EP0178709B1 - Dispositif de stabilisation - Google Patents

Dispositif de stabilisation Download PDF

Info

Publication number
EP0178709B1
EP0178709B1 EP85201531A EP85201531A EP0178709B1 EP 0178709 B1 EP0178709 B1 EP 0178709B1 EP 85201531 A EP85201531 A EP 85201531A EP 85201531 A EP85201531 A EP 85201531A EP 0178709 B1 EP0178709 B1 EP 0178709B1
Authority
EP
European Patent Office
Prior art keywords
drilling
rot
passageways
stabilizing device
ribs
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP85201531A
Other languages
German (de)
English (en)
Other versions
EP0178709A1 (fr
Inventor
Honoré Joseph Lambot
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Diamant Boart NV SA
Original Assignee
Diamant Boart NV SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from BE0/213816A external-priority patent/BE900804A/fr
Application filed by Diamant Boart NV SA filed Critical Diamant Boart NV SA
Priority to AT85201531T priority Critical patent/ATE39011T1/de
Publication of EP0178709A1 publication Critical patent/EP0178709A1/fr
Application granted granted Critical
Publication of EP0178709B1 publication Critical patent/EP0178709B1/fr
Expired legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B17/00Drilling rods or pipes; Flexible drill strings; Kellies; Drill collars; Sucker rods; Cables; Casings; Tubings
    • E21B17/10Wear protectors; Centralising devices, e.g. stabilisers
    • E21B17/1092Gauge section of drill bits
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B17/00Drilling rods or pipes; Flexible drill strings; Kellies; Drill collars; Sucker rods; Cables; Casings; Tubings
    • E21B17/22Rods or pipes with helical structure

