EP0173528A2 - Wachsfreie Polyvinylalkohol enthaltende Schichtzusammensetzung - Google Patents

Wachsfreie Polyvinylalkohol enthaltende Schichtzusammensetzung Download PDF

Info

Publication number
EP0173528A2
EP0173528A2 EP85305877A EP85305877A EP0173528A2 EP 0173528 A2 EP0173528 A2 EP 0173528A2 EP 85305877 A EP85305877 A EP 85305877A EP 85305877 A EP85305877 A EP 85305877A EP 0173528 A2 EP0173528 A2 EP 0173528A2
Authority
EP
European Patent Office
Prior art keywords
weight
ethylene oxide
amount
average
vinyl alcohol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP85305877A
Other languages
English (en)
French (fr)
Other versions
EP0173528B1 (de
EP0173528A3 (en
Inventor
Donald Arthur Vassallo
David William Zunker
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
EIDP Inc
Original Assignee
EI Du Pont de Nemours and Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by EI Du Pont de Nemours and Co filed Critical EI Du Pont de Nemours and Co
Publication of EP0173528A2 publication Critical patent/EP0173528A2/de
Publication of EP0173528A3 publication Critical patent/EP0173528A3/en
Application granted granted Critical
Publication of EP0173528B1 publication Critical patent/EP0173528B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/21Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/327Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of unsaturated alcohols or esters thereof
    • D06M15/333Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of unsaturated alcohols or esters thereof of vinyl acetate; Polyvinylalcohol
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2200/00Functionality of the treatment composition and/or properties imparted to the textile material
    • D06M2200/40Reduced friction resistance, lubricant properties; Sizing compositions

Definitions

  • This invention relates to size compositions and more specifically it relates to polyvinyl alcohol based size compositions containing low ethylene oxide adduct additives.
  • Spun warp yarn must be sized with a water-soluble polymer which provides it with a protective surface coating; the latter is required during the weaving of the yarn into fabric.
  • a protective surface coating After weaving the greige fabric produced must be stripped of the protective coating by desizing before it can be subjected to various finishing operations and in particular to dyeing.
  • Sizes based on polyvinyl alcohol or combinations of polyvinyl alcohol and starch must generally be used with a wax additive present in the formulation to minimize drier drum sticking in the slasher during application of the size. These wax additives are difficult to remove from the greige fabric during desizing, often requiring extraction by special solvents as well as higher desize bath temperatures. As a consequence the finishing mill is faced with higher production costs due to greater process complexibility, higher energy costs and a higher percentage of second quality greige fabric.
  • polyvinyl alcohol-based sizing solution containing a small amount of quaternary ammonium salt or a quaternary imidazolinium salt is disclosed in U.S. Patent No. 4,383,063; these additives provide good operability in the absence of wax and result in fabric exhibiting improved finishing performance.
  • such formulations have the serious deficiency of frequently exhibiting a non-reproducible sizing performance; the latter is due to an erratic and unpredictable removal of the cationic additive by inter-action with anionic contaminants which tend to accumulate in the sizing solution.
  • the primary source of these anionic contaminants is the spun yarn being sized.
  • composition consisting essentially of (a) from about 45.5 to about 99.9% by weight of vinyl alcohol polymer selected from the group consisting of polyvinyl alcohol, vinyl alcohol/methyl methacrylate copolymer, and polyvinyl alcohol containing solubilizing comonomers other than methyl methacrylate, said vinyl alcohol polymer having a saponification number of from about 1 to about 160 and a 4 percent solution viscosity of from about 3 to about 70 mPa ⁇ s at 20°C;
  • a concentrate of the low ethylene oxide adduct blended with vinyl alcohol polymer, a wax-free aqueous size solution comprising the composition of the present invention having a solids content of 2-20% by weight, process for sizing filament yarn with wax-free aqueous solution and sized yarn comprising spun yarn having a wax-free protective surface coating of the composition of the present invention.
  • the term "consisting essentially of” means that the named ingredients are essential, however, other ingredients which do not prevent the advantages of the present invention from being realized can also be included.
  • the vinyl alcohol polymer can have a saponification number (mg KOH to neutralize 1 g polymer) of from about 1 to about 160 and a 4 percent solution viscosity of from about 3 to about 70 mPa ⁇ s.
  • Suitable vinyl alcohol polymers include:
  • the nonionic additive of the present invention is a low ethylene oxide adduct (containing an average ethylene oxide content of from about 1 to about 7 units) of a branched alcohol or a mixture of branched alcohols (having an average carbon content of from about 8 to about 18 units).
  • the preferred makeup of this additive is an adduct containing from about 2 to about 5 ethylene oxide units with a branched alcohol containing an average of from about 10 to about 15 carbon atoms.
  • the most preferred is one consisting of an average of about 3 ethylene oxide units with a branched alcohol containing an average of about 13 carbon atoms.
  • "Tergitol" 15-S-3 a product manufactured by Union Carbide, represents this most preferred additive.
  • the amount of vinyl alcohol polymer in the composition of the present invention is from about 45.5 to about 99.9 percent by weight.
  • the preferred range is from about 63 to about 99.8 percent and the most preferred range is from about 72.7 to about 99.6 percent.
  • the higher the polyvinyl alcohol content of the size the higher will be the weaving efficiency exhibited by the sized yarn.
  • size add-on requirements are reduced progressively as the polyvinyl alcohol content of the size is increased.
  • the amount of the nonionic additive of the present invention is from about 0.1 to about 3 percent by weight. About 0.1 weight percent additive is necessary to give significant drier drum release, while greater than about 3 weight percent may result in reduced weaving efficiencies.
  • a preferred range of additive is from about 0.2 to about 1.5 weight percent with which most of the benefits of the present invention can be achieved.
  • the most preferred concentration range of additive is from about 0.4 to about 0.8 weight percent; compositions containing this level of additive give the best balance of drum deposit performance, abrasion resistance and dye receptivity after desizing.
  • starch can be incorporated in the size compositions of the present invention in an amount of up to about 49.9 weight percent. Up to this level of starch the benefits of the no-wax additive of the present invention are clearly evident.
  • the preferred starch limit is up to about 33 weight percent, while the most preferred starch limit is up to about 25 weight percent.
  • the effectiveness of the nonionic additive of the present invention approaches that observed with compositions containing vinyl alcohol polymer as the sole polymeric component.
  • a variety of types of starch and derived starch will function as optional additives in the composition of this invention.
  • Carboxymethyl cellulose can also be used as an optional ingredient in the composition of the present invention in an amount of up to about 50 wt. %, preferably up to about 33 wt. %, and most preferably up to about 25 wt. %.
  • the combined weight of the starch and CMC ingredients should not exceed the weight of the vinyl alcohol polymer present in the composition.
  • Another optional additive is a low to medium molecular weight (200-800 number average) oligomer of ethylene oxide often added to vinyl alcohol polymer as a dedusting agent.
  • U.S. Patent No. 4,389,506 describes the use of 3 weight percent of "Carbowax” 600, a product of Union Carbide, as yielding the most preferred dust-free product. Concentrations up to about 5 weight percent "Carbowax” 600 result in only minor reductions in the benefits derived from the presence of the nonionic additive of the present invention and represents the upper additive level recommended. A preferred upper limit is 3 weight percent while the most preferred upper limit of this type of additive is 1.5 weight percent. At the most preferred upper concentration the benefits derived from the nonionic additive of the present invention can be almost fully realized.
  • additives can be auxiliary low ethylene oxide adducts (containing an average ethylene oxide content of from about 1 to about 7 units) of a linear alcohol or of a mixture of linear alcohols (having an average carbon content of from about 8 to about 18 units) or medium to high ethylene oxide adducts (containing an average ethylene oxide content of from about 8 to about 40 units) of linear or branched alcohols (having an average carbon content of from about 8 to about 18 units).
  • These additives can be present in the composition of the present invention in low concentrations, i.e. up to about 1 wt. percent.
  • the aqueous size solution of the present invention will generally have a solids content of from about 2 to about 20 weight percent.
  • the preferred size bath solids content is from about 5 to about 15 weight percent while the most preferred formulation contains from about 7 to about 12 weight percent since this level of solids in most cases will provide sufficient size add-on to give the sized yarn adequate abrasion resistance.
  • the aqueous polyvinyl alcohol based size solution is considered to be unique because it does not contain a wax additive which must be present under normal mill conditions.
  • the aqueous size solution is prepared by slurrying polyvinyl alcohol with water at ambient temperature.
  • the nonionic additive along with any optional additives are then introduced.
  • the subsequent mixture is heated with stirring at about 77°C until complete solution has been achieved.
  • the size solution of the present invention can also be prepared directly from a blend of vinyl alcohol polymer with a low amount of the nonionic additive of the present invention.
  • the polyvinyl alcohol/nonionic additive mixtures of this invention are produced by dry blending a variety of polyvinyl alcohol and the additive(s) under high intensity mixing conditions at a temperature at which the additive component(s) will be liquid(s). Moreover if more than one nonionic additive is used, the latter can be preblended and added as a single component.
  • the size solution of the present invention can also be produced by using a concentrate of the nonionic additive of the present invention in a vinyl alcohol polymer.
  • the concentrate consists essentially of from about 45 to about 90 percent by weight of vinyl alcohol polymer and from about 10 to about 55 percent by weight of the liquid, nonionic low ethylene oxide adduct additive of the present invention.
  • the concentrate can contain up to about 45 percent by weight of starch, up to about 45 percent by weight of Carbowax, up to about 45 percent by weight of carboxymethyl cellulose and up to about 45 percent by weight of low ethylene oxide adduct of a linear alcohol or mixture of linear alcohols or medium to high ethylene oxide adduct of linear or branched alcohols.
  • the concentrate is used to produce the size composition of the present invention by adding it in the required amount to a preformed vinyl alcohol polymer solution.
  • Use of such a concentrate can provide a unique and surprising advantage. Normally when vinyl alcohol polymers are added even with vigorous agitation to hot aqueous solutions, the vinyl alcohol component fuses upon contact with the hot water and becomes very difficultly soluble.
  • the above described concentrate if it contains at least about 30% by weight of the nonionic additive of this invention, is relatively easy to disperse when added directly to hot water.
  • the most preferred nonionic additive level is from about 40% to about 50%. Above about 50% the vinyl alcohol polymer tends not to absorb all of the additive.
  • Use of the above described concentrate provides the highly desirable advantage of permitting rapid readjustments in the level of the nonionic additive of the present invention in a given hot size bath to match specific mill requirement.
  • the above referred to concentrate contains from about 45 to about 70 percent by weight of vinyl alcohol polymer, from about 30 to about 55 percent by weight of nonionic additive, up to about 20 percent by weight of starch, up to about 20 percent by weight of Carbowax, and up to about 20 percent by weight of carboxymethyl cellulose.
  • the concentrate will contain from about 50 to about 60 percent by weight of vinyl alcohol polymer, from about 40 to about 50 percent by weight of nonionic additive, up to about 5 percent by weight of starch, up to about 5 percent by weight of Carbowax and up to about 5 percent by weight of carboxymethyl cellulose.
  • the size is applied to the yarn web or sley using a slasher.
  • the latter is equipped with a heated size box containing the size formulation.
  • the unsized sley is sized by being drawn through the hot size solution, through squeeze rolls to remove excess size solution, over a series of heated drying drums, through a bust bar assembly to separate the sley into individual warp ends and finally onto a beam for collection.
  • the bust bar assembly to separate the sley into individual warp ends and finally onto a beam for collection.
  • the sized spun yarn produced using the size composition of the present invention has a wax-free protective surface coating and exhibits the unique property of providing excellent weaving performance despite the absence of wax in the vinyl alcohol polymer based size. Moreover the greige fabric produced being wax-free, is readily desizable under mild desize conditions yielding a desized fabric with excellent dye receptivity. Desizing is carried out by passing the sized greige fabric through an alkaline scour bath followed by several hot water (about 65-85°C) rinses. Fabric prepared with conventional wax-containing sizes requires much more stringent scouring and rinse conditions than are required with the size formulations of the present invention.
  • a high level of removal of the size components from the greige fabric is required prior to its processing in the finishing mill so as to permit efficient and reproducible dyeing as well as other finishing operations on the fabric. Both the no-wax sized yarn and the no-wax greige fabric produced from it are thus considered to be unique.
  • the no-wax size composition of the present invention is especially suited for use with polyester/cotton spun yarn blends. It is particularly useful for 65/35, 50/50 and 40/60 polyester/cotton spun yarn blends.
  • the size composition also has utility for 100% cotton spun yarns.
  • incorporación of the no-wax additive of the present invention into vinyl alcohol polymer based size formulations permits the elimination of wax as an additive, making feasible the preparation of sized yarn exhibiting excellent slashing and weaving characteristics suitable for producing a variety of types of fabrics under typical weaving conditions (e.g. involving shuttle, airjet, rapier looms).
  • the derived fabrics, being wax-free, are characterized by easy size removal and the desized fabric exhibits superior dye receptivity.
  • Sizing solutions were prepared in a steam-jacketed kettle by adding the vinyl alcohol polymer to the requisite amount of ambient temperature water to obtain the desired size bath solids. The temperature of the slurry was brought to 77°C with stirring. Any additives to be tested in the formulation were added at this point.
  • the resulting size solution was used to size 24 ends of a polyester/cotton spun yarn using a "Callaway Slasher" Model 51 manufactured by West Point Foundry and Machine Co. operated at 10 meters/minute using pressure at the squeeze roll. After the yarn had been sized, the size add-on was measured by weight loss after extraction of the sized yarn with boiling water. Assessment of the performance of the size formulation during slashing as well as characterization of the sized yarn itself was carried out using the following test procedures.
  • the extent to which deposits form on the No. 1 drying drum in the slasher is related directly to the tendency of a given size formulation to cause sticking of the individual warp ends to the drying drums in the slasher.
  • the effectiveness of a release agent added to the size formulation to minimize yarn sticking in the drying section of the slasher can be measured accurately.
  • the amount of deposit collected provides a direct measure of a size formulation's performance, namely the greater the amount of drum deposit, the greater the tendency the formulation has to cause drying drum sticking.
  • PVA No. 2 a fully hydrolyzed vinyl alcohol/methyl acrylate copolymer having a 4% solution viscosity of 13.5 mPa.s and a saponification number of 40.
  • the actual drum deposit value observed and a rating proportionated against the PVA No. 2 value are given.
  • a rating of 0.200 or lower is considered necessary for operability under typical mill conditions of a 100% vinyl alcohol polymer size.
  • Abrasion resistance of the sized yarn is determined using a laboratory abrasion tester.
  • the test method employed consists of stringing 21 ends of sized yarn through a section of conventional weaving loom reed and applying controlled tension to each individual warp end. The reed is made to oscillate against the warp ends at one cycle/second and the number of cycles required to cause the breakage of each end is recorded. A second set of 21 ends is next tested in the same manner. The two sets of data obtained are then statistically averaged so as to give the number of cycles required to cause 50% breakage of the warp ends used in the test. This quantity in cycles is referred to as the F 50 rating for a given size formulation.
  • Abrasion resistance is highly dependent upon size add-on.
  • all F 50 data must be normalized to a given size add-on, namely, 10%. This is preferably done by obtaining F50 values at six or more add-ons for a given size formulation and subjecting the resulting data to a linear regression analysis. All F 50 data reported in the characterization of the various examples cited have been treated in this manner. A maximum F 50 value was observed for size formulations prepared with PVA No. 1 (a fully hydrolyzed vinyl alcohol/methyl methacrylate copolymer having a 4% solution viscosity of 28 mPa.s and having a saponification number of 30). In all examples cited the actual F 50 value observed and a comparison rating with the PVA No.
  • Sized yarn to be used in this test is first heat set by passing it through an oven at 200°C with a holdup time of 45 seconds.
  • the heat-treated yarn is then desized under mild conditions consisting of soaking the yarn for 15 seconds at 55°C in a 0.5% Alkanol WXN (a modified sodium alkylaryl sulfonate supplied by E. I. du Pont de Nemours and Company) solution followed by rinsing the yarn for 45 seconds at 75°C three times.
  • Alkanol WXN a modified sodium alkylaryl sulfonate supplied by E. I. du Pont de Nemours and Company
  • Examples 1 and 2 which represent embodiments of the present invention, provided yarn having acceptable combinations of the three key performance features, comparative Examples 1 and 2 were unacceptable because in C-1 the drum deposit was too high, and in C-2 the dye receptivity was extremely poor.
  • the additive of the present invention provided the same advantages with compositions based on intermediate and partially hydrolyzed polyvinyl alcohols as was observed with the vinyl alcohol polymer compositions described in Examples 1, 2, 3 and 4.
  • the additive of the present invention provided beneficial effects when used with 50/50 vinyl alcohol polymer/starch blends in both drum deposit performance as well as in dye receptivity.
  • the additive reduced abrasion resistance to approximately the same extent as did the "Synchem" 110 wax additive.
  • Size formulations based on PVA No. 2 were prepared with several low ethylene oxide adducts of linear alcohols namely "Tergitol” 25-L-3, “Alfonic” 1012-40 and “Alfonic” 1412-40 (Ex. C-11 to 13).
  • the hydrophobe is a linear alcohol in the "Alfonic” products and in “Tergitol” 25-L-3 but is secondary alcohol in “Tergitol” 15-S-3.
  • the above Table shows that "Alfonic” 1412-40 and “Tergitol” 25-L-3 are an almost exact linear counterparts of
  • Table VI shows the composition and properties of size formulations prepared with the above linear alcohol derived ethylene oxide adducts as well as with the additive of the present invention (Ex. 1).
  • Size formulations were prepared with PVA No. 2 modified with a range of "Tergitol” 15-S products containing from 3 to 40 ethylene oxide units (i.e. "Tergitol” 15-S-3 to “Tergitol” 15-S-40).
  • the level of the "Tergitol” additive was 0.4 wt. %, and 3.0% "Carbowax” 600 was also present in the formulation. Included in Table VII are characterization data for these formulations and a formulation containing only the "Carbowax” 600 additive.
  • Fabric samples which have been prepared from yarn sized with the size solution of the present invention have been compared with fabric samples identical in every respect except that the latter were prepared with yarn sized with a commercial PVA/tallow wax formulation. Both sets of samples were desized under mild conditions (e.g. 15 seconds soak at 55°C followed by three water rinses at 65°C).
  • the dye receptivity of the fabrics obtained with the size of the present invention exhibited eight times the dye receptivity of those obtained using the conventional wax-containing size. Moreover dye absorption by the former was regular and uniform whereas that exhibited by the latter was highly irregular and nonuniform.
  • the fabric used in Examples 11 and 21 consisted of a 65/35 polyester/cotton warp having a 36 singles cotton count, and filled with a 100% polyester weft so as to produce a 92/83 construction (ratio of warp threads to weft threads).
  • the warp yarn was sized with a size formulation containing 12.5% solids and contained a size add-on of 15.0%.
  • the size solution used in Example 11 corresponded exactly to that used in Example 2.
  • the size solution used in Comparative Example 21 was the same as that used in Comparative Example 2 except that it contained 10%. "Synchem" 110 wax instead of 8%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
EP85305877A 1984-08-20 1985-08-19 Wachsfreie Polyvinylalkohol enthaltende Schichtzusammensetzung Expired - Lifetime EP0173528B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US64243584A 1984-08-20 1984-08-20
US642435 1984-08-20

Publications (3)

Publication Number Publication Date
EP0173528A2 true EP0173528A2 (de) 1986-03-05
EP0173528A3 EP0173528A3 (en) 1987-12-16
EP0173528B1 EP0173528B1 (de) 1990-03-14

Family

ID=24576540

Family Applications (1)

Application Number Title Priority Date Filing Date
EP85305877A Expired - Lifetime EP0173528B1 (de) 1984-08-20 1985-08-19 Wachsfreie Polyvinylalkohol enthaltende Schichtzusammensetzung

Country Status (9)

Country Link
EP (1) EP0173528B1 (de)
JP (1) JPS6162549A (de)
KR (1) KR920009254B1 (de)
CA (1) CA1279141C (de)
DE (1) DE3576543D1 (de)
ES (2) ES8700863A1 (de)
HK (1) HK89190A (de)
MY (1) MY100153A (de)
ZA (1) ZA856278B (de)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4845140A (en) * 1986-07-07 1989-07-04 Air Products And Chemicals, Inc. Waxless polyvinyl alcohol size composition
WO1991016490A1 (en) * 1990-04-12 1991-10-31 George Bodnar Fabric stabiliser
US5420180A (en) * 1990-08-29 1995-05-30 Kuraray Co., Ltd. Sized yarn and process therefor
CN105603750A (zh) * 2016-02-26 2016-05-25 苏州三和开泰花线织造有限公司 一种多功能环保通用型纺织浆料及其制备方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1322825C (en) * 1986-07-07 1993-10-12 Finn L. Marten Waxless polyvinyl alcohol size composition
JP3643485B2 (ja) * 1998-08-03 2005-04-27 東邦テナックス株式会社 チョップ用及び脱サイズ編織物用炭素繊維

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3689314A (en) * 1970-02-24 1972-09-05 Kimberly Clark Co Method for fabricating improved flushable wrappers for absorbent pads and product obtained thereby
JPS525335B2 (de) * 1974-03-01 1977-02-12
JPS5488947A (en) * 1977-12-26 1979-07-14 Sanyo Chem Ind Ltd Novel w/o type emulsion of water-soluble vinyl polymer
DE2928307A1 (de) * 1979-07-13 1981-02-12 Hoechst Ag Klebemittel auf basis von polyvinylalkohol und seine verwendung

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4845140A (en) * 1986-07-07 1989-07-04 Air Products And Chemicals, Inc. Waxless polyvinyl alcohol size composition
WO1991016490A1 (en) * 1990-04-12 1991-10-31 George Bodnar Fabric stabiliser
US5420180A (en) * 1990-08-29 1995-05-30 Kuraray Co., Ltd. Sized yarn and process therefor
CN105603750A (zh) * 2016-02-26 2016-05-25 苏州三和开泰花线织造有限公司 一种多功能环保通用型纺织浆料及其制备方法
CN105603750B (zh) * 2016-02-26 2018-05-15 苏州三和开泰花线织造有限公司 一种多功能环保通用型纺织浆料及其制备方法

Also Published As

Publication number Publication date
ES552098A0 (es) 1986-12-16
DE3576543D1 (de) 1990-04-19
EP0173528B1 (de) 1990-03-14
JPS6162549A (ja) 1986-03-31
ES546293A0 (es) 1986-11-16
ZA856278B (en) 1987-03-25
EP0173528A3 (en) 1987-12-16
CA1279141C (en) 1991-01-15
HK89190A (en) 1990-11-09
MY100153A (en) 1990-02-22
KR860001913A (ko) 1986-03-24
KR920009254B1 (ko) 1992-10-15
ES8700863A1 (es) 1986-11-16
ES8702540A1 (es) 1986-12-16

Similar Documents

Publication Publication Date Title
US2983623A (en) Flame proofing agents derived from methylol phosphorus polymers
US4640946A (en) Polyvinyl alcohol based wax-free size composition
US4222922A (en) Warp size for filament yarn consisting essentially of polyvinyl alcohol having a degree of hydrolysis of 88-100%, quaternary ammonium surfactant and plasticizer
CA1235862A (en) Launderable textile sizing having stain resistance and soil release
US4164392A (en) Textile materials having durable soil release and moisture transport characteristics and process for producing same
US3920561A (en) Composition for imparting softness and soil release properties to fabrics
US4383063A (en) Polyvinyl alcohol based size composition
CA1118164A (en) Textile materials having durable soil release and moisture transport characteristics and process for producing same
EP0173528B1 (de) Wachsfreie Polyvinylalkohol enthaltende Schichtzusammensetzung
DE2707150C2 (de) Verfahren zum Schlichten von Textilfasern
US5626952A (en) Process for sizing spun yarns
CA1322063C (en) Polyvinyl alcohol based wax-free size composition
WO1998049386A9 (en) Alkyl polyglycosides in textile scour/bleach processing
US5527362A (en) Alkyl polyglycosides in textile scour/bleach processing
US4135879A (en) Processes for the treatment of textiles and finishing agents for use therein
US2344926A (en) Water-repellent fabric
US5397483A (en) Composition for sizing textiles and process using same
US4844709A (en) A textile sizing process using a waxless polyvinyl alcohol size composition
US2845689A (en) Warp size containing dicyandiamide and a polyacrylate salt
US4845140A (en) Waxless polyvinyl alcohol size composition
CA1132285A (en) Polyvinyl alcohol warp size for filament yarn
US5397633A (en) Process for sizing spun cotton yarns
EP0252477A2 (de) Wachsfreie Polyvinylalkoholschlichte-Zusammensetzung
CN111910437A (zh) 一种三防整理用润湿剂及其制备方法
CN1006313B (zh) 以聚乙烯醇为基础的无蜡上浆剂配方

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): DE FR GB IT

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): DE FR GB IT

17P Request for examination filed

Effective date: 19880220

17Q First examination report despatched

Effective date: 19880907

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

ITF It: translation for a ep patent filed
REF Corresponds to:

Ref document number: 3576543

Country of ref document: DE

Date of ref document: 19900419

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19930525

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19930603

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19930623

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19940819

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19940819

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19950428

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19950503

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST