EP0177750A1 - Dispositif de contact pour coupe-circuit sous vide - Google Patents

Dispositif de contact pour coupe-circuit sous vide Download PDF

Info

Publication number
EP0177750A1
EP0177750A1 EP85111118A EP85111118A EP0177750A1 EP 0177750 A1 EP0177750 A1 EP 0177750A1 EP 85111118 A EP85111118 A EP 85111118A EP 85111118 A EP85111118 A EP 85111118A EP 0177750 A1 EP0177750 A1 EP 0177750A1
Authority
EP
European Patent Office
Prior art keywords
contact
arc
areas
arcing
arrangement according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP85111118A
Other languages
German (de)
English (en)
Other versions
EP0177750B1 (fr
Inventor
Ernst-Ludwig Dr. Dipl.-Phys. Hoene
Roman Dr. Dipl.-Phys. Renz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP0177750A1 publication Critical patent/EP0177750A1/fr
Application granted granted Critical
Publication of EP0177750B1 publication Critical patent/EP0177750B1/fr
Expired legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/60Switches wherein the means for extinguishing or preventing the arc do not include separate means for obtaining or increasing flow of arc-extinguishing fluid
    • H01H33/66Vacuum switches
    • H01H33/664Contacts; Arc-extinguishing means, e.g. arcing rings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/60Switches wherein the means for extinguishing or preventing the arc do not include separate means for obtaining or increasing flow of arc-extinguishing fluid
    • H01H33/66Vacuum switches
    • H01H33/664Contacts; Arc-extinguishing means, e.g. arcing rings
    • H01H33/6644Contacts; Arc-extinguishing means, e.g. arcing rings having coil-like electrical connections between contact rod and the proper contact