Definitions

  • the present invention relates to a device for stabilizing a drill string, consisting of a steel cylinder having laterally helical projections provided with a coating offering good resistance to erosion and abrasion.
  • the stabilization devices are mainly intended to control the direction and quality of drilling in deep vertical or directional wells.
  • a stabilizing sleeve usually used for directional turbine or rotary drilling consists of a cylindrical steel casing fixed to the end of a drill string, in the vicinity of a diamond-tipped bit or a crown, in alignment with the latter, by means of a cylindrical end piece of determined length, provided with a standardized fixing thread.
  • Helical projections provided on the outer side wall of the aforementioned envelope determine a cylinder of diameter substantially equal to the diameter of the drilled hole.
  • the diameter of the envelope is generally a few tens of millimeters less than the diameter of the cylinder determined by the helical projections.
  • the helical projections are covered with a coating, having excellent resistance to erosion and abrasion.
  • the recesses formed between the projections allow the rock waste entrained by the drilling fluid to rise.
  • the stabilizing sleeve allows the forces of the diamond drilling tool to be distributed along a larger contact surface on the side wall of the drilled well, thus reducing the capacity of lateral destruction of the rock by the tool under the 'effect of its own weight and limiting the pendulum effect of the entire drilling rig as well as spiraling in drilling with a turbine.
  • Spiraling is a deformation of the corkscrew hole. It has the effect of increasing the risk of the drill string getting stuck in the hole.
  • the deviation intensity is defined as the increase in the deviation from an initial direction of drilling per unit of length drilled.
  • the stabilizer has large water passages arranged helically along the sleeve, in a symmetrical configuration which does not contribute to generating or increasing any tendency to deflect the cutting tool from a straight path.
  • the BURGE patent makes it possible to prevent but does not make it possible to correct a deviation from the trajectory.
  • the present invention provides the means to modify at will to the left or to the right, the deviations generated by a rapid rotation of the drill string in a directional deep drilling. It of course makes it possible to reduce the amplitude of the unwanted deviations.
  • the invention therefore relates to a method, according to which stabilizer sleeves are advantageously used which have modifications on the wings which provide them with a sufficient contact surface only to limit the lateral aggressiveness of the drilling tool and at the same time to control, that is to say modify at will, the angle of azimuthal deviation towards the left of the lining in drilling with the turbine.
  • It relates to a device for stabilizing a drill string, consisting of a cylindrical steel body having laterally helical projections separated by passages of drilling fluid provided with a coating offering good resistance to erosion and abrasion, essentially characterized in that it comprises at least one substantially circumferential groove formed in the aforesaid projections, so as to connect the recesses therebetween between them; according to a feature of the invention, the aforementioned grooves are formed over part of the height of the projections.
  • the grooves are advantageously provided, preferably by milling, at regular intervals along the helical projections.
  • a single groove has a helical shape with a short pitch.
  • a different embodiment includes at least two portions of sleeves of the same diameter arranged in the same alignment behind the drilling tool.
  • a drilling tool designated as a whole by the reference notation 1 usually used for deep directional drilling with a turbine or rotary, consists of a drilling head 2 proper, produced either made of composite material shaped by powder metallurgy techniques, either steel or cast metal.
  • the head 2 is a drill bit or a drilling crown provided over its entire surface in contact with the bottom of the well, with cutting elements 3 placed so as to make effective both the destruction of the rock and the evacuation of shavings.
  • This drilling head 2 is fixed to the end of a drill string, not shown, by means of a frustoconical end piece 4 of variable length between 15 and 100 cm and having a fixing thread 5 meeting the standards in force.
  • a stabilization device consisting of a cylindrical body 6 of steel, having laterally helical projections 7 provided with a coating 8 having sufficient resistance to erosion and abrasion and generally designated by the reference notation 9, is mounted in alignment with the drilling head 2, behind the latter, on the cylindrical end piece 4.
  • the coating 8 of the helical projections 7 may be made of a hard metal or a composite material, possibly diamond-coated.
  • an oil film 13 is constantly established between the two surfaces in relative movement, namely the shaft 11 and the bearing 12.
  • the oil film under pressure is generated by the very movement of the 'shaft 11 provided that the speed of rotation is sufficient.
  • the choice of operating mode namely hydrodynamic lubrication or direct contact depends on the speed of rotation of the bearing, the dynamic viscosity of the lubricating fluid, the length of the bearing, the diameter of the bearing, the load applied to the rotor and relative radial clearance, with respect to the radius, relative radial clearance between 0.8 - 1 (J3 and 4 - 10 -3 .
  • the setting angle is one of the parameters that characterize the average position of the rotor in the stator. It is indicated by the reference notation ⁇ in FIG. 4.
  • Sommerfeld's theory also demonstrates that the setting angle, the resisting torque, the dissipated power and the axial flow of lubricant depend only for a given length / diameter ratio, relative eccentricity s, equal to e / c, that is to say the ratio of absolute eccentricity, expressed in millimeters, on absolute radial clearance also expressed in millimeters.
  • Figure 6 shows, in fact, the relationship observed for a turbine drill tilted at about 45 ° C between the intensity of deviation to the left and the length of the stabilization device. We can assimilate this relation to a function of the first degree, when all the other parameters remain identical.
  • FIG. 7 shows how the static load Pst corresponding to an equivalent hydrodynamic behavior varies, as a function of the length of the stabilization device.
  • the invention consists in providing a known stabilizing device with an improvement with a view to controlling accidental deviations without, however, modifying the total length of the above-mentioned device 9, essential to avoid spiraling.
  • This improvement consists in providing, perpendicular to the longitudinal axis of the stabilizing device 9, at least one groove 15, substantially circumferential formed in the projections 8 above, so as to interconnect, the recesses 14 included therebetween.
  • the grooves 15 can be formed in the above projections, by milling, over a portion of their height. These grooves 15 have the effect of bringing into communication an area in which the lubricant is subjected to a high pressure, with an area in which the lubricant is at a lower pressure. Such a groove 15 reduces the bearing capacity of the bearing and therefore the deviation to the left due to the hydrodynamic operation.
  • Figure 3 shows a second possible embodiment in which the groove 15, of helical shape is formed in a direction different from that of the helical projections 8 above. A doubly spiraled sleeve is thus obtained.

Landscapes

  • Engineering & Computer Science (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Earth Drilling (AREA)
  • Sliding-Contact Bearings (AREA)
  • Drilling Tools (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Description

  • La présente invention est relative à un dispositif de stabilisation d'une garniture de forage, constitué d'un cylindre en acier présentant latéralement des saillies hélicoïdales munies d'un revêtement offrant une bonne résistance à l'érosion et à l'abrasion.
  • Les dispositifs de stabilisation sont principalement destinés à contrôler la direction et la qualité du forage dans les puits profonds verticaux ou directionnels.
  • Comme il est connu par le brevet américain N° 4 245 709 un manchon stabilisateur mis en oeuvre habituellement pour le forage directionnel à turbine ou rotary, est constitué d'une enveloppe cylindrique en acier fixée à l'extrémité d'un train de tiges, au voisinage d'un trépan à pointe diamantée ou d'une couronne, dans l'alignement de celui-ci, par l'intermédiaire d'un embout cylindrique de longueur déterminée, muni d'un filet de fixation normalisé.
  • Des saillies hélicoïdales prévues sur la paroi latérale extérieure de l'enveloppe susdite déterminent un cylindre de diamètre sensiblement égal au diamètre du trou foré. Le diamètre de l'enveloppe est en général inférieur de quelques dizaines de millimètres, au diamètre du cylindre déterminé par les saillies hélicoïdales.
  • Les saillies hélicoïdales sont recouvertes d'un revêtement, présentant une excellente résistance à l'érosion et à l'abrasion.
  • Les évidements ménagés entre les saillies permettent la remontée des déchets de roche entraînés par le fluide de forage.
  • Le manchon stabilisateur permet de répartir le long d'une plus grande surface de contact, les efforts de l'outil de forage diamanté sur la paroi latérale du puits foré, diminuant ainsi la capacité de destruction latérale de la roche par l'outil sous l'effet de son propre poids et limitant l'effet pendulaire de l'ensemble de la garniture du forage ainsi que le spiralage en forage à la turbine.
  • Le spiralage est une déformation du trou en tire-bouchon. Il a pour effet d'augmenter le risque de coinçage de la garniture de forage dans le trou.
  • L'effet pendulaire quant à lui a pour effet de rapprocher de la verticale le profil du puits. Or, ce but n'est pas recherché en forage dévié. L'utilisation d'un manchon stabilisateur permet de réaliser une stabilisation adéquate de l'ensemble de la garniture de forage. On parvient ainsi à maintenir ou même à augmenter l'inclinaison des puits déviés.
  • On a constaté que les manchons stabilisateurs mis en oeuvre dans les forages profonds déviés pour les raisons évoquées ci-dessus, exercent une influence importante sur la déviation azimutale de la garniture de forage.
  • Des nombreuses données collectées sur divers chantiers, on peut caractériser de façon générale le comportement de la garniture de forage. On constate que :
    • - dans le cas du forage rotary, une déviation azimutale orientée vers la droite, lorsqu'on prend la direction instantanée de forage comme référence,
    • - dans le cas du forage à la turbine, une déviation azimutale vers la gauche, lorsqu'on prend la direction instantanée de forage comme référence.
  • De nombreux tests ont démontré que l'intensité de déviation azimutale à gauche en forage à turbine est fortement influencée par la longueur du manchon stabilisateur. L'intensité de déviation est définie comme étant l'accroissement de la déviation par rapport à une direction initiale de forage par unité de longueur forée.
  • On observe en moyenne dans des puits inclinés à 45° environ, une intensité de déviation de 0,5 à 1,80 degrés par cent pieds pour des longueurs de dispositifs de stabilisation comprises entre 9 et 18 pouces (22.86 à 45.72 cm).
  • On a pu également observer que ces déviations ne se rencontrent systématiquement que dans les forages à turbine ou les forages ROTARY mettant en oeuvre des vitesses de rotation du train de tiges d'au moins 700 t/min. en turbo-forage et respectivement 100 t/min. en forage rotary.
  • Ces phénomènes ne se rencontrent pas dans les forages à rotation lente, comme par exemple ceux effectués à l'aide d'un trépan à molettes.
  • Par le document US-A-4 467 879, on connaît des stabilisateurs et alésoirs montés le long d'un train de tiges entraînant un trépan à molettes. Le train de tiges est soumis à une rotation lente de quelques tours seulement par minute.
  • Le stabilisateur présente de larges passages d'eau ménagé hélicoïdalement le long du manchon, selon une configuration symétrique qui ne contribue pas à engendrer ni à accroître une quelconque tendance à dévier l'outil de coupe d'une trajectoire rectiligne. Le brevet BURGE permet de prévenir mais ne permet pas de corriger une déviation de trajectoire.
  • La présente invention propose le moyen de modifier à volonté à gauche ou à droite, les déviations engendrées par une rotation rapide du train de tiges dans un forage profond directionnel. Elle permet bien sûr de réduire l'amplitude des déviations non souhaitées.
  • L'invention concerne donc une méthode, selon laquelle on utilise à bon escient des manchons stabilisateurs présentant sur les ailes, des modifications qui assurent à celles-ci une surface de contact suffisante que pour limiter l'agressivité latérale de l'outil de forage et à la fois de maîtriser, c'est-à-dire modifier à volonté, l'angle de déviation azimutale vers la gauche de la garniture en forage à la turbine.
  • Elle est relative à un dispositif de stabilisation d'une garniture de forage, constitué d'un corps cylindrique en acier présentant latéralement des saillies hélicoïdales séparées par des passages de fluide de forage munies d'un revêtement offrant une bonne résistance à l'érosion et à l'abrasion, essentiellement caractérisé en ce qu'il comprend au moins une gorge sensiblement circonférentielle ménagée dans les saillies susdites, de manière à relier entre eux les évidements compris entre celles-ci ; suivant une particularité de l'invention, les gorges susdites sont ménagées sur une partie de la hauteur des saillies.
  • Les gorges sont avantageusement ménagées, de préférence par fraisage, à intervalles réguliers le long des saillies hélicoïdales.
  • Dans une forme de réalisation particulière, une seule gorge présente une allure hélicoïdale à pas court.
  • Une forme de réalisation différente comprend au moins deux portions de manchons de même diamètre disposées dans le même alignement derrière l'outil de forage.
  • D'autres particularités et détails de l'invention apparaîtront au cours de la description détaillée suivante d'une forme de réalisation particulière de l'invention donnée à titre d'exemple non limitatif en faisant référence aux dessins ci-annexés. Dans ces dessins :
    • - la figure 1 est une vue en élévation latérale d'un trépan de forage à pointes diamantées muni d'une première forme de réalisation d'un dispositif de stabilisation suivant l'invention ;
    • - la figure 2 est une vue en perspective de la jupe de stabilisation illustrée à la figure 1 ;
    • - la figure 3, est une vue semblable à la figure 1, d'une deuxième forme de réalisation d'un dispositif de stabilisation;
    • - la figure 4 montre une coupe transversale perpendiculaire à l'axe de forage d'un palier radial en fonctionnement hydrodynamique ;
    • - la figure 5 montre une coupe transversale, perpendiculaire à l'axe de forage, d'un palier radial en fonctionnement par contact direct ;
    • - la figure 6 est un diagramme illustrant une première relation existant entre l'intensité de la déviation à gauche d'un puits de forage à la turbine en fonction de la longueur du dispositif de stabilisation ;
    • - la figure 7 est un diagramme illustrant une seconde relation existant entre la charge statique correspondant à un comportement hydrodynamique équivalent, en fonction de la longueur du dispositif de stabilisation ; et
    • - la figure 8 montre la corrélation existant entre l'intensité de la déviation à gauche d'un puits de forage à la turbine et la charge statique correspondant à un comportement hydrodynamique équivalent.
  • Dans les dessins susdits, les mêmes notations de référence désignent des éléments identiques ou analogues.
  • Comme illustré à la figure 1, un outil de forage désigné dans son ensemble par la notation de référence 1, mis habituellement en oeuvre pour le forage directionnel profond à turbine ou rotary, est constitué d'une tête de forage 2 proprement dite réalisée, soit en matériau composite mis en forme par des techniques de métallurgie des poudres, soit en acier ou métal moulé. La tête 2 est un trépan ou une couronne de sondage munie sur toute sa surface en contact avec le fond du puits, d'éléments de coupe 3 placés de manière à rendre efficaces, à la fois la destruction de la roche et l'évacuation des copeaux.
  • Cette tête de forage 2 est fixée à l'extrémité d'un train de tiges, non montré, par l'intermédiaire d'un embout tronconique 4 de longueur variable compris entre 15 et 100 cm et présentant un filet de fixation 5 répondant aux normes en vigueur.
  • Un dispositif de stabilisation, constitué d'un corps cylindrique 6 en acier, présentant latéralement des saillies hélicoïdales 7 munies d'un revêtement 8 présentant une résistance suffisante à l'érosion et à l'abrasion et désigné dans son ensemble par la notation de référence 9, est monté en alignement avec la tête de forage 2, derrière celle-ci, sur l'embout cylindrique 4.
  • Le revêtement 8 des saillies hélicoïdales 7 peut être constitué d'un métal dur ou d'un matériau composite, éventuellement diamanté.
  • Ces outils connus présentent, comme expliqué ci-dessus, une tendance à dévier vers la gauche ou vers la droite suivant qu'il s'agit d'un forage à turbine ou d'un forage rotary.
  • Les phénomènes de déviation des outils de forage dans des puits déviés profonds trouvent une explication lorsqu'on leur applique la théorie de Sommerfeld des paliers à fonctionnement hydrodynamique.
  • Il est en effet permis d'assimiler un dispositif de stabilisation 9 mis en rotation dans un puits profond dévié à un palier lisse conventionnel 10 constitué d'un arbre 11 tournant à l'intérieur d'un coussinet 12 (figures 4 et 5).
  • Suivant la théorie de Sommerfeld, les paliers lisses 10 peuvent fonctionner de deux manières distinctes, sous les conditions suivantes :
    • 1. Lubrification hydrodynamique, ou
    • 2. contact direct.
  • En lubrification hydrodynamique, il s'établit en permanence un film d'huile 13 entre les deux surfaces en mouvement relatif, à savoir l'arbre 11 et le coussinet 12. Le film d'huile sous pression est généré par le mouvement même de l'arbre 11 à condition que la vitesse de rotation soit suffisante.
  • Dans le deuxième cas, les surfaces 10 et 11 en mouvement relatif sont en contact direct. Ce cas se rencontre en mécanique au démarrage des paliers hydrodynamiques et dans certains engins de génie civil, où les vitesses relatives sont faibles.
  • La théorie de Sommerfeld qui permet de prévoir le comportement de paliers lisses soumis à une lubrification hydrodynamique est décrit dans la revue intitulée « Technique de l'ingénieur », volume B, dans le chapitre 671 consacré aux Paliers Hydrodynamiques.
  • De la théorie de Sommerfeld, on peut déduire qu'un palier lisse est caractérisé géométriquement par :
    • - son diamètre ;
    • - le rapport sans dimension de la longueur du palier sur son diamètre.
  • Le choix du mode de fonctionnement, à savoir la lubrification hydrodynamique ou le contact direct dépend de la vitesse de rotation du palier, de la viscosité dynamique du fluide lubrifiant, de la longueur du palier, du diamètre du palier, de la charge appliquée sur le rotor et du jeu radial relatif, par rapport au rayon, jeu radial relatif compris entre 0,8 - 1(J3 et 4 - 10-3.
  • L'angle de calage est un des paramètres qui caractérisent la position moyenne du rotor dans le stator. Il est indiqué par la notation de référence Ø à la figure 4. La théorie de Sommerfeld démontre également que l'angle de calage, le couple résistant, la puissance dissipée et le débit axial de lubrifiant dépendent uniquement pour un rapport longueur/diamètre donné, de l'excentricité relative s, égale à e/c, c'est-à-dire au rapport de l'excentricité absolue, exprimée en millimètres, sur jeu radial absolu exprimé également en millimètres.
  • Dans le cas simple où le palier 10 est complètement lisse et la charge appliquée rigoureusement constante, la limite du fonctionnement hydrodynamique est atteinte lorsque la différence entre le jeu radial absolu c et l'excentricité absolue e est égale à la somme des rugosités des surfaces usinées, il s'ensuit alors un contact direct et une modification radicale du comportement du palier.
  • Dans le cas d'un dispositif de stabilisation 9 entraîné en rotation dans un puits en cours de forage, le problème est évidemment plus complexe :
    • - la paroi rocheuse est géométriquement irrégulière ;
    • - le fluide « lubrifiant est en réalité de la boue de forage chargée des débris de roche ;
    • - l'arbre 11 constitué par le dispositif stabilisateur 9 n'est pas lisse mais comprend des saillies 8 délimitant des évidements 14 pour le passage du fluide de forage et des déblais.
  • Malgré ces imperfections, on peut imaginer d'extrapoler la théorie de Sommerfeld au dispositif de stabilisation 9 en rotation dans un puits dévié.
  • Vu l'imperfection des conditions au fond de trou vis-à-vis du cas idéal du palier lisse, on doit s'attendre à ce que pour un nombre de Sommerfeld S défini conventionnellement, l'excentricité relative sera plus proche de 1 que pour un palier lisse de même longueur, même diamètre et même vitesse de rotation.
  • Il existe donc des conditions de forage pour lesquelles on observe une transition entre un comportement hydrodynamique et un comportement en contact direct.
  • Lorsqu'on met en oeuvre des outils équipés de manchons stabilisateurs entraînés en rotation par une turbine atteignant des vitesses de rotation importantes de l'ordre de 700 tours par minute environ, on peut supposer que le nombre de Sommerfeld minimum est atteint. En raison des conditions particulières déjà évoquées plus haut, le fonctionnement en lubrification hydrodynamique n'est cependant jamais entièrement établi. On s'en rapproche de plus en plus au fur et à mesure que le nombre de Sommerfeld augmente, c'est-à-dire, toutes autres conditions restant identiques, au fur et à mesure que la longueur du manchon stabilisateur 9 augmente.
  • La figure 6 montre en effet, la relation observée pour un forage à la turbine incliné à environ 45 °C entre l'intensité de déviation à gauche et la longueur du dispositif de stabilisation. On peut assimiler cette relation à une fonction du premier degré, lorsque tous les autres paramètres restent identiques.
  • La figure 7 montre comment varie la charge statique Pst correspondant à un comportement hydrodynamique équivalent, en fonction de la longueur du dispositif de stabilisation.
  • Lorsqu'on porte les points de mesure de l'intensité de déviation à gauche et de la charge statique susdite correspondant à un comportement hydrodynamique équivalent sur un diagramme montré à la figure 8, on s'aperçoit que lesdits points montrent une tendance à l'alignement.
  • On observe donc une corrélation indéniable entre les variables susdits lorsqu'on met en oeuvre des vitesses de rotation importantes.
  • Par contre, pour un forage rotary sans dispositif stabilisateur ou avec manchon relativement court, à une vitesse de rotation comprise entre 100 et 200 tours par minute seulement, le nombre de Sommerfeld et donc la charge admissible à excentricité relative donnée est beaucoup plus faible ; on peut dès lors admettre que les conditions de fonctionnement hydrodynamique ne sont jamais remplies et la garde d'outil 1 seule ou la garde d'outil 1 prolongée par un dispositif stabilisateur 9 court fonctionne en contact direct.
  • Des arguments développés ci-dessus, on déduit que la variation de l'intensité de déviation à gauche en forage à la turbine est liée à un comportement plus ou moins hydrodynamique du système. Cette explication est confirmée par l'observation d'une déviation à gauche à la turbine et à droite au rotary.
  • En effet, en examinant les figures 4 et 5, on remarque que la différence fondamentale existant entre le fonctionnement hydrodynamique et celui à contact direct se trouve dans la position moyenne du palier rotorique dans le logement statorique.
  • Supposons, comme indiqué aux figures 4 et 5 :
    • - une charge verticale agissant de haut en bas sur le palier rotorique,
    • - une rotation w du palier rotorique dans le sens horlogique semblable à celle de l'outil de forage vu de l'arrière.
  • On remarque que le point de contact ou le point d'éloignement minimum du palier rotorique par rapport au palier statorique est situé :
    • - à gauche de la verticale passant par le centre du palier rotorique dans le cas du fonctionnement hydrodynamique ;
    • - à droite de la verticale passant par le centre du palier rotorique dans le cas du fonctionnement en contact direct.
  • Or, le trou foré à la turbine, pour lequel on a supposé un fonctionnement plus ou moins hydrodynamique de la jupe, dévie précisément vers la gauche et le trou foré en rotary, pour lequel on a montré que la jupe ou la garde de l'outil seule devait avoir un comportement en contact direct, dévie précisément vers la droite.
  • L'invention consiste à apporter à un dispositif stabilisateur connu, un perfectionnement en vue de maîtriser les déviations accidentelles sans toutefois modifier la longueur totale du dispositif susdit 9, indispensable pour éviter le spiraling.
  • Ce perfectionnement consiste à ménager, perpendiculairement à l'axe longitudinal du dispositif stabilisateur 9, au moins une gorge 15, sensiblement circonférencielle ménagée dans les saillies 8 susdites, de manière à relier entre eux, les évidements 14 compris entre celles-ci.
  • Comme illustré aux figures 1 et 2, les gorges 15 peuvent être ménagées dans les saillies susdites, par fraisage, sur une partie de leur hauteur. Ces gorges 15 ont pour effet de mettre en communication une zone dans laquelle le lubrifiant est soumis à une pression élevée, avec une zone dans laquelle le lubrifiant se trouve à une pression moins élevée. Une telle gorge 15 réduit la capacité portante du palier et donc la déviation vers la gauche due au fonctionnement hydrodynamique.
  • La figure 3 montre une deuxième forme de réalisation possible dans laquelle la gorge 15, de forme hélicoïdale est ménagée dans une direction différente de celle des saillies hélicoïdales 8 susdites. On obtient ainsi un manchon doublement spiralé.
  • Exemple 1
  • Pour donner un ordre de grandeur de l'influence de ces modifications, prenons un exemple numérique : soit une jupe stabilisatrice dont on suppose que le comportement est semblable à celui d'un palier lisse de même diamètre et même longueur. On considère une jupe de référence dont le rapport L/D = 1, et dont la capacité portante est posée égale à 1.
  • Une jupe de longueur double, présentant donc un rapport L/D = 2 aura une capacité portante de 3,35 alors que si on pratique deux gorges perpendiculaires à l'axe de l'outil découpant la surface portante en trois parties égales, la même jupe de longueur double n'aura qu'une capacité portante de 1,05, c'est-à-dire presque identique à celle de la jupe de référence.
  • Il est évident que l'invention n'est pas limitée aux formes de réalisation décrites ci-dessus et que de nombreuses modifications peuvent être apportées auxdites formes sans pour autant soustraire celles-ci de la portée des revendications suivantes.

Claims (7)

1. Méthode pour modifier la trajectoire d'un outil de coupe pour forage directionnel profond, entraîné soit par un moteur suspendu ou turbine suspendue à une vitesse d'au moins 700 t/min ou par une table de rotation à partir de la surface à une vitesse d'au moins 100 t/min, à l'aide d'un dispositif de stabilisation présentant latéralement des saillies hélicoïdales (8) séparées par des passages de fluide de forage (14) et munies d'un revêtement offrant une bonne résistance à l'érosion et à l'abrasion, caractérisée en ce qu'on ménage dans les saillies susdites, au moins une gorge (15) sensiblement circonférentielle disposée dans un plan perpendiculaire à l'axe de rotation, de manière à relier entre eux les passages de fluide de forage (14).
2. Méthode selon la revendication 1, caractérisée en ce qu'on varie la profondeur de la gorge (15).
3. Méthode selon la revendication 1 ou 2, caractérisée en ce qu'on varie le nombre et la disposition des gorges (15).
4. Dispositif de stabilisation d'un train de tiges équipé d'un outil de coupe, pour forage directionnel profond, entraîné soit par un moteur suspendu ou turbine suspendue à une vitesse d'au moins 700 t/min ou par une table de rotation à partir de la surface à une vitesse d'au moins 100 t/min, constitué d'une enveloppe cylindrique en acier présentant latéralement des saillies hélicoïdales (8) séparées par des passages de fluide de forage (14) munies d'un revêtement offrant une bonne résistance à l'érosion et à l'abrasion, caractérisé en ce que les saillies susdites (8) présentent au moins une gorge (15) sensiblement circonférentielle disposée dans un plan perpendiculaire à l'axe de rotation, de manière à relier entre eux les passages de fluide de forage (14).
5. Dispositif de stabilisation suivant la revendication 4, caractérisé en ce que les gorges (15) susdites sont ménagées sur une partie de la hauteur des saillies (8).
6. Dispositif de stabilisation suivant l'une quelconque des revendications 4 et 5, caractérisé en ce que les gorges çirconférentielles (15) sont ménagées à intervalles éventuellement réguliers le long des saillies hélicoïdales (8).
7. Dispositif de stabilisation suivant l'une quelconque des revendications 4 à 6, caractérisé en ce qu'il est constitué d'au moins deux portions de manchons de même diamètre disposées dans le même alignement derrière l'outil de forage (1).
EP85201531A 1984-10-11 1985-09-24 Dispositif de stabilisation Expired EP0178709B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT85201531T ATE39011T1 (de) 1984-10-11 1985-09-24 Stabilisator.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
BE0/213816A BE900804A (fr) 1984-10-11 1984-10-11 Dispositif de stabilisation.
BE213816 1984-10-11

Publications (2)

Publication Number Publication Date
EP0178709A1 EP0178709A1 (fr) 1986-04-23
EP0178709B1 true EP0178709B1 (fr) 1988-11-30

Family

ID=3843801

Family Applications (1)

Application Number Title Priority Date Filing Date
EP85201531A Expired EP0178709B1 (fr) 1984-10-11 1985-09-24 Dispositif de stabilisation

Country Status (5)

Country Link
EP (1) EP0178709B1 (fr)
AT (1) ATE39011T1 (fr)
DE (1) DE3566566D1 (fr)
DK (1) DK162459C (fr)
NO (1) NO854028L (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104179464A (zh) * 2014-08-08 2014-12-03 陆威延 地质资源勘探钻井钻具扶正居中及套管防磨井下工具

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3822249A1 (de) * 1988-07-01 1990-01-04 Hilti Ag Hohlbohrwerkzeug
GB9202163D0 (en) * 1992-01-31 1992-03-18 Neyrfor Weir Ltd Stabilisation devices for drill motors
FR2789438B1 (fr) 1999-02-05 2001-05-04 Smf Internat Element profile pour un equipement de forage rotatif et tige de forage comportant au moins un troncon profile
EP2118429B1 (fr) * 2007-02-02 2016-04-13 Halliburton Energy Services, Inc. Système et procédé orientables de pièce de foret rotatif
WO2008150765A1 (fr) 2007-05-30 2008-12-11 Halliburton Energy Services, Inc. Trépan rotatif avec tampons de calibre ayant une capacité de direction améliorée et une usure réduite
GB201519636D0 (en) 2015-11-06 2015-12-23 Smart Stabilizer Systems Ltd Stabilizer for a steerable drilling system
CN108442889A (zh) * 2017-12-19 2018-08-24 中国石油天然气股份有限公司 旋转耐磨减阻器

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1343902A (en) * 1918-06-10 1920-06-22 American Well Works Weli-sinking apparatus
GB879156A (en) * 1958-09-05 1961-10-04 Hughes Tool Co Tool joint for drill pipe sections
US3554307A (en) * 1969-07-03 1971-01-12 W E Eeds Turbulent flow drill collar
CA948181A (en) * 1971-02-12 1974-05-28 Lionel Lavallee Diamond drills
CH643031A5 (de) * 1979-04-02 1984-05-15 Inst Gornogo Dela Sibirskogo O Bohrwerkzeug fuer eine gesteinsbohrmaschine.
US4245709A (en) * 1979-04-27 1981-01-20 Christensen, Inc. Removable drill string stabilizers
US4467879A (en) * 1982-03-29 1984-08-28 Richard D. Hawn, Jr. Well bore tools

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104179464A (zh) * 2014-08-08 2014-12-03 陆威延 地质资源勘探钻井钻具扶正居中及套管防磨井下工具

Also Published As

Publication number Publication date
DK162459B (da) 1991-10-28
DK464085A (da) 1986-04-12
DK162459C (da) 1992-04-21
DK464085D0 (da) 1985-10-10
EP0178709A1 (fr) 1986-04-23
NO854028L (no) 1986-04-14
ATE39011T1 (de) 1988-12-15
DE3566566D1 (en) 1989-01-05

Similar Documents

Publication Publication Date Title
BE1012191A5 (fr) Couronne de trepan pivotante/inclinable pour forages dans le sol.
USRE34526E (en) Two cone bit with non-opposite cones
BE1016350A3 (fr) Appareil et procede de forage terrestre offrant une meilleure protection des alesoirs.
US4936398A (en) Rotary drilling device
US6260635B1 (en) Rotary cone drill bit with enhanced journal bushing
US9790749B2 (en) Downhole drilling tools including low friction gage pads with rotatable balls positioned therein
EP0467870A1 (fr) Trépan à molettes dentées avec éléments de coupe rapportés périphériques
EP0178709B1 (fr) Dispositif de stabilisation
MX2010008273A (es) Tubo de perforacion de aluminio acanalado en espiral.
US4730681A (en) Rock bit cone lock and method
AU2023203467B2 (en) Horizontal directional reaming
EP3194704B1 (fr) Mécanisme de fixation pour manchons d'usure d'ensemble rotatif
FR2625253A1 (fr) Centreur embrayable en rotation notamment pour garniture de forage
EP2065550A1 (fr) Surfaces de prise de micropores d'un outil de forage
US11566473B2 (en) Horizontal directional reaming
BE900804A (fr) Dispositif de stabilisation.
US6298929B1 (en) Bi-center bit assembly
FR2544375A1 (fr) Procede de forage avec deviation par sabot excentreur
CA1162184A (fr) Trepan de foration a bride de poussee perfectionnee
US20050211474A1 (en) Gage surface scraper
CN105283622B (zh) 具有动态金属密封件的钻头
CA3201531C (fr) Alesage directionnel horizontal
JPS60238595A (ja) 地中穿孔ドリルビツト
US10794119B2 (en) Rotary downhole tool
FR2973062A1 (fr) Outil de forage directionnel

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT CH DE FR GB IT LI LU NL SE

17P Request for examination filed

Effective date: 19860527

17Q First examination report despatched

Effective date: 19870526

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT CH DE FR GB IT LI LU NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19881130

Ref country code: AT

Effective date: 19881130

REF Corresponds to:

Ref document number: 39011

Country of ref document: AT

Date of ref document: 19881215

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3566566

Country of ref document: DE

Date of ref document: 19890105

ITF It: translation for a ep patent filed

Owner name: FUMERO BREVETTI S.N.C.

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19890930

Ref country code: LI

Effective date: 19890930

Ref country code: CH

Effective date: 19890930

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19920724

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19920730

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19920930

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19921002

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19930924

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19940401

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19930924

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19940531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19940601

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST