Guy R. B. | Preparation of radioactive ion-exchange resin for its storage or disposal |
DE4324818C2 (en) * | 1993-07-23 | 2002-06-27 | Framatome Anp Gmbh | Process for the disposal of ion exchange resin |
AT401122B (en) * | 1994-05-09 | 1996-06-25 | Oesterr Forsch Seibersdorf | Method for stabilizing ion exchange resins loaded with radioactive materials, and products stabilized in such a way |
DE19700832A1 (en) * | 1997-01-13 | 1998-07-16 | Siemens Ag | Product for final storage of radioactive ion exchange resins |
DE19707982A1 (en) * | 1997-02-27 | 1998-09-03 | Siemens Ag | Composition for long term storage of radioactive wastes |
US5960368A (en) * | 1997-05-22 | 1999-09-28 | Westinghouse Savannah River Company | Method for acid oxidation of radioactive, hazardous, and mixed organic waste materials |
DE102009006518A1 (en) * | 2009-01-28 | 2010-09-16 | Areva Np Gmbh | Process and apparatus for treating an ion exchange resin |
US9040767B2 (en) * | 2011-02-15 | 2015-05-26 | Fuji Electric Co., Ltd. | Resin volume reduction processing system and resin volume reduction processing method |
RU2685697C1 (en) * | 2018-07-12 | 2019-04-23 | Акционерное Общество "Российский Концерн По Производству Электрической И Тепловой Энергии На Атомных Станциях" (Ао "Концерн Росэнергоатом") | Method of processing spent ion-exchange resins for disposal and device for its implementation |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3334050A (en) * | 1964-08-24 | 1967-08-01 | Minnesota Mining & Mfg | Organic carbonaceous matrix with radioisotope dispersed therein |
US3791981A (en) * | 1971-04-07 | 1974-02-12 | Aerochem Res Lab | Volume reduction of radioactive ion exchange resins for disposal |
DE2549195A1 (en) * | 1974-11-05 | 1976-05-06 | Asea Atom Ab | METHOD OF EMBEDDING CONSUMED, GRAIN, ORGANIC ION EXCHANGE IN CEMENT |
AT338388B (en) * | 1975-06-26 | 1977-08-25 | Oesterr Studien Atomenergie | METHOD AND DEVICE FOR TRANSFERRING RADIOACTIVE ION EXCHANGE RESINS INTO A STORAGE FORM |
US4204974A (en) * | 1975-07-15 | 1980-05-27 | Kraftwerk Union Aktiengesellschaft | Method for removing radioactive plastic wastes and apparatus therefor |
DE2628286C2 (en) * | 1976-06-24 | 1986-04-10 | Kernforschungszentrum Karlsruhe Gmbh, 7500 Karlsruhe | Process to improve the leaching resistance of bitumen solidification products from radioactive substances |
FR2361724A1 (en) * | 1976-08-12 | 1978-03-10 | Commissariat Energie Atomique | STORAGE PROCESS FOR CONTAMINATED ION EXCHANGER RESINS |
US4268409A (en) * | 1978-07-19 | 1981-05-19 | Hitachi, Ltd. | Process for treating radioactive wastes |
DE2945007A1 (en) * | 1979-11-08 | 1981-05-21 | Kernforschungszentrum Karlsruhe Gmbh, 7500 Karlsruhe | METHOD FOR REPOSITION TIRE, ENVIRONMENTALLY FRIENDLY FASTENING OF RADIOACTIVE ION EXCHANGE RESINS |
SE420249B (en) * | 1980-01-31 | 1981-09-21 | Asea Atom Ab | SET FOR TREATMENT OF ONE IN A WASTE CIRCUIT IN A NUCLEAR REACTOR PLANT USING ORGANIC ION EXCHANGER MASS |
SE425708B (en) * | 1981-03-20 | 1982-10-25 | Studsvik Energiteknik Ab | PROCEDURE FOR FINAL TREATMENT OF RADIOACTIVE ORGANIC MATERIAL |
US4559170A (en) * | 1983-11-03 | 1985-12-17 | Rockwell International Corporation | Disposal of bead ion exchange resin wastes |
-
1984
- 1984-11-12 CH CH5407/84A patent/CH664843A5/en not_active IP Right Cessation
-
1985
- 1985-11-02 EP EP19850113953 patent/EP0182172B1/en not_active Expired - Lifetime
- 1985-11-02 DE DE8585113953T patent/DE3579219D1/en not_active Expired - Fee Related
- 1985-11-12 US US06/796,747 patent/US4732705A/en not_active Expired - Fee Related
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4420658A1 (en) * | 1994-06-14 | 1995-12-21 | Siemens Ag | Process for reducing the volume of a mixture of powder resins and inert plastic fibers |
US5877225A (en) * | 1994-06-14 | 1999-03-02 | Siemens Aktiengesellschaft | Method of reducing the volume of a mixture of resin powder and inert synthetic fibers |
Also Published As
Publication number | Publication date |
---|---|
CH664843A5 (en) | 1988-03-31 |
US4732705A (en) | 1988-03-22 |
DE3579219D1 (en) | 1990-09-20 |
EP0182172A1 (en) | 1986-05-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0182172B1 (en) | Process for improving the stability properties of solidified radioactive ion exchange resin particles | |
DE3874647T2 (en) | IN-SITU FORMATION OF SOLUBLE BIOGENETIC SILICON DIOXIDE SILICATES IN CHEMICAL FIXING / STRENGTHENING TREATMENT OF WASTE. | |
DE1496645A1 (en) | Method for reinforcing a glass object | |
DE2462649B1 (en) | Fabric softener | |
DE3687361T2 (en) | METHOD FOR TREATING RADIOACTIVE WASTE. | |
DE2945007A1 (en) | METHOD FOR REPOSITION TIRE, ENVIRONMENTALLY FRIENDLY FASTENING OF RADIOACTIVE ION EXCHANGE RESINS | |
DE69302016T2 (en) | Production of inorganic, curable sludge and its use for solidifying waste materials | |
DE3215508C2 (en) | Process for improving the radionuclide retention properties of solidification of radioactive waste | |
DE3780436T2 (en) | BLOCK WITH DISPOSAL FOR FINAL STORAGE AND METHOD FOR PRODUCING SUCH A BLOCK. | |
DE3044764A1 (en) | COMPOSING TONES BY COMPACTING | |
DE2356253A1 (en) | PROCEDURE FOR PREPARING ORGANIC, RADIOACTIVE MATERIALS CONTAINING WASTE LIQUIDS FOR ENVIRONMENTALLY FRIENDLY AND SAFE HANDLING, TRANSPORTATION AND FINAL DISPOSAL | |
DE2143505A1 (en) | Procedure for the decontamination of radioactive liquids | |
DD258413A1 (en) | METHOD FOR HYDROPHOBICIZING PLASTER ELEMENTS | |
DE3402700A1 (en) | METHOD FOR REMOVING RADIUM FROM ACID SOLUTIONS | |
DE2915034C2 (en) | ||
EP0283572A1 (en) | Process for producing a solid product containing cement suitable for storing waters containing tritium in an accessible depository | |
DE3238961C2 (en) | Process for reducing the volume of aqueous, nitrate-containing radioactive waste solutions | |
DE60005296T2 (en) | Process for the co-solidification of weakly radioactive wet waste materials from boiling water nuclear power reactors | |
DE10238789B4 (en) | Process for the preparation of suspensions and their use | |
Laske et al. | Procedure for improvement of the stability of solidified radioactive ion-exchange resin particles | |
DE1962499A1 (en) | Method for stabilizing soil | |
CH655198A5 (en) | Process for enhancing the radionuclide retention properties of solidified radioactive wastes | |
DE2738415B2 (en) | Calcium sulphate fibers with inorganic coatings | |
DE1048887B (en) | Method of replacing the exchangeable cations of a clay with a stretchable lattice | |
DE69915898T2 (en) | A method of conditioning ion-exchange resins loaded with radioactive and / or contaminating ions |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): BE DE FR GB SE |
|
17P | Request for examination filed |
Effective date: 19860625 |
|
17Q | First examination report despatched |
Effective date: 19880104 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: GESELLSCHAFT ZUR FOERDERUNG DER INDUSTRIEORIENTIER |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): BE DE FR GB SE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY Effective date: 19900816 |
|
REF | Corresponds to: |
Ref document number: 3579219 Country of ref document: DE Date of ref document: 19900920 |
|
RAP4 | Party data changed (patent owner data changed or rights of a patent transferred) |
Owner name: GESELLSCHAFT ZUR FOERDERUNG DER INDUSTRIEORIENTIER |
|
ET | Fr: translation filed | ||
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 19911001 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 19911227 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 19920918 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 19921009 Year of fee payment: 8 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Effective date: 19921102 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 19921102 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Effective date: 19930803 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Effective date: 19931130 |
|
BERE | Be: lapsed |
Owner name: GESELLSCHAFT ZUR FORDERUNG DER INDUSTRIEORIENTIER Effective date: 19931130 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Effective date: 19940729 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |