EP0177110B1 - Verfahren zum Beschleunigen der Amorphisierung intermetallischer Verbindungen durch eine chemische Reaktion unter Benutzung der Gitterfehler - Google Patents

Verfahren zum Beschleunigen der Amorphisierung intermetallischer Verbindungen durch eine chemische Reaktion unter Benutzung der Gitterfehler Download PDF

Info

Publication number
EP0177110B1
EP0177110B1 EP85301795A EP85301795A EP0177110B1 EP 0177110 B1 EP0177110 B1 EP 0177110B1 EP 85301795 A EP85301795 A EP 85301795A EP 85301795 A EP85301795 A EP 85301795A EP 0177110 B1 EP0177110 B1 EP 0177110B1
Authority
EP
European Patent Office
Prior art keywords
lattice defects
hydrogen
amorphous
seconds
amorphization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP85301795A
Other languages
English (en)
French (fr)
Other versions
EP0177110A1 (de
Inventor
Masao Komatsu
Hiroshi Fujita
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka University NUC
Original Assignee
Osaka University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka University NUC filed Critical Osaka University NUC
Publication of EP0177110A1 publication Critical patent/EP0177110A1/de
Application granted granted Critical
Publication of EP0177110B1 publication Critical patent/EP0177110B1/de
Expired legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/002Making metallic powder or suspensions thereof amorphous or microcrystalline
    • B22F9/004Making metallic powder or suspensions thereof amorphous or microcrystalline by diffusion, e.g. solid state reaction
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C45/00Amorphous alloys
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S420/00Alloys or metallic compositions
    • Y10S420/90Hydrogen storage

Definitions

  • the present invention relates to a process for accelerating amorphization of intermetallic compounds of a Zr-AI alloy by a chemical reaction in the presence of lattice defects.
  • Amorphous metallic materials have come to prominence recently as new materials suitable for use in many fields of engineering because of their excellent physical and chemical properties.
  • amorphous metallic materials For production of these amorphous metallic materials, two methods have been established, namely rapid cooling of liquid metal and vapor deposition of metal. Of these methods, the method of rapid cooling of liquid metal has become the most favoured recently and is able to produce an amorphous metal.
  • the metal vapor which is produced by heating and disolving the metal in vacuo, is applied to a substrate maintained at the temperature of liquid helium or liquid nitrogen to produce the amorphous metal.
  • the method of rapid cooling of liquid metal has the following problems.
  • the method of vapor deposition is unable to produce a product thicker than that produced by the method of rapid cooling of liquid, and the product produced has a very high cost.
  • a process for accelerating amorphization of intermetallic compounds of a Zr-Al alloy by a chemical reaction in the presence of lattice defects comprising the steps of: arranging a predetermined disposition of lattice defects at a predetermined position in the crystals of the intermetallic compounds, and then forming amorphous regions at the lattice defects by hydrogen absorption under a hydrogen gas atmosphere.
  • the intermetallic compounds are made by adding AI to Zr and forming a tightly bonded hydride. After lattice defects are introduced into the intermetallic compounds, the compounds are subjected to a chemical reaction by adding hydrogen and amorphized. Hydrogen is preferentially and rapidly absorbed and diffused in the material along the lattice defects which were previously introduced into the material under given conditions so that amorphous phases having any desired predetermined disposition or volume are formed in the material. This method can also be used to prepare amorphous materials having greater thicknesses than obtainable by other methods.
  • amorphous regions having any desired form and density are directly formed in the crystals, so that amorphous phases of adequate thicknesses are produced.
  • lattice defects such as crystal boundaries (a-b-b'-a', b-c-c'b' and b-d-d'-b'), a dislocation line (e-f), a micro defect (g) and a dislocation loop (h) are artifically arranged.
  • techniques such as cold or hot working, heat treatment, irradiation with particle beam, may be used.
  • the crystals 1 are then treated by heating at a given temperature in a hydrogen-containing gas (pure H 2 gas, H 2 gas plus an inert gas in, for example, an electric furnace 2 as shown in Figure 2.
  • a hydrogen-containing gas pure H 2 gas, H 2 gas plus an inert gas in, for example, an electric furnace 2 as shown in Figure 2.
  • the heating temperature and the heating time are variable depending on the kinds and properties of the Zr-AI alloys and lattice defects which are previously formed.
  • Zr 3 AI alloy is heat-treated at 350 to 650K, for 900 sec at 0.1 Megapascals (1 atm), and Zr 2 AI alloy at 400 to 700K, for 1,800 sec at 0.1 Megapascals (1 atm).
  • the crystals preferentially absorb hydrogen near the lattice defects which are previously formed, and amorphous phases are obtained.
  • Figure 1(b) shows the amorphous phases formed in the above lattice defects in the form of films (a-b-b'-a', b-c-c'-b' and b-d-d'-b'), a string (e-f), a globe (g) and a ring (h), respectively.
  • the amorphous region taking the form of a film or a curved surface may be formed by a cell wall or a sub-boundary which arranges dislocation lines as a group.
  • the thicknesses of the amorphous regions shown in Figure 1(b) are freely controlled by controlling the hydrogen pressure of the surrounding gas, the temperature of hydrogen absorption and the time of hydrogen absorption.
  • FIG. 4(a) shows a photograph of the structures of the obtained sample. Extended fine structures are already observed at places enclosed with circles.
  • This sample was heat-treated at heating temperatures and heating times of 773K for 900 seconds (0.9 ks) ( Figure 4(b)), 823K for 900 seconds (0.9 ks) ( Figure 4(c)) and 873K for 600 seconds (0.6 ks) ( Figure 4(d)), successively, in the electric furnace having a surrounding gas at 0.1 MPa of Ar plus 10% H 2 so as to absorb hydrogen.
  • the sample was cooled to room temperature and observed within the same range of the electron microscope.
  • Figure 4(b) shows that filmy structures having striking contrasts were produced at the places where the above-mentioned fine structures are formed, and that, at the same time, hydrogen was gradually absorbed along the lattice defects which were in the form of crystal boundaries, films, or lines which seemed to be dislocated lines formed by the heat treatment.
  • Figures 4(c) and (d) show that the whole sample of Zr 3 AI (except the part noted at A) changed to the amorphous phases with accelerating hydrogen absorption. However, in the case of Zr 2 AI crystals (noted at A), amorphization took place at an extremely thin edge (in the lower part of Figure 4(c)) of the sample, and did not yet take place at the somewhat thicker part (in the right centre part) of the sample. Figure 4(d) shows that amorphization of Zr Z AI also took place completely.
  • Zr-Al alloys were treated in order to arrange the lattice defects in the same way as previously described in Example 1.
  • the samples obtained were heat-treated at heating temperatures of 470K to 873K and for heating times of 900 seconds (0.9 ks) to 1800 seconds (1-8 ks) in a surrounding gas which contained H 2 , at 0.1 MPa (1 atm).
  • the samples were then cooled and observed within the same range of the electron microscope. The amorphization was recognized by observation of the sample changes due to hydrogen absorption.
  • the present invention utilizes the phenomenon in which the amorphous phases formed by hydrogen absorption are preferentially produced along the lattice defects in the form of lines and curved surfaces in the crystals by controlling appropriately the conditions of hydrogen absorption. According to this process, an amorphous region having a predetermined disposition at a predetermined position in the crystals is obtained by controlling the arrangement of these lattice defects. Since the hydrogen diffusion occurs easily and rapidly along the lattice defects, amorphous materials having adequate thickness (1 cm or more) can be prepared by sufficient absorption of hydrogen.
  • the dislocations which are one kind of lattice defect acting as nuclei for amorphization, are able to form loops of several nm diameter or to be arranged at intervals of several nm or more.
  • amorphous balls of several nm diameter can be formed or amorphous columns of several nm diameter can be distributed at intervals of several nm or more.
  • finely ground amorphous powder can be obtained by grinding the amorphous materials, and finely ground alloy powder from which hydrogen is released can be obtained by heating the amorphous materials at a temperature higher than the temperature of crystallization. Since the amorphous material has a constant temperature of crystallization, it is repeatedly usable as a material of hydrogen absorption from which hydrogen is released at a constant temperature.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Powder Metallurgy (AREA)

Claims (6)

1. Verfahren zur Beschleunigung der Amorphisierung intermetallischer Verbindungen einer Zr-AI-Legierung durch eine chemische Reaktion in Gegenwart von Gitterfehlern mit den Stufen, bei denen man eine vorbestimmte Anordnung von Gitterfehlern in einer vorbestimmten Stellung in den Kristallen der intermetallischen Verbindungen anordnet und dann amorphe Bereiche an den Gitterfehlern durch Wasserstoffabsorption unter einer Wasserstoffgasatmosphäre bildet.
2. Verfahren nach Anspruch 1, bei dem man die Größe der gebildeten amorphen Bereiche durch Steuerung des Wasserstoffdruckes, der Temperatur und der Behandlungszeit steuert.
3. Verfahren nach Anspruch 1 oder Anspruch 2, bei dem die behandelte Zr-AI-Legierung Zr3AI ist und die Wasserstoffabsorption bei einer Temperatur im Bereich von 350 bis 650 K während 900 sec bei einem Druck von 0,1 MPa (1 at) erfolgt.
4. Verfahren nach Anspruch 1 oder Anspruch 2, bei dem die behandelte Zr-AI-Legierung Zr2A1 ist und die Wasserstoffabsorption bei einer Temperatur im Bereich von 400 bis 700 K während 1800 sec bei einem Druck von 0,1 Mpa (1 at) erfolgt.
5. Verfahren nach Anspruch 1 oder Anspruch 2, bei dem die Wasserstoffabsorption bei Erhitzungstemperaturen und Erhitzungszeiten von 773 K während 900 sec, 823 K während 900 sec und 873 K während 600 sec erfolgt.
6. Verfahren nach Anspruch 1 oder Anspruch 2, bei dem die Wasserstoffabsorption bei einer Temperatur im Bereich von 470 bis 873 K während einer Zeit im Bereich von 900 bis 1800 sec erfolgt.
EP85301795A 1984-09-14 1985-03-14 Verfahren zum Beschleunigen der Amorphisierung intermetallischer Verbindungen durch eine chemische Reaktion unter Benutzung der Gitterfehler Expired EP0177110B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP59191644A JPS6169932A (ja) 1984-09-14 1984-09-14 格子欠陥を用いた化学反応による金属間化合物のアモルフアス化促進方法
JP191644/84 1984-09-14

Publications (2)

Publication Number Publication Date
EP0177110A1 EP0177110A1 (de) 1986-04-09
EP0177110B1 true EP0177110B1 (de) 1988-11-17

Family

ID=16278082

Family Applications (1)

Application Number Title Priority Date Filing Date
EP85301795A Expired EP0177110B1 (de) 1984-09-14 1985-03-14 Verfahren zum Beschleunigen der Amorphisierung intermetallischer Verbindungen durch eine chemische Reaktion unter Benutzung der Gitterfehler

Country Status (4)

Country Link
US (1) US4637927A (de)
EP (1) EP0177110B1 (de)
JP (1) JPS6169932A (de)
DE (1) DE3566273D1 (de)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2580298B1 (fr) * 1985-04-15 1988-08-05 Solomat Sa Procede de fabrication de materiaux a caracteristiques morphologiques determinees, notamment des materiaux amorphes et en particulier des verres metalliques a l'etat amorphe
CH665849A5 (de) * 1986-05-29 1988-06-15 Cendres & Metaux Sa Verfahren zur herstellung amorpher legierungen.
AU620155B2 (en) * 1988-10-15 1992-02-13 Koji Hashimoto Amorphous aluminum alloys
JPH04362105A (ja) * 1991-06-06 1992-12-15 Nisshin Steel Co Ltd 金属間化合物微粉末の製造方法
CN113044886A (zh) * 2021-03-15 2021-06-29 西北工业大学 一种含晶格缺陷超细MnO2纳米线的制备方法及应用

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4231816A (en) * 1977-12-30 1980-11-04 International Business Machines Corporation Amorphous metallic and nitrogen containing alloy films
US4564396A (en) * 1983-01-31 1986-01-14 California Institute Of Technology Formation of amorphous materials
JPS6021367A (ja) * 1983-07-16 1985-02-02 Univ Osaka 金属結晶のアモルフアス化方法

Also Published As

Publication number Publication date
US4637927A (en) 1987-01-20
DE3566273D1 (en) 1988-12-22
JPS6169932A (ja) 1986-04-10
EP0177110A1 (de) 1986-04-09
JPH0250969B2 (de) 1990-11-06

Similar Documents

Publication Publication Date Title
Koike et al. Crystal-to-amorphous transformation of NiTi induced by cold rolling
Marinov et al. The change in the structure of vacuum-condensed hexagonal close-packed metal films on ion bombardment
US3297436A (en) Method for making a novel solid metal alloy and products produced thereby
Dugdale et al. XX. Some Ordering Effects in Cu3Au at about 100° c
EP0177110B1 (de) Verfahren zum Beschleunigen der Amorphisierung intermetallischer Verbindungen durch eine chemische Reaktion unter Benutzung der Gitterfehler
EP0178034B1 (de) Verfahren zum Herstellen amorpher Phasen intermetallischer Verbindungen durch eine chemische Reaktion
Bowman, Jr Preparation and properties of amorphous hydrides
US4797166A (en) Method for producing an at least partly amorphous alloy piece
Cadien et al. Phase transformations in ion‐mixed metastable (GaSb) 1− x (Ge2) x semiconducting alloys
Jardine et al. Investigation into the thin-film fabrication of intermetallic NiTi
Van Rossum et al. Amorphization of Thin Multilayer Films by Ion Mixing and Solid State Reaction
Askenazy et al. Deformation-induced amorphization of CuTi2 microcrystals in an amorphous matrix
Takabayashi et al. Heat treatment effect on transformation properties of TiNi shape memory alloy film
Jiang et al. Pressure effect on crystallization temperature in Zr 70 Pd 30 metallic glass
Bsenko The crystal structures of two modifications of HfNi3
Campbell et al. The formation of amorphous Ni–B by solid state and ion-beam reaction
Nastasi et al. Stability and formation of NiAl3 under ion irradiation
Oron et al. Morphology of Cu–W and Cu–Mo Films Prepared by Electron‐Beam Co‐Deposition
JPH10328854A (ja) クラッド材及びその製造方法
El-Eskandarany et al. Morphological and calorimetric studies on the amorphization process of rod-milled Al50Zr50 alloy powders
Alexeeva et al. Preparation of hydride-forming intermetallic films
Marfaing et al. Structural changes in AuxSi1-x alloy films under laser irradiation
KR920008137B1 (ko) 기계합금법에 의한 비정질분말합금의 제조방법
Bowden Properties and Processing of Niobium Aluminides
Shikhmanter et al. The crystallization of amorphous Dy-Cu thin films

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB SE

17P Request for examination filed

Effective date: 19860730

17Q First examination report despatched

Effective date: 19870729

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB SE

REF Corresponds to:

Ref document number: 3566273

Country of ref document: DE

Date of ref document: 19881222

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
EAL Se: european patent in force in sweden

Ref document number: 85301795.2

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20000313

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20000324

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20000329

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20000425

Year of fee payment: 16

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010314

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010315

EUG Se: european patent has lapsed

Ref document number: 85301795.2

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20010314

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20011130

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020101