Definitions

  • the present invention relates to a contact arrangement for vacuum switches according to the preamble of claim 1.
  • a contact arrangement is known from US Pat. No. 4,196,327.
  • current loops are arranged behind the switching pieces, which generate areas of high and areas of low magnetic field strength in the axial direction in the contact piece and in the contact areas. Adjacent areas of high magnetic field strength in some cases have an opposite polarity of the field strength.
  • Vacuum switches of this type are distinguished by rapid dielectric reconsolidation of the switching path after the zero current crossing (sheet break).
  • This advantage of the vacuum switch can with unfavorable circuit data or electrical conditions in the network, for. B. when switching off starting motors, have a negative impact. This is because early zero current crossings with high steepness can occur, which lead to phenomena which are referred to in the literature as “multiple reignitions” and can essentially lead to disruptive overvoltages in the case of switch-off currents ⁇ 1 kA in the network.
  • the switching path is influenced in accordance with the prior art in such a way that the tear-off current strength is kept small, whereby the overvoltages are generally reduced.
  • a so-called "low surge material" include, for example, chrome-copper composite materials with the addition of bismuth or tellurium.
  • chrome-copper composite materials with the addition of bismuth or tellurium.
  • such materials have only a relatively small maximum switching capacity, in particular because of their high vapor pressure.
  • the object on which the present invention is based is to specify a contact arrangement which, on the one hand, when the currents are switched off. approximately are equal to or less than the nominal current, have a sufficiently slow reconsolidation of the dielectric and, on the other hand, ensure a high switching capacity at higher currents.
  • the invention is based on the knowledge that a metal vapor arc in the vacuum interrupter under the influence of an axial magnetic field after ignition within a commutation time t o , which decreases with increasing current and is approximately 3 ms at 10 kA, for example, in a diffuse manner burning state passes, in contact areas in which the specific induction B Z / I caused by the axial magnetic field component reaches a minimum value.
  • the arc voltage is many times lower than the value of the arc voltage in a contracted arc.
  • a corresponding shape and arrangement ensures that the arc is drawn first in the contact areas and that is in the low-surge range when the contacts are separated.
  • the concentratedly burning arc quickly shifts within t 0 to the areas of maximum magnetic field strength, whereby depending on the local field distribution it dissolves into a diffuse arc or into several diffusely burning partial arcs.
  • it burns with a greatly reduced arc voltage on contact surfaces with a high load capacity. This prevents the contact surfaces, which consist of a so-called low-surge material, from being thermally overloaded and ensures that the arc after t in the loading range of arcing surfaces suitable for high switching powers burns and thus ensures a high breaking capacity of the contact arrangement.
  • the current loops mentioned in the claim can be attached to one or both contacts or otherwise fixed in their position relative to the contacts so that their magnetic field at the points of the contact surfaces, which consist of low-surge contact material, is significantly smaller than in the arcing surfaces with highly resilient contact material. As long as this condition is met, any form of current loop can be used.
  • An advantageous embodiment of the contact arrangement according to the invention consists in that the contact surfaces, but not the arcing surfaces of a contact piece, can be brought into contact with the corresponding surfaces of the second contact piece. This ensures in a simple manner that the arc is only drawn in the area of the contact surfaces.
  • An embodiment with only one arc burning surface, in which only a diffuse arc arises, is provided in that the contact surface represents a circular ring and in that the arc burning surface concentrically adjoins this circular ring in the interior of this circular ring.
  • the arc burning surface can completely fill the circular ring formed by the contact surfaces or can itself be designed in a ring shape, in both cases there is a diffusely burning arc which fills the entire arc burning surface.
  • An embodiment with several diffusely burning arcs is achieved in that the contact surface represents a circular disk concentric to the contact axis and in that the arcing surfaces lie on a ring surrounding the contact surface.
  • This version is particularly advantageous in connection with a Generation of the axial magnetic field can be used by conductor loops if the conductor loops are arranged on the side of the contact piece facing away from the contact surface and, such as. B. from US-PS 4,196,327, each include only one sector of an annulus.
  • field-free means free of the axial field that is caused by the current in the conductor loop.
  • two or more arcing surfaces can be generated particularly easily on the ring, the arcing surfaces being penetrated by axial magnetic fields of different field directions.
  • a diffuse arc in the focal areas is guaranteed if the current-related, specific field strength in the axial direction in the contact areas is below and in the arc focal areas above 1.5 uT / A.
  • the value of 3 pT / A should at least be reached in the areas of maximum field strength of the arc burning surfaces so that the arc burning voltage reaches its minimum.
  • the sheet on the location moves to the arc ignition at current levels above the value is from which to expect the occurrence of multiple re-ignitions within t 0 in the arc burning faces and merges into a diffuse burning state.
  • the diffuse arc burns evenly, its burning voltage is several times lower than that of a contracted arc. This advantage is particularly important for currents of more than 10 kA, in which the arc burns in a contracted manner without an axial magnetic field and experience has shown that the behavior is unstable.
  • Chrome-copper which guarantees a high switching capacity, is suitable as contact material for the arc burners.
  • FIGS. 1 and 4 show the distribution of the specific induction in the axial direction for two exemplary embodiments
  • FIGS. 2 and 5 show the associated contact surfaces and arcing surfaces schematically
  • FIGS. 3 and 6 each show an exemplary embodiment of a corresponding contact piece.
  • an annular contact surface 1 with a truncated cone-shaped transmission region 3 encloses an arc burning surface 2.
  • a low-surge material is contained in the contact surface 1, so that no disturbing current chopping can occur there.
  • the arc burning surface 2 consists of a contact material for high breaking capacities, for example chrome-copper.
  • This contact advantageously has the structure shown in FIG. 3, in which a contact carrier 4 is made pot-shaped from an electrically highly conductive material and has slots in its contact carrier wall which form a relatively large angle with the axis of rotation 7, as a result of which an axial magnetic field component is generated becomes. This angle is approximately 70 °, for example.
  • the webs 8 remaining between the slots 6 are made of a material with low electrical conductivity, e.g. B. with a rotating body R, made of ceramic or metal relieved or supported so that the contact has the necessary mechanical strength.
  • the webs 8 here form sections of conductor loops for generating a magnetic field with an axial component.
  • the axial component of the magnetic field points in the arc burning surface 2 on a contact disk 5 made of a mate rial with high switching capacity, a current-related minimum induction B Z (min) / I of 1.5 uT / A.
  • the adjoining transition surface 3 and the contact surface 1 are formed from a ring of low-surge material, the dimensions of which ensure that the current-related minimum induction B Z (min) / I is exceeded within the transition zone.
  • This ring made of low-surge material and the contact disk 5 are expediently provided with radial slots S in order to avoid eddy current formation in the contact, which can reduce the axial field component to a remainder of approximately 30%.
  • This embodiment forms a diffusely burning arcing area which fills the entire arcing area 2.
  • the maximum specific induction B Z (max) / I is in the region of the axis of rotation of the contact. It exceeds the value 3 ⁇ T / A (unipole contact).
  • the second embodiment according to FIGS. 4 to 6 has a disk-shaped contact surface 9 and an adjoining, concentric ring 10, which is made of a material for high switching powers, for. B. chrome copper. Behind the ring 10 there are conductor loops which are traversed by parts of the current flowing through the contact and which fix arc-burning surfaces 11 to 14 on the contact ring, in which the minimum value for the specific induction B Z (min) / I is exceeded. The field between adjacent arc burning surfaces 11 to 14 changes its direction (multipole contact).
  • a simple embodiment of such a contact is provided in that the contact ring 10 is part of a contact disk 15 and in that a disk 20 made of low-surge material, which forms the contact surface 9, is applied concentrically to the contact disk 15.
  • This in Magnetic field acting in the axial direction is formed by a known winding arrangement in the form of a spoke wheel, with 16, 17 perpendicular spokes, which lead to a ring 18.
  • the spokes 16 and 17 are supported against one another in the axial direction by a support body 19 with low electrical conductivity. The current flows from the spoke 16 through the ring 18 into the spoke 17 and from there into the contact disk 15.
  • the minimum value of the specific induction is reached in the arcing areas, but the peak value of the specific induction is lower than in example 1. Since in this arrangement the migration of the arc into the arcing areas is favored by the current forces which cause the arc in the radial direction pushing outward, a certain distance between the contact surface 9 and the arc burning surfaces 11 to 14 is also permissible in this example.

Landscapes

  • High-Tension Arc-Extinguishing Switches Without Spraying Means (AREA)
  • Arc-Extinguishing Devices That Are Switches (AREA)
EP85111118A 1984-09-28 1985-09-03 Dispositif de contact pour coupe-circuit sous vide Expired EP0177750B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3435815 1984-09-28
DE3435815 1984-09-28

Publications (2)

Publication Number Publication Date
EP0177750A1 true EP0177750A1 (fr) 1986-04-16
EP0177750B1 EP0177750B1 (fr) 1989-03-15

Family

ID=6246705

Family Applications (1)

Application Number Title Priority Date Filing Date
EP85111118A Expired EP0177750B1 (fr) 1984-09-28 1985-09-03 Dispositif de contact pour coupe-circuit sous vide

Country Status (4)

Country Link
US (1) US4727228A (fr)
EP (1) EP0177750B1 (fr)
JP (1) JPS6185733A (fr)
DE (1) DE3568902D1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4837121A (en) * 1987-11-23 1989-06-06 Olin Hunt Specialty Products Inc. Thermally stable light-sensitive compositions with o-quinone diazide and phenolic resin
US4970287A (en) * 1987-11-23 1990-11-13 Olin Hunt Specialty Products Inc. Thermally stable phenolic resin compositions with ortho, ortho methylene linkage

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4013903A1 (de) * 1990-04-25 1990-11-22 Slamecka Ernst Magnetfeld-kontaktanordnung fuer vakuumschalter
DE4214550A1 (de) * 1992-04-29 1993-11-04 Siemens Ag Vakuumschaltroehre
US5438174A (en) * 1993-11-22 1995-08-01 Eaton Corporation Vacuum interrupter with a radial magnetic field
US6747233B1 (en) 2001-12-28 2004-06-08 Abb Technology Ag Non-linear magnetic field distribution in vacuum interrupter contacts

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2557197A1 (de) * 1974-12-19 1976-07-01 Westinghouse Electric Corp Vakuumschalter
FR2392482A1 (fr) * 1977-05-27 1978-12-22 Mitsubishi Electric Corp Coupe-circuit sous vide
GB2010587A (en) * 1977-12-05 1979-06-27 Hazemeijer Bv Electrical vacuum switch having means for generating an axial magnetic field between the contact faces
US4196327A (en) * 1976-12-06 1980-04-01 Hitachi, Ltd. Vacuum interrupter
EP0119563A2 (fr) * 1983-03-15 1984-09-26 Kabushiki Kaisha Meidensha Interrupteur à vide et procédé de sa production

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2557197A1 (de) * 1974-12-19 1976-07-01 Westinghouse Electric Corp Vakuumschalter
US4196327A (en) * 1976-12-06 1980-04-01 Hitachi, Ltd. Vacuum interrupter
FR2392482A1 (fr) * 1977-05-27 1978-12-22 Mitsubishi Electric Corp Coupe-circuit sous vide
GB2010587A (en) * 1977-12-05 1979-06-27 Hazemeijer Bv Electrical vacuum switch having means for generating an axial magnetic field between the contact faces
EP0119563A2 (fr) * 1983-03-15 1984-09-26 Kabushiki Kaisha Meidensha Interrupteur à vide et procédé de sa production

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4837121A (en) * 1987-11-23 1989-06-06 Olin Hunt Specialty Products Inc. Thermally stable light-sensitive compositions with o-quinone diazide and phenolic resin
US4970287A (en) * 1987-11-23 1990-11-13 Olin Hunt Specialty Products Inc. Thermally stable phenolic resin compositions with ortho, ortho methylene linkage

Also Published As

Publication number Publication date
US4727228A (en) 1988-02-23
JPS6185733A (ja) 1986-05-01
DE3568902D1 (en) 1989-04-20
EP0177750B1 (fr) 1989-03-15

Similar Documents

Publication Publication Date Title
DE4002933C2 (fr)
DE3227482C2 (fr)
DE69730193T2 (de) Spule mit axialem Magnetfeld für Vakuumschalter
EP0104384A1 (fr) Dispositif de contact d'un interrupteur à vide
DE3407088A1 (de) Kontaktanordnung fuer vakuumschalter
DE19933495A1 (de) Unterbrecher für Schaltautomaten
CH638926A5 (de) Vakuumschalter mit magnetspule.
DE112010005149B4 (de) Vakuum-schalter
EP0062186A1 (fr) Disposition de contacts pour interrupteur à vide
DE19856939A1 (de) Schaltungsanordnung zum Schutz von elektrischen Installationen gegen Überspannungsereignisse
EP0381843A2 (fr) Contact interrupteur
DE60223766T2 (de) Kontaktanordnung für einen Vakuumschalter und Vakuumschalter mit einer solchen Kontaktanordnung
DE3302939A1 (de) Vakuum-lichtbogenloeschkammer
EP0177750B1 (fr) Dispositif de contact pour coupe-circuit sous vide
DE10253866A1 (de) Kontaktstück mit abgerundeten Schlitzkanten
EP0073925A1 (fr) Disposition de contacts pour interrupteur à vide
DE2048506A1 (de) Vakuumschalter
EP1198812B1 (fr) Systeme de contact d'un interrupteur a vide
DE1298598B (de) Vakuumschalter
DE3319010A1 (de) Gasisolierter schalter
DE60226347T2 (de) Nichtlineare magnetfeldverteilung in vakuumunterbrecherkontakten
EP1039495B1 (fr) Procédé pour limitation de courant dans les réseaux basse tension, assemblage y associé et utilisation spéciale de cet assemblage
EP0225562B1 (fr) Interrupteur à vide
DE4130230A1 (de) Vakuumschalter-kontaktanordnung
EP0734580B1 (fr) Sectionneur de puissance de haute tension avec une electrode de champ

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE FR GB LI

17P Request for examination filed

Effective date: 19861010

17Q First examination report despatched

Effective date: 19880518

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR GB LI

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
REF Corresponds to:

Ref document number: 3568902

Country of ref document: DE

Date of ref document: 19890420

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19910822

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19911127

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19911216

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19920903

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19920917

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19920930

Ref country code: CH

Effective date: 19920930

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19920903

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19930602

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19940531

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST